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Abstract. The computation of blow-up solutions to a differential equation
is often a difficult task. Here, we examine a system of ODEs that is derived
from the Maxwell-Debye equations. Blow-up times for solutions to the ODE
system are estimated using two approaches – MATLAB event location and
a Sundman transformation. The Sundman transformation, whereby a new
temporal variable is introduced, results in a system for which solutions exist
globally. In addition, it provides a means for simultaneously proving blow-up
and finding analytical estimates of blow-up times.

1. Introduction. Problems for which solutions develop finite-time singularities
occur often in the sciences. Sometimes these situations are of purely theoretical
interest, but these singularities can have interesting physical interpretations. As
an example, the blow-up of solutions to the nonlinear wave equation describing
boson stars is symptomatic of gravitational collapse into a black hole [6]. Here, the
equation {

y′ = yz
τ∗z′ + z = ǫyp (1)

subject to the initial conditions (y(0), z(0)) = (y0, z0) will be considered. A proof of
blow-up for solutions to (1) in the case of ǫ, p, y0 > 0 is presented in the appendix.
For a solution to “blow up,” some norm of the solution needs to become unbounded
in finite time.

The system (1) has its roots in the Maxwell-Debye System (MDS) [7]

{ (
∂
∂z + n0

c
∂
∂t

)
A − i

2k∆A + iω0

c νA = 0
τ∗ ∂ν

∂t + ν = n2|A|2. (2)

This pair of equations, arising in nonlinear optics, models the interaction between
an electromagnetic wave and a non-resonant medium. Particularly, A represents the
wave envelope of the light wave, and ν is the change in the refractive index of the
medium, resulting from the wave. The remaining quantities are physical constants:
c is, as usual, the speed of light in the vacuum, n0 is the initial index of refraction

2000 Mathematics Subject Classification. Primary: 65L02; Secondary: 34A02.
Key words and phrases. Sundman transformation, blow-up, event location, ordinary differential

equations.
The first author was supported in part by NSERC Canada; the second author was supported

in part by NSERC Canada USRA.

1



2 RONALD HAYNES AND COLIN TURNER

of the medium for a light wave with frequency ω0, k is the wave vector of the
incident wave, and n2 represents the sign and magnitude of the nonlinear coupling
of the wave with the medium [2]. An interesting parameter from a mathematical
perspective is τ∗. This represents the response time of the medium – an inherent
delay. For light pulses longer in duration than this delay, we expect that solutions
to (2) will blow up in some finite time [7].

As in [2, 4] we examine the case in which any dependence of A or ν on the longi-
tudinal variable z is dropped. After rearranging and using the rescaling (courtesy
of [4])

u(x, t) =

(
ω0|n2|

n0

)1/2

A

((
c

kn0

)1/2

x, t

)

and

v(x, t) =
ω0

n0
ν

((
c

kn0

)1/2

x, t

)
,

we arrive at the dimensionless Schrödinger-Debye (SD) system

{
i ∂

∂tu + 1
2∆u = vu,

τ∗ ∂
∂tv + v = ǫ|u|2. (3)

System (1) is a simplification of (3) wherein the Laplacian term has been dropped
and any coefficients except for τ∗ have been set to one. It should be mentioned
that due to these changes there will be differences in qualitative behaviour between
solutions to (3) and (1). Note that a more obvious choice for an ODE simplification
of SD might be the complex-valued system

{
iy′ = yz

τ∗z′ + z = ǫ|y|p. (4)

However, it can be shown that solutions to (4) are of constant modulus and thus
do not blow up, so we will not consider (4) further. System (1) is similar to SD in
the sense that for τ∗ = 0, both reduce to a single equation for which solutions are
known to blow up. In the case of (1), this equation is

y′ = ǫyp+1 (5)

which has exact solution

y =
1

p

√
pǫ p

√
1

pǫyp

0

− t
. (6)

Blow-up occurs at time tb when the denominator of (6) is exactly zero, where

tb =
1

pǫyp
0

,

and beyond this time solutions cease to exist. That is, the positive segment of the
maximal existence interval of solutions to (5) can be written as [0, tb).

