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a b s t r a c t 

The simulation of (scanning) transmission electron microscopy images and diffraction patterns is most 

often performed using the forward-scattering approximation where the second-order derivative term in z 

is assumed to be small with respect to the first-order derivative term in the modified Schrödinger equa- 

tion. This assumption is very good at high incident electron energies, but breaks down at low energies. 

In order to study the differences between first- and second-order methods, convergent beam electron 

diffraction patterns were simulated for silicon at the [111] zone-axis orientation at 20 keV and compared 

using electron intensity difference maps and integrated intensity profiles. The geometrical differences in 

the calculated diffraction patterns could be explained by an Ewald surface analysis. Furthermore, it was 

found that solutions based on the second-order derivative equation contained small amplitude oscilla- 

tions that need to be resolved in order to ensure numerical integration stability. This required the use 

of very small integration steps resulting in significantly increased computation time compared to the 

first-order differential equation solution. Lastly, the efficiency of the numerical integration technique is 

discussed. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The quantification of transmission electron microscopy (TEM)

nd scanning transmission electron microscopy (STEM) images and

iffraction patterns continues to be important to solving funda-

ental problems in material and biological sciences, and has di-

ectly followed advances in instrumentation and computing re-

ources. The theory for electron propagation through materials in

S)TEMs is well established [1–5] and many methods for calcu-

ating image and diffraction patterns have been developed includ-

ng Bloch-wave, multislice, matrix, iterative, direct integration, and

eal-space methods [6–8] , as well as references contained therein.

n addition, the potentials encountered by incident electrons is a

opic of on-going research and most formulations are based on a

uperposition of isolated neutral atoms and range in complexity

rom a summation of Gaussian functions to procedures incorpo-

ating accurate physical constraints [1,9–13] . The number and so-

histication of programs available for (S)TEM simulation is also

ver increasing and include: C code [1,14] , EMS [15] , STEM_CELL
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16,17] and MULTEM [13,18] with some incorporating multiple CPU

nd GPU support for added computational speed. 

All of the listed codes incorporate the high-energy approxima-

ion in both the calculation of the potentials as well as the form

f the differential equations used for the propagation of the elec-

ron through the material. Specifically, the second-order differen-

ial in z in the Schrödinger equation has been approximated by

 first-order differential, since ∂ 2 / ∂z 2 � 4 π / λ∂/ ∂z , which is ap-

ropriate in the high-energy/forward-scattering approximation. In 

hat follows, equations that contain a second-order derivative in

 and those that have a first-order derivative in z as the highest-

rder derivative will be referred to as the second-order and first-

rder problems, respectively. It is generally assumed that the high-

nergy approximation is valid for electron energies ≥100 keV,

owever the exact value is somewhat blurry since the electron

peed is 0.78 c at 300 keV, but is still 0.27 c at a relatively low

nergy of 20 keV. At lower energies, backscattering of electrons

ay become important, an effect not included in the high-energy,

orward-scattering approximations. Chen and Van Dyck [6] have

igorously formulated a multislice simulation scheme without the

se of the high-energy approximation which includes the effects

f backscattering. In their correction for the forward-scattering

http://dx.doi.org/10.1016/j.ultramic.2017.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ultramic
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approximation, the ∇ 

2 
xy and potential terms are present inside a

square root operation which must be expanded as a power series

in order to perform the calculations. Although more accurate than

the conventional forward-scattering approximation, the series ex-

pansion is computationally expensive and the Ewald sphere still

transforms into a modified parabolic surface, although not to the

same extent as the high-energy approximation directly [19] . An ac-

curately shaped Ewald spherical surface is important in the simu-

lation of higher-order Laue zone (HOLZ) diffraction effects. 

