Dr. Ronald D. Haynes
Department of Mathematics and Statistics
Memorial University of Newfoundland


  About Me




  Math Homepage

  MUN Homepage

  Useful Tools


Refereed Papers


1. Cao W., Haynes, R.D., and Trummer, M.R. Preconditioning for a Class of Spectral Differentiation Matrices. J. Sci. Comput. Vol. 24, No.3, pp. 343-371, September 2005. PDF

2. Turner, C., Haynes, R.D. A Numerical and Theoretical Study of Blow-up for a System of Ordinary Differential Equations using the Sundman Transformation, Atlantic Electronic Journal of Mathematics, Issue 2, 2007. PDF

3. Haynes, R.D., Kennedy, S.C. and Trummer, M.R., Persistently Positive Inverses of Perturbed M--Matrices, Linear Algebra and Applications, Volume 422, Issue 2-3, Pages 742-754, 2007. DOI:10.1016/j.laa.2006.12.006 PDF

4. Haynes, R.D., and Russell, R.D. A Schwarz Waveform Moving Mesh Method, SIAM J. Sci. Comput. Vol. 29, No. 2, pp. 656-673, 2007. DOI: 10.1137/050631549 PDF

5. Haynes, R.D., Huang, W., and Russell, R.D. A Moving Mesh Method for Time--dependent Problems based on Schwarz Waveform Relaxation, Lecture Notes in Computational Science and Engineering (LNCSE), Springer--Verlag, Vol. 60, pages 229--236, 2008. DOI: 10.1007/978-3-540-75199-1_25 PDF

6. Dulong, B., Haynes, R.D., and Robertson, M. A study in the computation time required for the inclusion of strain field effects in Bloch-wave simulations of TEM diffraction contrast images, Ultramicroscopy, Vol. 108, Iss. 5, pp. 415--425, 2008. PDF

7. R. Karsten, J. McMillan, M. Lickley, and R.D. Haynes. Assessment of Tidal Current Energy for Minas Passage, Bay of Fundy. Proc. IMechE Part A: J. Power and Energy, Vol. 222, pp. 493--507, 2008 PDF

8. McMillan, J., Lickley, M., Karsten, R. and Haynes, R.D. Potential of Tidal Power and its Effects on the Bay of Fundy. SIAM Undergraduate Research Online, Volume 1, Issue 1, pp. 20--37, 2008. PDF

9. Kennedy, S. and Haynes, R.D. Inverse Positivity of Perturbed Tridiagonal M-Matrices, Linear Algebra and its Applications, Volume 430, Issues 8-9, pp. 2312-2323, 2009. DOI:10.1016/j.laa.2008.12.008 PDF

10. Haynes, R.D., Recent Advances in Schwarz Waveform Moving Mesh Methods -- A New Moving Subdomain Method, Lecture Notes in Computational Science and Engineering (LNCSE), Springer--Verlag, Volume 78, 2011. DOI:10.1007/978-3-642-11304-8_28 PDF

11. Ranjan, P., Haynes, R.D., Karsten, R., A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, Vol. 53, No. 4: p. 366-378, Nov 2011. DOI:10.1198/TECH.2011.09141 PDF

12. Haynes, R.D., Huang, J., and Haung, T-Z., Monotonicity of Perturbed Tridiagonal M-matrices, SIAM Journal of Matrix Analysis and Applications, Vol. 33, Issue 2, pp. 681-700, 2012. DOI: 10.1137/100812483 PDF

13. Gander, M.J., Haynes, R.D. Domain Decomposition approaches for mesh generation via the Equidistribution Principle, SIAM Journal of Numerical Analysis, Vol. 50, Issue 4, pp. 2111-2135, 2012. DOI: 10.1137/110849936 PDF

14. Christlieb, A., Haynes, R.D. and Ong, B., A Parallel Space--Time Algorithm, SIAM Journal of Scientific Computing, Vol. 34, No. 5, pp. C233-C248, 2012. DOI: 10.1137/110843484 PDF

15. Humphries, T.D., Haynes, R.D., and James, L.A., Simultaneous Optimization of Well Placement and Control using a Hybrid Global-Local Strategy, In: Proceedings of the 13th European Conference on the Mathematics of Oil Recovery (ECMOR XIII), Biarritz, France, September 10-13, 2012. DOI: 10.3997/2214-4609.20143204 PDF