In [2], it is shown that for initial data (A0, ν0) in Hs ×Hs with s > 1, as τ∗ → 0,
solutions to (3) converge to solutions of the cubic nonlinear Schrödinger equation
(NLS),

i
∂

∂t
u +

1

2
∆u = ǫ|u|2u. (7)

This is a useful relationship, because (7), under certain conditions, is known to have
solutions that blow up in finite time (cf.[5]). Consequently, we intuitively expect
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that for small values of τ∗, solutions to SD (and also to the MDS) will exhibit
similar behaviour – that is, they will blow up. Indeed, Besse and Bidégaray [1]
generate some nice qualitative numerical results indicating that this is in fact the
case. Extrapolating further, we may speculate that as τ∗ gets large, solutions to
SD and MDS become less like solutions to (7) in the sense that blow-up might be
postponed or even disappear. To see why this is reasonable, we rearrange SD to
show that

∂

∂t
ν = − ν

τ∗
+

ǫ|u|2
τ∗

.

In light of this, it is clear that ∂
∂tν → 0 as τ∗ → ∞, and so in this limit, ν(t, x) =

ν0(x). Substituting this result into the first equation of SD, we have

i
∂

∂t
u +

1

2
∆u = ν0(x)u,

which is a linear equation and thus has a global solution for specified initial data.
On the other hand, some results ensuring well-posedness have been established.

Besse and Bidégaray [1, 2] use a fixed-point procedure on a Duhamel formulation of
SD to show that for initial conditions (u0, ν0) belonging to certain Sobolev spaces,
solutions exist on L∞(0, T ) for small enough T . Subsequently, Corcho and Linares
[4] proved existence of solutions in particular spaces on any interval [0, T ].

In the remainder of the paper, we will consider (1) in the case of p = 1, which is
sufficient in the sense that this choice of exponent preserves the blow-up properties
in which we are interested.

2. Numerical Detection of Blow-up. Accurately detecting blow-up solutions is
a difficult task [9]. As the blow-up time is approached, the derivative drastically
increases and thus smaller and smaller time-steps ∆t are required in order to capture
the solution with sufficient resolution. If a step is too large, the numerical solution
could skip over a blow-up singularity entirely. Supposing that we are able to track
the true behaviour of the solution with a reasonable level of accuracy, the question
then becomes, how do we find the blow-up time tb? Since we cannot find the
time at which our solution becomes unbounded, one approach is to estimate tb by
noting the time at which the solution reaches some critically high value. We will
employ MATLAB’s event location feature to realize this idea. A second technique,
which will be compared against the event location method, is to employ a Sundman

transformation, whereby a new temporal variable τ is introduced. Using these
methods to solve (1) for various values of the delay parameter, we hope to see the
effect of τ∗ on the blow-up time.

2.1. Event Location. The MATLAB ODE suite is a collection of ODE solvers
written for the MATLAB scientific computing environment. These programs are
user-friendly and can be used to solve a variety of first-order initial value problems.
The user has a choice of solvers, depending on the nature of the problem. Here
we will make use of ode15s.m, which is an implicit method of variable orders one
through five, designed to solve stiff problems.