Ming and Chen [20] have investigated the differences between

simulated diffraction patterns of SmBa 2 Cu 3 O 7 −x [001] using the

conventional multislice method (CMS), CMS with a correction fac-

tor to more accurately approximate the spherical Ewald surface

(PCMS) and the method of Chen and Van Dyck (FCMS) [6] . At

an electron energy of 100 keV, they found the three methods

are nearly equivalent for zero order Laue zone (ZOLZ) reflections,

but the CMS method differed appreciably from the PCMS and

FCMS methods for HOLZ reflections. These differences increased

with decreasing electron energy and even the PCMS and FCMS

methods displayed significant differences at 20 keV. The effects

of backscattering were not included in their calculations and the

authors acknowledged that backscattering effects would become

more important as the electron energy decreased. Recently, Wacker

and Schröder [21] have integrated the Schrödinger equation di-

rectly using a Runge–Kutta method for the simulation of selected-

area diffraction (SAD) patterns in silicon aligned along the [110]

zone-axis projection at an incident electron energy of 20 keV ne-

glecting the effects of backscattered electrons and thermal vibra-

tion of the atoms. They observed significant differences between

the classical multislice, Chen and Van Dyck and direct-integration

(Runge–Kutta) solutions. Although the magnitude of the second-

order derivative term was about a factor of 10 −4 less than the

first-order derivative term, the second-order effects were cumula-

tive and the differences in the wave functions between the two

formalisms were shown to increase with thickness. 

In this work, the effects of the second-order derivative in z

will be considered, but in the context of convergent beam electron

diffraction (CBED) patterns that are the basis of annular bright-

field (ABF) and dark-field (ADF) imaging techniques. First, electron

propagation across an atom in one dimension (1D) will be consid-

ered and the differences between first- and second-order solutions

will be investigated. This work will then be extended to the full

three-dimensional (3D) system for the calculation of CBED patterns

at 20 keV along the [111] zone-axis projection in silicon where

thermal effects have been included using the frozen-phonon ap-

proximation [22] . An electron energy of 20 keV was chosen since

this was the energy where Ming and Chen [20] observed signifi-

cant differences in simulated diffraction patterns by three multi-

slice methods, as well as the energy used by Wacker and Schröder

[21] in some of their simulations, again to highlight differences as

a result of simulation methodology. A comparison will be made be-

tween the directly integrated first- and second-order solutions, and

the implications for ABF and ADF imaging will be discussed. Fi-

nally, an observation on the efficiency of the numerical solver will

be presented. 

2. Theoretical background 

Fundamentally, the Dirac equation governs the interaction of

relativistic electrons with atoms. This equation requires the so-

lution of four coupled, second-order differential equations yield-

ing four solutions containing matter and anti-matter, as well as

spin up and down, effects. There is a very accurate approxima-

tion that simplifies this problem for high-energy electrons; Fuji-

wara [23,24] , and more recently Rother and Scheerschmidt [25] ,

have shown that the Dirac equation can be replaced with the non-
elativistic Schrödinger equation, where the electron mass, m , and

avelength, λ, have been relativistically corrected. Thus, the prob-

em is reduced to solving a single, second-order differential equa-

ion with a single solution. Using the notation of Kirkland [1] , the

chrödinger equation can be expressed as, 

− h̄ 

2 

2 m 

∇ 

2 − eV ( x, y, z ) 

]
� f ( x, y, z ) = E� f ( x, y, z ) (1)

here � is Planck’s constant, e the charge of an electron, V ( x, y,

 ) is the three-dimensional (3D) atomic potential interacting with

he incident electron, and E is the kinetic energy of the incident

lectron, 

 = 

2 π2 h̄ 

2 

mλ2 
(2)

nless otherwise specified, it will be assumed the wave function

nd potential are both functions of x, y and z . The direct integra-

ion of Eq. (1) is usually not performed as the solutions are highly

scillatory with a period close to the electron wavelength. Hence,

 rapidly varying plane-wave term is factored out of the solution.

aking the variable substitution, � f ( x, y, z ) = e 2 π iz/λ�( x, y, z ) and

sing Eq. (2) for the energy leads to the differential equation [1] ,

∇ 

2 
xy + 

∂ 2 

∂z 2 
+ 

4 π i 

λ

∂ 

∂z 
+ 

2 me 

h̄ 

2 
V 

]
� = 0 (3)

or high-energy electrons, it is assumed that ∂ 2 / ∂z 2 � 4 π ∂/ ∂z

nd the differential equation becomes first order in z , 

∂�

∂z 
= 

[
iλ

4 π
∇ 

2 
xy + 

2 meiλ

4 π h̄ 

2 
V 

]
� (4)

n both Eqs. (3) and (4) , the Laplacian operator was calculated us-

ng the Fourier transform method as given by Eq. (19) [1,21] . 