16. Haynes, R.D., Huang, W., Zegeling, P.A., A Numerical Study of Blowup in the Harmonic Map Heat Flow using the MMPDE moving mesh method, Numerical Mathematics: Theory, Methods and Applications, Vol. 6, No. 2, pp. 364--383, May 2013. PDF

17. Gander, M.J., Haynes, R.D. and Howse, A.M., Alternating and Linearized Alternating Schwarz Methods for Equidistributing Grids, Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in Computational Science and Engineering Volume 91, 2013, pp 395-402. DOI: 10.1007/978-3-642-35275-1_46 PDF

18. Haynes, R.D. and Ong, B., MPI-OpenMP algorithms for the parallel space-time solution of time dependent PDEs, Domain Decomposition Methods in Science and Engineering XXI, pp. 179-188, Lecture Notes in Computational Sciences and Engineering Volume 98, 2014. PDF

19. Haynes, R.D. and Howse, A.J.M, Generating Equidistributed Meshes in 2D via Domain Decomposition, Domain Decomposition Methods in Science and Engineering XXI, pp. 167-178, Lecture Notes in Computational Science and Engineering Volume 98, 2014. PDF

20. Humphries, T.D., Haynes, R.D., and James, L.A., Simultaneous and sequential approaches to joint optimization of well placement and control, Computational Geosciences, Volume 18, Number 3-4, pages 433-448, 2014. DOI:10.1007/s10596-013-9375-x PDF

21. Butler, A., Humphries, T.D., Ranjan, P. and Haynes, R.D., Efficient Optimization of the Likelihood Function in Gaussian Process Modelling, Computational Statistics and Data Analysis, Vol. 73, pp. 40--52, 2014. DOI:10.1016/j.csda.2013.11.017 (Submitted August 2013, Revised November 14, 2013, accepted November 24, 2013.) PDF Arxiv

22. Haynes, R.D. and Howse, A.J.M, Alternating Schwarz Methods for partial differential equation-based mesh generation, Int. J. Comput. Math., Taylor & Francis, Published Online April 09, 2014, Vol. 92, Iss. 2, pages 349-376, 2015 DOI: 10.1080/00207160.2014.891733 PDF

23. Bihlo A., Haynes R.D. A Stochastic Domain Decomposition Method for Time Dependent Mesh Generation. In: Dickopf T., Gander M., Halpern L., Krause R., Pavarino L. (eds) Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes in Computational Science and Engineering, vol 104. Springer, Cham, 2016 Arxiv

24. Bihlo, A., and Haynes, R.D., Parallel Stochastic Methods for PDE based grid generation, Computers and Mathematics with Applications, accepted July 2014, Vol. 68, Iss. 8, pages 804-820, Oct. 2014 DOI: 10.1016/j.camwa.2014.07.017. PDF Arxiv

25. Belliveau, Patrick, Colin Farquharson, and Ronald Haynes, 2014, ArjunAir: Updating and parallelizing an existing time domain electromagnetic inversion program. SEG Technical Program Expanded Abstracts 2014: pp. 875-880. doi: 10.1190/segam2014-1433.1 PDF

26. Humprhies, T.D. and Haynes, R.D., Joint optimization of well placement and control for nonconventional well types, Submitted July 2014, accepted December 2014, Journal of Petroleum Science and Engineering, 126 (2015), pp. 242-253. Arxiv PDF

27. Grazieli Luiza Costa Carosio, Thomas Donald Humphries, Ronald Dale Haynes, and Colin Glennie Farquharson. 2015. A Closer Look At Differential Evolution For The Optimal Well Placement Problem. In Proceedings of the 2015 on Genetic and Evolutionary Computation Conference (GECCO '15), Sara Silva (Ed.). ACM, New York, NY, USA, 1191-1198. DOI=10.1145/2739480.2754772 http://doi.acm.org/10.1145/2739480.2754772 Arxiv

28. Bihlo, A., Haynes, R.D. and Walsh, Emily J., Stochastic domain decomposition for time dependent adaptive mesh generation, J. Math. Study, Vol. 48, No. 2, pp. 106--124, 2015. doi:10.4208/jms.v48n2.15.02 Arxiv, PDF