As a component of its ODE suite, MATLAB contains an event locator option.
Of this feature, Shampine and Thompson [8] say, “events are located about as
accurately as possible in the precision available.” In MATLAB terminology, an
event occurs when a user-defined event function attains a value of zero. Since we
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are trying to estimate a blow-up time, we will choose our event function to be of
the form

f(y, z, t) = max(y(t), z(t)) − 10n, (8)

where n is some positive integer.
To test the solver with the event locator option, we refer to the blow-up equation

(5) with p = ǫ = 1. The natural choice of y0 = 1 is made. As an event function, we
choose (8) with n = 12. A level of 1012 was selected as a numerical representation
of unboundedness somewhat arbitrarily; however, it is noted that increasing n to
13 or 14 does not affect the estimated blow-up times until after the tenth decimal
place. At n = 15, the ODE solver is unable to satisfy error tolerances. Specifying
the relative error to be 10−8 using MATLAB’s RelTol option, (5) is solved with

ode15s.m and an estimated blow-up time t̂b = 0.99998713167013 is returned. Recall
from (6) that the exact solution to (5) is

y(t) =
1

1 − t
,

with exact blow-up time tb = 1. Estimated blow-up times for various values of τ∗

in (1) are presented below. In each case, p = ǫ = 1 with RelTol set to 10−8. Note
that τ∗ = 0 corresponds to the test case (5).

τ∗ t̂b

0 0.99998713167013
1 × 10−5 1.00010756938443
1 × 10−3 1.00725276568088
1 × 10−1 1.27531513042609
1 × 101 3.45546489495704

Table 1. Approximate blow-up times t̂b for (1) with various τ∗,
found through event location.

2.2. The Sundman Transformation. The famous Three-Body Problem regard-
ing the mutual gravitational attraction of three orbiting bodies was first solved by
Finnish mathematician Karl Sundman in his 1912 Memoir on the Three Body Prob-

lem. Therein, Sundman discovered an infinite series solution describing the future
motion of three bodies starting from arbitrary positions. However, his infinite se-
ries converges much too slowly to be of practical value in predicting the motions of
celestial bodies, as originally intended [10]. While his solution to the Three-Body
Problem may be of little applicability, we make use of a transformation Sundman
employed in his aforementioned work. Such transformations have recently been
used, for example, by Budd et al. in [3].

The Sundman transformation of a differential equation

du

dt
= f(u) (9)

introduces a fictive temporal variable τ such that the original time variable t is itself
considered to be a function of τ . The two are related by

dt

dτ
= g(u). (10)
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According to the chain rule, (9) transforms to

du

dτ
= g(u)f(u).

By appropriately selecting g(u), we can transform a problem with singular solutions
into one with solutions existing globally in the new time variable τ .

3. A Sundman-Transformed Blow-Up Equation. We now implement a Sund-
man transformation on the simple blow-up equation (5), with p = 1. This example
will serve as an illustration of the transformation; in addition it will help in de-
termining if this strategy shows promise in detecting blow-up times for (1) and,
eventually, the MDS. First, recall that the exact solution to (5) is given by (6),
with blow-up at tb = 1. In performing the transformation, g(y) can be chosen as
we like, so we select it in a way that makes y2g(y) simpler than f(y) = y2. For
f(y) = yp+1, a suitable transformation function is g(y) = y−p so that f(y)g(y) = y.
Letting g(y) = dt

dτ = 1
y with the initial condition t(0) = 0 we have

dy

dτ
= y, y(0) = y0,

which is a pleasant result. This equation is solved to yield y(τ) = y0e
τ . Substituting

into g(y) we have

dt

dτ
=

1

y0eτ
.

Thus,

t =
1

y0
(1 − e−τ ),

and clearly limτ→∞ t(τ) = 1 (since y0 = 1), which is the exact time of blow-up.
This example is an ideal case, in that each differential equation arising from the
transformation can be solved exactly. This will not always be the situation. In
particular, we may not be able to find g(y) for (1) such that dy

dτ = f(y)g(y) and
dt
dτ = g(y) can be solved analytically. Instead, we will have to rely on approximate
solutions. Suppose we have performed the Sundman transformation as above and
solved for dy/dτ using a numerical method such as MATLAB’s ode15s.m solver.
Then a cubic spline interpolant to y(τ) can be found. Substituting this interpolant
into (10) we can perform another ode15s.m solve to retrieve t(τ).