.1. One-dimensional solution 

The solution to the full 3D differential equation is complex and

on-analytical, and in order to study some of the properties of the

rst- and second-order problems, a simplification to a 1D problem

n z will be made. Thus, setting �( x, y, z ) → �( z ), V ( x, y, z ) → V ( z )

nd ∇ 

2 
xy �( z ) = 0 , Eqs. (3) and (4) become, 

d 2 

dz 2 
+ 

4 π i 

λ

d 

dz 
+ 

2 meV ( z ) 

h̄ 

2 

]
�( z ) = 0 (5)

nd 

d�( z ) 

dz 
= 

meλiV ( z ) 

2 π h̄ 

2 
�( z ) (6)

espectively. 

Many of the features of the solutions to the 1D problem can be

llustrated by studying the case of constant potential with V ( z ) =
 . In the case of the first-order problem the solution is, 

1 st ( z ) = exp 

(
i 
meλV 

2 π h̄ 

2 
z 

)
(7)

ith a real component, 

1 st 
R ( z ) = cos 

(
meλV 

2 π h̄ 

2 
z 

)
(8)

imilarly, the solution for the second-order problem for a constant

otential is given by, 

2 nd ( z ) = e −2 π iz/λ

[
cos (kz) + 

2 iπ

λk 
sin (kz) 

]
(9)
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Fig. 1. The real and imaginary components of the first- and second-order solutions 

using the soft-core potential for electron energies of (top) 300 keV and (bottom) 

20 keV for an atom located at z = 0 . Differences between the first- and second- 

order solutions provides a measure of the quality of the forward scattering approx- 

imation. At an electron energy of 300 keV it is observed that the forward scattering 

approximation holds very well, whereas at 20 keV this approximation appears to 

break down. The legend applies to both figures. 
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here, 

 = 

√ 

2 meV 

h̄ 

2 
+ 

4 π2 

λ2 
(10) 

he real component of Eq. (9) for the special case of a weak po-

ential can be put in the form, 

R (z) = cos 

(
meλV 

2 π h̄ 

2 

)
− meλ2 V 

8 π2 h̄ 

2 

[ 
1 − cos 

(
4 π

λ
z 

)] 
(11) 

= �1 st 
R (z) − meλ2 V 

8 π2 h̄ 

2 

[ 
1 − cos 

(
4 π

λ
z 

)] 
(12) 

ee the Appendix for the full derivation. The first term inside the

quare brackets of Eq. (12) represents a small negative shift of the

alue of the second-order solution with respect to the first-order

olution and the second term is a small amplitude oscillation with

alf the period of the incident electron wavelength. 

The second case to be studied in one dimension is for a soft-

ore atomic potential defined as [26] , 

 ( z ) = 

eZ 

4 πε0 

1 √ 

a 2 + z 2 
(13) 

here Z is the atomic number, ε0 is the vacuum permittivity and a

s a constant to avoid the singularity at the nucleus of the atom lo-

ated at z = 0 . For Z = 14 and a = 0 . 03 Å, this form of the potential

pproximates that given by Peng et al. for silicon [27] . Apart from

voiding the singularity in a Coulomb potential, the use of this po-

ential results in an analytic solution to the first-order differential

quation, 

( z ) = 

( 

z + 

√ 

a 2 + z 2 

z 0 + 

√ 

a 2 + z 2 
0 

) ik ′ 

(14) 

here the boundary condition �(z 0 ) = 1 and 

 

′ = 

me 2 λ

8 ε0 π2 h̄ 

2 
(15) 

ere used. 

. Results and discussion 

The numerical results presented will focus on a relatively low

lectron energy, specifically 20 keV, since the applicability of

q. (4) has been firmly established for high energy electrons (i.e.,

00 + keV). See, for example, Kirkland [1] and the references cited

herein. This was also our experience and we did not find any ap-

reciable differences between the first- and second-order solutions

t high electron energies that would justify not using Eq. (4) . As in

he numerical simulations of Wacker and Schröder, the effects of

ackscattered electrons will not be considered [21] . 