29. Haynes, Ronald D. and Huang, Weizhang, Preface Adaptive Moving Mesh Methods, J. Math. Study, Vol. 48, No. 2, pp. i--iii, 2015. PDF

30. Xiang Wang, Qihong Feng, and Ronald D. Haynes, Optimization of Well Placement and Production for Large-scale Mature Oil Fields, Journal of Engineering Science and Technology Review, 8(5):134-140, December 2015 PDF

31. Haynes, R.D., Ladd, K., and Ong, B. W., Algorithm 965: RIDC Methods: A Family of Parallel Time Integrators, ACM Transactions on Mathematical Software (TOMS), Volume 43 Issue 1, August 2016. doi:10.1145/2964377 ArXiv

32. Haynes, R.D. and Wang, X., A Multilevel Coordinate Search Algorithm for Well Placement, Control and Joint Optimization, Computers & Chemical Engineering, Vol. 95, pp. 75-96, 5 December 2016, http://dx.doi.org/10.1016/j.compchemeng.2016.09.006 Arxiv

33. Haynes, R.D. and Kwok, F., Discrete analysis of Domain Decomposition Algorithms for Grid Generation via the Equidistribution Principle, MATHEMATICS OF COMPUTATION Volume 86, Number 303, January 2017, Pages 233-273 PDF Arxiv

34. Bihlo, A., Haynes, R.D., Farquharson, C., Loredo-Osti, J.C., Probabilistic Domain Decomposition for the Solution of the Two-Dimensional Magnetotelluric Problem, Comput. GeoSciences, February 2017, Volume 21, Issue 1, pp. 117-129. Arxiv

35. Hillier, S.H, Reid, G.D., Haynes, R.D., Robertson, Z., Robertson, M.D. On the Role of the Second-Order Derivative Term in the Calculation of Convergent Beam Electron Diffraction Patterns, Ultramicroscopy, Volume 179, pp. 73-80, August 2017 PDF

36. Haynes, R.D., Domain Decomposition Approaches for PDE based Mesh Generation, in Domain Decomposition Methods in Science and Engineering XXIV, Springer, LNCSE 125, pp. 73-86, 2018. PDF

37. Mohagheghian, E., Haynes, R.D., and James,L. Optimization of Hydrocarbon Water Alternating Gas (WAG) in the Norne Field: Application of Evolutionary Algorithms, Fuel, January 2018, Volume 223, 1 July 2018, Pages 86-98 PDF

38. Esraa A. Makled, Animesh Yadav, Octavia A. Dobre and Ronald D. Haynes, Hierarchical Full-Duplex Underwater Acoustic Network: A NOMA Approach, (Extended Abstract) OCEANS 2018 MTS/IEEE Charleston, October 22-27, 2018, Charleston, SC, USA PDF

39. DiPietro, K., Haynes, Ronald D., Huang, Weizhang, Lindsay, Alan, and Yu, Yufei, Moving Mesh simulation of contact sets in two dimensional models of elastic-electrostatic deflection problems, Journal of Computational Physics, Volume 375, 15 December 2018, Pages 763-782, Arxiv

40. Ahmed, F. and Haynes, R.D., Linearized Domain Decomposition Approaches for Second Order Boundary Value Problems with a Nonlinear Dependence on the Derivative of the Solution, Journal of Computational and Applied Mathematics, Vol. 346, pages 620-637, Jan 2019 PDF

41. Wang, X., and Haynes, R.D., Well Control Optimization using Derivative-Free Algorithms and a Multiscale Approach, Volume 123, 6 April 2019, pages 12-33, Computers and Chemical Engineering PDF

42. A.R. Dehghani-Sanija, S. MacLachlan, G.F. Naterer, Y.S. Muzychka, R.D. Haynes, V. Enjilela, Multistage Cooling and Freezing of a Saline Spherical Water Droplet, International Journal of Thermal Sciences, Volume 147, pp. 106095, 2020. PDF

43. Tang, H.S., Haynes, R.D., and Houzeaux, G. A Review of Domain Decomposition Methods for Simulation of Fluid Flows: Concepts, Algorithms, and Applications, Archives of Computational Methods in Engineering (ARCO), 28, pages 841-873, 2020. PDF