3.1. Performance for the Test Equation. We apply the Sundman transforma-
tion to the test equation (5) with g(y) = 1/y as before and solve using a MATLAB
script, which operates as follows:

1. Solve dy
dτ = f(y)g(y) using ode15s.m

2. Find cubic spline interpolant to y
3. Solve dt

dτ = g(y) using ode15s.m.
We take the time to which the sequence {ti} appears to converge as our estimate

of the blow-up time, t̂b. For the test problem, with RelTol set to 10−8 for both
ode15s.m solves, we find t̂b = 0.99998834051298. Note that this is more accurate
than the solution obtained via event location.
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4. Choosing g(y, z) for the System. Since the results for the example look
promising, we apply a Sundman transformation to (1). Our first task is to select
a suitable g(y, z). In [3] it is suggested to choose g(y, z) such that f1(y, z)g(y, z)
and f2(y, z)g(y, z) are linear. We cannot do this here; instead, we strive to make
dy
dτ = f1(y, z)g(y, z) and dz

dτ = f2(y, z)g(y, z) such that the IVPs are well-posed. This
allows us to sidestep the problems that we have thus far encountered in computing
blow-up solutions. Our first attempt is to let

dt

dτ
=

1

z
.

This results in the transformed system
{

dy
dτ = y
dz
dτ = − 1

τ∗
+ ǫy

τ∗z .
(11)

It is claimed that solutions to (11) do not blow up. To see this, observe that (10)
is solved to give y = y0e

τ . Since y(τ) cannot experience blow-up in finite τ , this
result is substituted into the equation for dz

dτ :

dz

dτ
= − 1

τ∗
+

ǫy0e
τ

τ∗z
, (12)

with z0 = ǫy0. On the right-hand side of (12), τ is able to take on any real value,
while a singularity is encountered at z(τ) = 0. Combining these results with the
positivity of z0, we see that the problem is well-defined on the subset D = R×(0,∞)
of the τ -z plane (although negative τ values are ignored). Now suppose that the
maximal solution z(τ) with z(0) = z0 is defined on I = [0, b) where b < ∞. Then
either z → ∞ as τ → b−, or z → 0+ as τ → b−. Suppose the former is true. Then,
as z → ∞, dz

dτ → − 1
τ∗

< 0, contradicting the assumption that z is blowing up. On
the other hand, suppose that z → 0+ as τ → b−. Since z0 > 0, this must mean
that dz

dτ < 0 on some interval (c, b) with 0 ≤ c < b. However, (12) indicates that
dz
dτ → ∞ as τ → b−. Again we have contradicted our assumption, and hence we
conclude that the solution to (12) is defined for τ ∈ I = [0,∞).

With this good behaviour established, we expect that an accurate solution to
(11) may be obtained using conventional numerical methods. After having found
approximate solution values corresponding to a sequence of τ values, a cubic spline
interpolant to z(τ) is found. We then use ode15s.m to solve dt/dτ = 1/z with the
interpolant used in place of z.

τ∗ t̂b

0 0.99998834051298
1 × 10−5 1.00010817890966
1 × 10−3 1.00725294109757
1 × 10−1 1.27531079880821
1 × 101 3.45545384174272

Table 2. t̂b for various τ∗, found through Sundman transformation.

A plot of t̂b versus τ∗ over a range of τ∗ values is generated and presented below.
For each τ∗, t̂b is calculated as the final entry in the array of t-values.
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Figure 1. tn versus index n for various τ∗, found through Sund-
man transformation.
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Figure 2. t̂b vs. τ∗, found through Sundman transformation.

For a direct comparison of the event locator and Sundman transformation meth-
ods, a plot of the difference between t̂b found using each of the techniques is pre-
sented, where the subscripts EL and ST denote results obtained through event
location and the Sundman transformation, respectively.
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Figure 3. Difference in blow-up times, t̂bEL − t̂bST , versus τ∗.