.1. One-dimensional solutions 

All of the simulations in this section were performed at an in-

ident electron energy of 20 keV, Z = 14 and a = 0 . 03 Å. The start-

ng point of the numerical integration was z 0 = −3 . 0 Å and pro-

eeded until z = 3 . 0 Å as these were regions of negligible atomic

otential. The differential equations were numerically integrated in

ATLAB 

TM using the ode45 solver with maximum absolute and

elative per-step tolerances of 10 −8 . As a check of the accuracy of

he numerical solver, the differences between the analytical and

umerical solutions at z = 3 Å for the soft-core potential were

 . 2 × 10 −9 and 1 . 2 × 10 −8 for the real and complex components of

he wave function, respectively. 

Presented in Fig. 1 are the real and imaginary components

f the wave function for both first- and second-order differential
quations calculated for electron energies of 300 keV and 20 keV.

lthough the 300 keV results did not show any appreciable differ-

nce between the first- and second-order solutions, it is observed

hat the first- and second-order wave function solutions diverge

ignificantly at 20 keV at the z = 3 Å integration limit. While it is

ecognized that it is the intensity ( �∗�) that is the physically im-

ortant quantity, it does not make sense to plot this quantity in

he 1D case since it would equal very close to 1 over the entire

ntegration interval. However, the presence of a difference in the

ave functions may be indicative of differences occurring in the

ull 3D calculation. 

The second-order calculations took 84 times longer to com-

ute than the first-order calculations based on an average timing

rom 100 runs. Naively, it is expected that the second-order prob-

em should take twice as long to compute since it can be writ-

en equivalently as two coupled first-order differential equations

28] . In order to better understand the increase in computation

ime, displayed in Fig. 2 is the same plot as the 20 keV solution

n Fig. 1 but the region near z = −3 . 0 Å has been highlighted. Here
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Fig. 2. A comparison of the real component of the wave functions evaluated us- 

ing the first- and second-order calculations. The wave functions calculated using 

the second-order equations contain small oscillations that need to be resolved by 

the numerical integrator in order to ensure a stable and accurate calculation. This 

necessitates the use of much smaller step sizes than required for the first-order 

calculation resulting in increased computation time. 

Fig. 3. The numerical integration step size as a function of position, where the re- 

sults from the first- and second-order calculations are shown in black and red, re- 

spectively. The reduced step size of the second-order calculations with respect to 

the first-order equations is a result of the need to resolve the small amplitude os- 

cillations present in the wave function of the second-order solution. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The real components of the first- and second-order calculated wave func- 

tions obtained from the centre of the (0 0 0) diffraction disk. Note that the plot starts 

3 Å above the top surface of the super cell where the first plane of atoms is located 

at z = 0 . As in the 1D case, the increase in computational time is largely due to 

resolving small amplitude oscillations caused by the second-order derivative term. 
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it is observed that the average value of the second-order solution

has decreased compared to the first-order solution and contains

small amplitude oscillations, as expected from Eq. (12) . The period

of the oscillations is very close to half of electron wavelength of

0.086 Å at 20 keV. This is an important result since the numeri-

cal solver must use a much smaller step size in the second-order

calculation as compared to the first-order calculation in order to

resolve the oscillations. The numerical solution becomes unstable

when too large of a step size is selected, as observed by Wacker

and Schröder [21] . 

A typical plot of the integration step sizes as a function of po-

sition for the soft-core potential is shown in Fig. 3 . It is observed

that the step sizes for the first-order calculation are larger away

from the core of the atom and get smaller near the core where

both the slopes of the atomic potential and wave functions are

greatest. Perhaps somewhat counter intuitively, the step sizes for

the second-order calculation display opposite behaviour; they are

larger nearer to the core. The reason for this behaviour is that
hen the slope of the wave function is large, the oscillations have

ess of an effect on the shape of the wave function locally and the

umerical solver can take larger steps while maintaining the same

er-step error tolerance. Even the largest step in the second-order

alculation is about an order of magnitude smaller than the small-

st step in the first-order calculation. Therefore, the main cause of

he increased time of computation required for the second-order

quation is the reduced step size necessary to resolve the small

mplitude oscillations. 