44. May I., Haynes R.D., Ruuth S.J. (2020) Domain Decomposition for the Closest Point Method. In: Haynes R. et al. (eds) Domain Decomposition Methods in Science and Engineering XXV. DD 2018. Lecture Notes in Computational Science and Engineering, pp. 458-465, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-030-56750-7_53 PDF Arxiv

45. Donzelli F., Gander M.J., Haynes R.D. (2020) A Schwarz Method for the Magnetotelluric Approximation of Maxwell's Equations. In: Haynes R. et al. (eds) Domain Decomposition Methods in Science and Engineering XXV. DD 2018. Lecture Notes in Computational Science and Engineering, pp. 417-424, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-030-56750-7_48 Arxiv

46. Haynes R.D., Mohammad K. (2020) Fully Discrete Schwarz Waveform Relaxation on Two Bounded Overlapping Subdomains. In: Haynes R. et al. (eds) Domain Decomposition Methods in Science and Engineering XXV. DD 2018. Lecture Notes in Computational Science and Engineering, pp. 159-166, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-030-56750-7_17 PDF

47. Jahandari, H., MacLachlan, S., Haynes, R.D., and Madden, N. Finite element modelling of geophysical electromagnetic data with goal-oriented hr-adaptivity, Computational Geosciences, 24, pages 1257-1283, 2020. PDF

48. May, I., Haynes, R.D. and Ruuth, S. Additive Schwarz solvers and preconditioners for the closest point method, accepted SISC November 2020. Arxiv

49. Prasad, S., Zakharov, I., Haynes, R.D. and Puestow, T. Estimation of sea ice parameters using an assimilated sea ice model with a variable drag formulation, Ocean Modeling, Volume 158, February 2021, pp. 101739 PDF

50. Haynes, Ronald D., Huang, Weizhang, Sulman, Hohammed, Domain Decomposition Parabolic Monge-Ampere Approach for Fast Generation of Adaptive Moving Meshes, Computers and Mathematics with Applications, Volume 84, 15 February 2021, Pages 97-111 PDF

51. Derijani, H., James, L.A., and Haynes, Ronald D. Evaluation of interFoam solver in the prediction of immiscible two phase flow in imbibition and drainage on the pore-doublet system. July 2021 PDF

52. Kowsari, M., James, L.A., Haynes, R.D. The Effect of Relative Permeability Hysteresis on the Design of an Optimal Water-Alternating-Gas (WAG) Process, March 2021 PDF

53. Haynes, R.D., Ruuth, S., and Yazdani, A. A Convergence Analysis of the Parallel Schwarz Solution of the Continuous Closest Point Method, July 2021 PDF

54. Haynes, R.D., Mohammad, K. A multirate accelerated Schwarz Waveform Relaxation Method, July 2021 PDF

Under Revision

55. Das, P. and Haynes R.D. A Higher Order Uniformly Convergent Numerical Solution for Parabolic Initial Boundary Value Problems with Boundary Layers by Post Processing Techniques


56. Haynes, R.D. and Mohammad, Khaled. Fully Discrete Schwarz Waveform Relaxation Analysis for the Heat Equation on a Finite Spatial Domain. June 2021

57. May, Ian, Haynes, R.D., and Ruuth, S. A closest point method library for PDEs on surfaces with parallel domain decomposition solvers and preconditioners. PDF October 6, 2021.

Preprints/In Preparation

Published Teaching Resources

57. Brown, M. and Haynes, R.D. Student Solution's Manual for Numerical Analysis and Scientific Computation: Jeffrey Leader, Addison--Wesley,ISBN-10: 0321257332 ISBN-13: 9780321257338

Published Book Reviews

58. Haynes, R.D. A review of "Numerical Linear Algebra: An Introduction by Holger Wendland Cambridge Texts in Applied Mathematics, 2018", PDF


Some Schwarz Moving Mesh Movies

Current Projects

I am working on the following projects, collaborators are listed next to each project.
  • Optimization problems whose function evaluations depend on the numerical solution of partial differential equations - Thomas Humphries (MUN), Richard Karsten (Acadia)
  • Domain Decomposition and Moving Mesh Methods for time dependent PDEs - Bob Russell (SFU), Weizhang Huang (Kansas), Martin Gander (Geneve), Felix Kwok (Hong Kong Baptist) and Students

Web site and all contents ? Copyright Ronald D. Haynes 2013, All rights reserved.