Figure 3 suggests that the agreement in estimated blow-up times between the
Sundman transformation method and the event locator method is very strong. Table
3 below shows just how small the differences are for select values of τ∗.

τ∗ t̂b (ST) t̂b (EL)

0 0.99998834051298 0.99998713167013
1 × 10−5 1.00010817890966 1.00010756938443
1 × 10−3 1.00725294109757 1.00725276568088
1 × 10−1 1.27531079880821 1.27531513042609
1 × 101 3.45545384174272 3.45546489495704

Table 3. A comparison of t̂b for ST and EL methods.

The consistency of the results obtained using these two methods is encouraging, as
it simultaneously supports the validity of each approach. We place more confidence
in the estimates of blow-up time found via the Sundman transformation since this
method performed better in the test case. Average run-times for both the EL and
ST programs are given below.

τ∗ run-time (sec) (ST) run-time (sec) (EL)

1 × 10−5 1.328 1.287
1 × 10−3 1.315 1.232
1 × 10−1 1.309 1.182
1 × 101 1.259 1.156

Table 4. A comparison of average run-times for ST and EL methods.
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Table 4 indicates that the Sundman transformation is only slightly more compu-
tationally costly than the event location method.

5. Conclusions. We have performed Sundman transformations both on an equa-
tion for which solutions are known to blow up and on a system for which solutions
were previously thought (and are now known) to blow up. In each case, the in-
troduction of a temporal variable τ allows us to transform the equations into ones
for which solutions (in terms of τ) exist globally. By numerically solving first for
τ then for the original time variable t, we obtain estimates of the blow-up time tb
that, at least in the test case, are more accurate than estimates obtained through
event location. This improved accuracy comes with only a small increase in compu-
tational cost. Furthermore, the transformation allows us to analytically prove (as is
demonstrated in the appendix) that blow-up occurs in the case of system (1), and
that the blow-up time tb depends on the delay parameter τ∗.

The Sundman transformation, however, is not a general fix to the problems
associated with the computation of blow-up solutions. For it to be successful, one
must be able to find a function dt/dτ = g(u) such that solutions to du/dτ =
f(u)g(u) exist globally. In the case of the Maxwell-Debye System (2) this may or
may not be possible.

Appendix. In this appendix we present and then prove a proposition (stated be-
low) which guarantees blow-up of solutions to (1) and provides bounds for the
blow-up time that are subject to the value of the delay parameter τ∗. To accom-
plish this, the Sundman transformation of (1) is considered. In particular, bounds
for dt/dτ are found. These bounds are then integrated, approximately, to yield
bounds for the blow-up time tb.

Proposition. For solutions to the system
{

y′ = yz
τ∗z′ + z = ǫy

with y0, z0, τ
∗ > 0 and ǫ ∈ (0, 1] blow-up occurs. Furthermore, the time of blow-up

tb is subject to the bounds

1

z0
ln(1 + τ∗z0) < tb <

1

z0
τ∗ +

1√
B

(
eπ − 2e tan−1(

√
eτ∗+2 − 1)

)

where B = 2ǫy0

2/z0+τ∗
.

Recall that the Sundman transformation of (1) leads to the following equation
for dz

dτ :

dz

dτ
= − 1

τ∗
+

ǫeτy0

τ∗z
.

For concision, define a = 1
τ∗

, b = ǫy0

τ∗
, and u(τ) = 1

z(τ) , with z(τ) > 0. Then,

du

dτ
= u′ = au2 − beτu3, (13)

with u(0) = u0 = 1
z0

. Since τ∗ > 0, ǫ > 0 and y0 > 0 (by assumption), the
inequality eτ ≥ 1 leads to

u′ = au2 − beτu3 ≤ au2 − bu3.
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Let U(τ) be the solution to

U ′ = aU2 − bU3, U(0) = u0. (14)

Since U(0) = u0, we have that u(τ) ≤ U(τ) (for proof of this result, see Chapter 2,
paragraph 9 of [11]). Recall that for the ‘consistent’ initial conditions in which we
are interested, z0 = ǫy0 = b/a. That is, u0 = a/b. By factoring (14) into the form

U ′ = U2(a − bU)

we see that the initial condition U(0) = a/b forces U ′ = 0. Thus, U = a/b, so

u(τ) ≤ U(τ) = u0.