.2. Three-dimensional CBED simulations 

CBED patterns were simulated for silicon at the [111] zone-axis

rojection by direct integration of Eqs. (3) and (4) . The specimen

onsisted of a super cell of dimension 38.4 Å × 39.9 Å × 498.5 Å

nd the full 3D potential of Kirkland [1] was used. The effects of

hermal vibrations were included in the frozen-phonon approxi-

ation [22] using a root-mean-square deviation of 0.078 Å at a

emperature of 300 K. Sixty-four thermal vibration configurations

ere run and averaged incoherently to ensure convergence of the

olution. The microscope parameters were: an electron energy of

0 keV, an objective aperture semiangle of 16.0 mrads, a defo-

us of 983 Å and a spherical aberration coefficient of 2.0 mm.

he equation given by Spence [29, p.272] to obtain the narrow-

st electron probe was used for the defocus, but the objective

perture semiangle was increased from 10.3 mrads to 16.0 mrads

n order to resolve some of the fine structure within the CBED

isks. Numerically, the size of the wave function was set to 512 ×
12 pixels and the bandwidth was limited to 2/3 of its maximum

yquist value to avoid aliasing effects during the Fourier trans-

orm calculations. These parameters resulted in a maximum ra-

ial distance in reciprocal space of 367.3 mrads. A constant slice

hickness of 0.00192 Å was used to ensure stable simulation cal-

ulations. Eqs. (3) and (4) were integrated using a Dormand-Prince

(5) method [28] which is the same method implemented in the

ATLAB 

TM ode45 routine. The integration started 3 Å above and

xtended 3 Å below the top and bottom planes of the super cell,

espectively. 

The second-order 3D calculation ran much slower than the

rst-order calculation and the slow down was again mainly due to

aving to resolve the small oscillations in the second-order wave

unction. Presented in Fig. 4 is a plot of the real component of



S.C. Hillier et al. / Ultramicroscopy 179 (2017) 73–80 77 

Fig. 5. Si [111] zone-axis orientation CBED patterns using (a) first-order and (b) 

second-order equations. The square root of the intensities of images (a) and (b) 

were plotted in order to display weak intensities. (c) Difference map of (b)- 

(a) where black represents a difference of −5 . 6 × 10 7 and white a difference of 

6.1 × 10 7 . (d) Percent difference map between (b) and (a) as calculated using 

100 ∗[(b) −(a)]/[(b) + (a)]/2 where black represents −193% and white 188%. An inci- 

dent electron energy of 20 keV and specimen thickness of 498.5 Å were used in 

the calculations. 
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he electron wave function using both the first- and second-order

quations along the z direction through the centre of the (0 0 0)

iffraction disk. The period of oscillation of the wave function at

his location is half of the incident electron wave length, as ex-

ected when the atomic potential is weak. 

Visually, the CBED patterns simulated using the first- and

econd-order equations appeared similar and presented in Fig. 5 (a)

nd (b) are the CBED patterns using the first- and second-order

quations, respectively. In order to quantify the differences be-

ween these two simulations, second-order - first-order difference

nd percent difference maps were prepared and are displayed in

ig. 5 (c) and (d), respectively. In the difference map of Fig. 5 (c),

he largest differences occurred within the (0 0 0) diffraction disk
ig. 6. Ewald surfaces with the radius drawn to scale based on (black) first-order and (red

aue zone, the second row the first-order Laue zone, etc. The difference between the two 

ot spacing = 5.2 Å −1 = 44.7 mrads. (For interpretation of the references to colour in thi
nd along the Laue-zone rings. However, when percent differences

re plotted, the differences are close to a minimum at the centre

f the pattern and increase in a systematic way with increasing

cattering angle. 

This increasing difference with scattering angle can be ex-

lained using the Ewald surface construction shown in Fig. 6 . Here

 = 1 /λ is the magnitude of the incident electron wave vector,

nd g z and g R are the distances to a point on the Ewald surface

n the vertical and radial directions, respectively. The form of the

wald surface for the second-order equation is a sphere defined by

6,19,30] , 

 

2 
R = 2 Kg z − g 2 z (16) 

nd is a parabola for the first-order equation, 

 

2 
R = 2 Kg z (17) 

he difference between these two surfaces is g 2 z and for a given g R 
ncreases with decreasing accelerating potential. For example, the

adius of the Ewald sphere, K , increases by a factor of 4.3 when

he potential is increased from 20 kV to 300 kV. Hence, the differ-

nce between the two surfaces becomes negligible for high energy

lectrons even at high scattering angles. 

Another way of visualizing the differences in the CBED simu-

ations is to look at the radially integrated electron intensity. This

uantity is important since it is required to quantitatively model

BF and ADF image contrast. Displayed in Fig. 7 are the integrated

ntensity profiles calculated using the first- and second-order equa-

ions. There is very little separating the three curves at low-to-

edium scattering angles (0–200 mrads) and only modest differ-

nces for higher scattering angles. It is observed that the peaks

rom HOLZ scattering are shifted to higher scattering angles for

he first-order method as compared to the second-order method,

s expected from Ewald surface considerations. The intensities of

he thermal diffuse background remain nearly constant for each

ethod over the range of scattering angles plotted. This would im-

ly under these conditions ABF and ADF images formed should be

imilar regardless of the method chosen. 

However, it is expected that the fine structure within the CBED

isks located in the HOLZs could change significantly between the

rst- and second- order methods at low incident electron ener-

ies. Furthermore, slight differences in shape of the Ewald surfaces

an have a large impact on the structure of selected area diffrac-

ion (SAD) patterns as demonstrated by Wacker and Schröder [21] .

n both of these cases, a full second-order calculation may be re-

uired to ensure accurate matches between simulation and experi-

ent depending on the particular (S)TEM parameters and material

ystem under investigation. 
) second-order equations. The bottom row of dots corresponds to the zeroth-order 

curves scales as g 2 z and increases with decreasing electron energy. Scale: horizontal 

s figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. The radially integrated intensity of the CBED patterns using the first- and 

second-order differential equations. The main difference between these two curves 

is that the first-order results are shifted to higher scattering angles as compared 

to the second-order calculation, where the magnitude of the shift increases with 

scattering angle. This is a result of the differences in Ewald surface shape between 

the two methods. 

Fig. 8. The ratio of the first-order derivative term 

(
4 π
λ

∂ 
∂z 

)
with respect to the 

second-order derivative term 

∂ 2 

∂z 2 
along the z direction located at the centre of the 

(0 0 0) CBED disk for the first 50 Å of the integration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The rate of the error reduction for a given numerical integration step size 

for the full 3D model using the first-order equation (black) with and (red) without 

anti-aliasing of the FFTs. A p value of 5 is expected for a Dormand-Prince 4(5) nu- 

merical integration scheme applied to smooth functions. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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Apart from Ewald surface effects, there is little to differenti-

ate the CBED intensities as illustrated in Fig. 5 (c) and (d). This

is a result of the second-order derivative term being a factor

of 10 3 smaller than the first-order derivative term as shown in

Fig. 8 for the first 50 Å of a simulation run. However, the second-

order derivative effects can compound with specimen thickness as

shown by Wacker and Schröder [21] , particularly above a thickness

of 500 Å for silicon at 20 keV. 

It was previously mentioned that the small amplitude oscilla-

tions present in the wave functions computed with the second-

order method led to increased computation time and instability

when the integration step was set too large to resolve the oscil-

lations. However, there is another important factor which limits

the numerical efficiency of the calculations; the rate at which the

numerical solver converges to a given global error tolerance. The

global error was defined as the maximum difference between pixel

intensity values when comparing pixels at the same locations in
he numerical and exact solutions. In the following text, all refer-

nces to errors implies global errors. The error between the nu-

erical and exact solutions for a given step size should follow a

ower-law dependence on the step size, e h ≈ ηh p , where h is the

tep size, η is an unknown constant and p is the rate. Thus, the er-

ors should decrease with the p th power of the step size provided

hat constant step sizes are used during the integration. For exam-

le, the simple Euler method should yield p = 1 and the Dormand-

rince 4(5) solver used in this work should give p = 5 . It is ex-

ected that the errors associated with the Dormand-Prince method

hould decrease much faster at a given step size than the Euler

ethod, allowing for larger step sizes to be taken and a computa-

ionally faster integration. Taking the ratio of the error with step

ize h to the error with step size h /2 leads to the following expres-

ion for the rate, 

p = log 2 

(
e h 

e h/ 2 

)
(18)

ence, by calculating the errors at step sizes h and h /2 the rate can

e determined. In the case of the 1D numerical simulations using

he soft-core potential, the exact solution was known and a value

f p very close to 5 was obtained. In the full 3D simulation, the e ≈
h p scaling is expected to hold where e is the difference between

he numerical solution and the exact solution of the system of the

DEs that results upon using Eq. (19) for the Laplacian in Eq. (4) .