That is,

u(τ) ≤ a

b
.

Now we may write the following inequality:

au2 − beτu3 ≥ au2 − beτu2(
a

b
) = au2(1 − eτ ).

Let U now be the solution of

U ′ = U2(a − bu0e
τ ), U(0) = u0. (15)

Then,

U(τ) ≤ u(τ).

The IVP (15) is solved by separating variables and integrating:

u(τ) ≥ U(τ) =
1

a(eτ − 1) − aτ + b
a

.

Satisfied with this result for now, we turn back to (13) and embark on a similar
argument:

u′ = au2 − beτu3 ≤ au0u − beτu3

since u0 ≥ u(τ). This time around, let U(τ) be the solution to

U ′ = au0U − beτU3, U(0) = u0.

This is recognised as a Bernoulli equation, with solution

U(τ) =
1

(Ae−2au0τ + Beτ )
1/2

where

A =

(
z2
0 − 2b

2au0 + 1

)

and

B =
2b

2au0 + 1
.

Finally, we have the bounds

1

bu0(eτ − 1) − aτ + z(0)
≤ u(τ) ≤ 1

(Ae−2au0τ + Beτ )
1/2

. (16)
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Theoretical blow-up time. The theoretical blow-up time tb for a Sundman-
transformed system can be found by integrating the relation

dt

dτ
=

1

z(τ)

to yield

tb =

∫
∞

0

u(τ)dτ. (17)

As a demonstration of this concept, consider the test equation (4) with p = ǫ =
1. Recall that solutions have exact blow-up time tb = 1

y0

. Using the Sundman

transformation for the above as in section 3, (17) gives

tb =

∫
∞

0

1

y
dτ =

1

y0
,

as expected.
Thus, by integrating the bounds for u(τ) in (16), we can find an interval contain-

ing the blow-up time for (1). In particular, expressions for upper and lower bounds
of the blow-up time in terms of the delay parameter τ∗ can be found. We begin
with the lower bound,

∫
∞

0

dτ

a(eτ − 1) − aτ + z0
≤ tb.

This integral cannot be computed explicitly, so an estimate is obtained by dropping
negative terms from the denominator:

∫
∞

0

dτ

aeτ + z0
<

∫
∞

0

dτ

a(eτ − 1) − aτ + z0
.

Integrating, ∫
∞

0

dτ

aeτ + z0
=

1

z0
ln

(
a + z0

a

)
.

Rewriting in terms of τ∗, we have

tb >
1

z0
ln(1 + τ∗z0). (18)

This result is important as it provides proof that tb → ∞ as τ∗ → ∞. Note that
as τ∗ tends to zero, this lower bound for the blow-up time approaches zero. While
this at least guarantees a positive blow-up time, the crudeness of the estimate is
evident, as we know from experience that tb → 1 as τ∗ → 0. Now we turn to the
upper estimate for blow-up time:

∫
∞

0

1

(Ae−2au0τ + Beτ )1/2
dτ ≥ tb. (19)

Again, the integral cannot be computed exactly, so some approximations are made.
For brevity, the integrand of (19) shall be denoted f(τ). It is claimed that

∫
∞

0

f(τ)dτ <

∫ τ∗

0

f(τ)dτ +
1√
B

∫
∞

τ∗

dτ

(eτ − e−2)1/2
. (20)

To see this, observe that
∫

∞

0

f(τ)dτ =

∫ τ∗

0

f(τ)dτ +

∫
∞

τ∗

f(τ)dτ
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and consider the integral from τ∗ to infinity of f(τ). Note that A = z2
0 − B. Thus

f(τ) can be written as

1

(z2
0e

−2au0τ + B(eτ − e−2au0τ ))
1/2

.