ince the exact solution of this system of ODEs is not known an-

lytically, we provide a numerical surrogate computed with a very

mall z step size. In this work, the first-order equations were used

or the determination of the p value and a step size of 0.0 0 0244 Å

as selected as representative of the exact solution. The step sizes

ere halved starting from 0.125 Å down to 0.0078125 Å since step

izes larger than 0.125 Å led to unstable solutions. Presented in

ig. 9 are the results of this experiment for two cases: (1) the FFTs

ere anti-aliased as in a standard calculation and (2) the FFTs were

ot anti-aliased. Incorporation of anti-aliasing of the FFTs is impor-

ant to avoid the introduction of artifacts into the simulation be-

ause of wrap-around effects at the boundaries in reciprocal space.

ee chapter 6 of Kirkland [1] for a thorough description of this
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opic. When anti-aliasing is included in the calculation a p value

lose to one was obtained, indicative of an order one numerical

ntegration technique, such as forward Euler [27] , and not what

s expected for a Dormand-Prince solver. But when anti-aliasing is

urned off, the expected p = 5 behaviour is obtained. This same

ehaviour was observed regardless of whether a steep filter func-

ion was used for bandwidth limiting or a smoothed Fermi func-

ion applied as per Wacker and Schröder [21] . The explanation lies

n performing the forward and inverse FTs in the calculation of the

 

2 
xy terms in Eq. (4) [1] , 

 

2 
xy � = F T −1 

[
−4 π2 k 2 F T [ �] 

]
(19) 

n FT is required to go from real to reciprocal space so that a scal-

ng factor can be applied as well as the anti-aliasing operation.

nti-aliasing limits the bandwidth to 2/3 of the Nyquist limited

alue and results in close to 2/3 of the pixels in the diffraction

attern being set to zero. Thus, the reciprocal space wave function

s truncated, a large amount of phase information is lost, and a

mall amount of electron intensity is removed from the diffraction

attern. An inverse FT is then performed returning to real space.

ince some data has been removed between integration steps, the

ave functions are no longer smooth along the electron propaga-

ion direction and there are small discontinuities between adjacent

eal-space wave functions. These discontinuities reduce the maxi-

um order of continuous derivatives in the wave functions lead-

ng to reduced p behaviour. More generally, discontinuities occur-

ing between integration steps result in a reduction to order one

ehaviour [28] . Therefore, the desired advantage of faster compu-

ation with higher rate solvers has been negated and a lower rate

olver with less computations required per step may lead to lower

omputation times for the same specified error tolerance. This be-

aviour remains to be investigated. 

. Conclusions 

It has been shown that the source of increased computation

ime and instability in the solution of the second-order differen-

ial equation for electron scattering can be attributed to having to

esolve small amplitude oscillations that are present in the second-

rder problem but not in the first-order problem. The percentage

ifferences in the intensities of the CBED patterns between the

rst- and second-order solutions were a minimum at low scatter-

ng angles and increased radially with scattering angle. This could

e explained using an Ewald surface construction where the Ewald

urface is a sphere for the second-order differential equation but

ecomes a parabola in the first-order approximation. The surface

f the Ewald parabola is located at greater reciprocal distance for

on-zero scattering angle compared to the surface of the Ewald

phere. Hence, for a given set of conditions, this results in a shift

f the HOLZ diffraction rings towards higher scattering angles. In

ontrast, the intensity of the thermal diffuse background remained

early the same between the two methods as a function of scatter-

ng angle. Furthermore, at least within the scope of these simula-

ions, minimal differences in ABF and ADF simulated images would

e expected between the solutions based on first- and second-

rder equations. 

Numerically, the rate of the Dormand-Prince 4(5) solver was

ound to be 1, a factor of 5 less than expected, and resulted

rom including anti-aliasing of the FFTs in the calculations. Since

he anti-aliasing step is required to avoid artifacts from being

ntroduced in the simulations, there may be opportunities for

igher computational efficiency by implementation of lower rate

olvers. In addition, significant improvements in computational

peed could be realized in calculating the second-order solutions

f a method could be found where numerically resolving the small

mplitude oscillations could be avoided. 
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ppendix 

Eq. (5) can be written as , 

d 2 

dz 2 
+ α

d 

dz 
+ β

]
�( z ) = 0 (20) 

here, 

= 

4 π i 

λ
and β = 

2 meV 

h̄ 

2 
(21) 

his is a linear, homogeneous differential equation with analytical

olution, 

( z ) = c 1 exp 

[ 
− z 

2 

(√ 

α2 − 4 β + α
)] 

+ c 2 exp 

[ 
z 

2 

(√ 

α2 − 4 β − α
)] 

(22) 

here c 1 and c 2 are determined from the boundary conditions, 

(0) = 1 and � ′ (0) = 0 (23)

pplying these two boundary conditions leads to , 

( z ) = e −αz/ 2 
{ 

1 

2 

[ 
exp 

(
z 

2 

√ 

α2 − 4 β
)

+ exp 

(
− z 

2 

√ 

α2 − 4 β
)] 

+ 

α

2 

√ 

α2 − 4 β

[ 
exp 

(
z 

2 

√ 

α2 − 4 β
)

− exp 

(
− z 

2 

√ 

α2 − 4 β
)] } 

(24) 

ubstituting for α and β , 

( z ) = e −2 π iz/λ
{ 

1 

2 

[ exp ( ikz ) + exp ( −ikz ) ] 

+ 

π

λk 
[ exp ( ikz ) − exp ( −ikz ) ] 

} 

(25) 

nd using the identities 2 cos x = e ix + e −ix and 2 i sin x = e ix − e −ix 

ives Eq. (9) . 

From Eq. (10) , in the weak potential approximation, using (1 +
 ) 1 / 2 ≈ 1 + x/ 2 leads to, 

 ≈ 2 π

λ

(
1 + 

meλ2 V 

4 π2 h̄ 

2 

)
(26) 

nd 

2 π

λ
− k ≈ −meλ2 V 

4 π2 h̄ 

2 
; 2 π

λk 
≈ 1 − meλ2 V 

4 π2 h̄ 

2 
(27) 

xpanding the exponential term in Eq. (9) using e −ix = cos (x ) −
 sin (x ) and multiplying through gives, 

( z ) = cos 

(
2 π

λ
z 

)
cos ( kz ) + i 

2 π

λk 
cos 

(
2 π

λ
z 

)
sin ( kz ) 

− i sin 

(
2 π

λ
z 

)
cos ( kz ) + 

2 π

λk 
sin 

(
2 π

λ
z 

)
sin ( kz ) (28) 

ewriting the cosine-cosine and sine-sine terms using the trigono-

etric identities cos ( x ) cos ( y ) = cos ( x − y ) − sin ( x ) sin ( y ) and 

in ( x ) cos ( y ) = sin ( x − y ) − cos ( x ) sin ( y ) we obtain , 

http://dx.doi.org/10.13039/501100000038
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[  
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[  

 

�(z) = cos 

[ (
2 π

λ
− k 

)
z 

] 
− sin 

(
2 π

λ
z 

)
sin ( kz ) 

+ 

2 π

λk 
sin 

(
2 π

λ
z 

)
sin ( kz ) − 2 π

λk 
cos 

(
2 π

λ
z 

)
sin ( kz ) 

− i 

{ 

sin 

[ (
2 π

λ
− k 

)
z 

] 
+ cos 

(
2 π

λ
z 

)
sin ( kz ) 

} 

(29)

Applying the two weak potential approximations for 2 π/λ − k and

2 π / λk , and noting that sin ( kz ) ≈ sin (2 πz / λ) gives, 

�(z) = 

[
cos 

(
meλV 

2 π h̄ 

2 

)
+ i sin 

(
meλV 

2 π h̄ 

2 

)]

− meλ2 V 

4 π2 h̄ 

2 
sin 

(
2 π

λ
z 

)[ 
sin 

(
2 π

λ
z 

)
+ i cos 

(
2 π

λ
z 

)] 
(30)

with a real component of, 

�R (z) = cos 

(
meλV 

2 π h̄ 

2 

)
− meλ2 V 

4 π2 h̄ 

2 
sin 

2 
(

2 π

λ
z 

)
(31)

= cos 

(
meλV 

2 π h̄ 

2 

)
− meλ2 V 

8 π2 h̄ 

2 

[ 
1 − cos 

(
4 π

λ
z 

)] 
(32)

where sin 

2 
( x ) = [ 1 − cos ( 2 x ) ] / 2 has been used. 
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