The positive term z2
0e−2au0τ can be dropped while preserving the inequality

1√
B (eτ − e−2au0τ )

1/2
> u(τ).

Furthermore, since ǫ ∈ (0, 1], the exponent −2au0τ = −2 1
ǫy0

τ
τ∗

≤ −2 for τ ≥ τ∗

and 0 < y0 ≤ 1/ǫ. In this case, e−2au0τ ≤ e−2, and so the claim (20) holds. Now
consider each integral on the right hand side of (19) separately. It can be shown
that f(τ) is a decreasing function for τ ≥ 0 by noting that its derivative is negative
for nonnegative τ . Thus, f(τ) attains its maximum value u0 at τ = 0. For small
τ∗, then, ∫ τ∗

0

f(τ)dτ < u0τ
∗.

Now, consider
1√
B

∫
∞

τ∗

dτ

(eτ − e−2)1/2
.

The above integral has an antiderivative, and can be evaluated:

1√
B

∫
∞

τ∗

dτ

(eτ − e−2)1/2
=

1√
B

(
eπ − 2e tan−1(

√
eτ∗+2 − 1)

)
. (21)

Combining the above results,
∫

∞

0

f(τ)dτ < u0τ
∗ +

1√
B

(
eπ − 2e tan−1(

√
eτ∗+2 − 1)

)
. (22)

For several values of τ∗ with ǫ = y0 = z0 = 1, lower and upper bounds for the
blow-up time of solutions to (1) are calculated using (18) and (22). Results are

presented in tabular form below, along with estimated blow-up times t̂b found in
section 4. Note that the limits as τ∗ → 0 of the lower and upper bounds can be
computed, respectively, as follows:

lim
τ∗

→0

1

z0
ln(1 + τ∗z0) = 0,

and

lim
τ∗

→0

(
u0τ

∗ +
1√
B

(
eπ − 2e tan−1(

√
eτ∗+2 − 1)

))

=

√
2/z0

2ǫy0

(
eπ − 2e tan−1(

√
e2 − 1)

)
≈ 2.048103078.

τ∗ lower bound upper bound t̂b

1 × 10−5 0.000010000 2.048107444 1.000108179
1 × 10−3 0.000999500 2.048539670 1.007252941
1 × 10−1 0.095310180 2.091594064 1.275310799
1 × 101 2.397895273 10.03300910 3.455453842

Table 5. Bounds for tb found with (18) and (22).
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The primary value of (18) and (22) is in showing that blow-up for (1) does indeed
occur, and that this blow-up can be delayed arbitrarily long by increasing τ∗. For
completeness, the original bounds in (16) are numerically integrated using the same
parameter values as above.

τ∗ lower bound upper bound t̂b

1 × 10−5 0.006980435 2.000004996 1.000108179
1 × 10−3 0.067334942 2.000499938 1.007252941
1 × 10−1 0.555778249 2.048220641 1.275310799
1 × 101 2.783867989 3.533080330 3.455453842

Table 6. Bounds for tb found by numerically integrating (16).
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[2] B. Bidégaray, The Cauchy Problem for Schrödinger-Debye equations, Mathematical Models

and Methods in Applied Sciences, 10 (2000), 307–315.
[3] C.J. Budd, B. Leimkuhler, and M.D. Piggott, Scaling invariance and adaptivity, Applied

Numerical Mathematics, 39 (2001), 261–288.
[4] A.J. Corcho and F. Linares, Well-Posedness for the Schrödinger-Debye Equation, Contem-

porary Mathematics, 352 (2004), 113–131.
[5] G. Fibich and G.C. Papanicolaou, Self-focusing in the perturbed and unperturbed nonlin-

ear Schrödinger equation in critical dimension, SIAM Journal on Applied Mathematics, 60

(1999), 183–240.
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