
ArjunAir: updating and parallelizing an existing time domain electromagnetic inversion program
Patrick Belliveau∗, Colin Farquharson, Ronald Haynes, Memorial University of Newfoundland

SUMMARY

Results from ongoing work to parallelize the existing 2.5D
airborne electromagnetic inversion program ArjunAir are pre-
sented here. ArjunAir is the only code known to the authors to
see extended use in the mineral exploration industry for the
rigorous inversion of time domain airborne electromagnetic
(EM) data using a two-dimensional (2D) conductivity model.
This study sought to increase the efficiency of the code by
re-implementing the most computationally expensive calcula-
tions with modern high-performance routines, employing par-
allel algorithms wherever possible. Distributed memory and
shared memory versions of the ArjunAir forward solver have
been developed. Speedups as high as 23.7 for the distributed
memory code and 15 for the shared memory workstation ver-
sion, relative to the original code, have been achieved. On-
going work is focused on developing a hybrid MPI/OpenMP
forward solver, and on building a minimum structure inversion
code using the new implementation of the forward solver. This
will replace the existing inversion algorithm, which is based on
a non-linear damped least-squares fit to the data.

INTRODUCTION

ArjunAir was originally developed at the Australian Common-
wealth Science and Industrial Research organization (CSIRO).
For an overview of the program, see Wilson et al. (2006). The
code allows for rigorous inversion of frequency and time do-
main airborne EM survey data using a 2D earth model. The
magnetic dipole sources used in airborne EM surveys generate
electromagnetic fields that vary in three dimensions but when
a 2D conductivity model is assumed, the full behaviour of the
fields along a 2D section can be modelled by decomposing
the problem into a set of 2D subproblems. This technique
is known as 2.5D modelling (e.g. Hohmann, 1987; Key and
Ovall, 2011).

ArjunAir was made open-source in 2010. That presented an
opportunity to examine the source code and look for areas that
could be improved, with the goal of creating a new, more ef-
ficient version of the program that retains the full function-
ality of the original code and its ability to interface with the
commercial electromagnetic processing and modelling soft-
ware Maxwell (Wilson et al., 2006). This has led to a new
version of ArjunAir that is able to invert, in a practical length
of time, much bigger datasets on denser meshes than was fea-
sible with the original version. A practical length of time is
loosely defined here as less than a full day, the same defini-
tion used by the original developers (Wilson et al., 2006). This
project has also shown that it is possible to use modern op-
timized software libraries and parallel programming tools to
significantly improve the performance of a piece of legacy geo-
physics software and adapt it to take advantage of modern high
performance computing hardware.

ArjunAir’s inversion algorithm is based on the Levenberg-Mar-
quardt algorithm. An overview of the algorithm is given by
Raiche et al. (1985) and is based on the work of Jupp and
Vozoff (1975). The inversion scheme is iterative. The conduc-
tivity model is updated at each iteration by finding the update
vector that minimizes a linearized expression for the data misfit
in a damped least-squares sense. Computing the model update
is based on the damped generalized inverse of the Jacobian
matrix of the linearized discrete forward modelling operator.
Computing the generalized inverse requires taking the singu-
lar value decomposition of the Jacobian, which is dense and
stored in full form. The entries of the Jacobian are calculated
using the adjoint operator method, described by McGillivray
et al. (1994).

The most time consuming calculations in the inversion are the
computation of the data misfit, the entries of the Jacobian ma-
trix, and the singular value decomposition (SVD) of the Ja-
cobian. Computing the misfit requires a forward modelling
to compute the response of the current earth model to each
EM source used in the inversion. Computing the Jacobian re-
quires a forward modelling using adjoint transmitter locations,
as well as the numerical evaluation of the integral of the prod-
uct of the actual and adjoint electric fields over each cell in the
2D mesh.

It is clear from the last paragraph that an efficient forward
modelling routine is an essential prerequisite of a fast inver-
sion algorithm. To that end this project has focused on im-
proving the performance of the ArjunAir forward solver. This
goal has been largely accomplished and a summary of results
is presented below. Current work is focused on using the Ar-
junAir forward solver within a minimum structure inversion
algorithm, similar to the approaches taken in, e.g., (Farquhar-
son et al., 2003; Key, 2012). Such an approach avoids having
to compute and store the SVD of the Jacobian and should be
much less sensitive to the initial conductivity model input to
the inversion program.

FORWARD MODELLING

ArjunAir models the response of a 2D earth model to a time
domain EM system by converting the time domain forward
problem to a set of frequency domain problems. The frequency
domain problem is solved at a user customizable range of loga-
rithmically spaced frequencies. Time domain behaviour is then
recovered by inverse Fourier transformation. ArjunAir uses a
primary/secondary field separation, where the primary field is
the free-space magnetic dipole field. Using a free-space pri-
mary field implies that the anomalous conductivity, σa is equal
to the total conductivity, σ . The frequency domain equations
for the secondary electric and magnetic fields Es and Hs can
then be written

∇×Es =−iµωHs, ∇×Hs = σ(Es +Ep) (1)

Parallelizing ArjunAir

where µ is magnetic permeability, ω is the angular frequency
of the fields, and Ep is the primary electric field. Electri-
cal conductivity is assumed to be isotropic and to vary spa-
tially only in the x-z Cartesian plane. Decomposing equa-
tions 1 into their Cartesian components and Fourier transform-
ing with respect to the along-strike coordinate leads to a set of
two coupled scalar partial differential equations for the along
strike components of the electric and magnetic fields in the
wavenumber domain, where the fields are functions of x,z,ω
and ky, where ky is the along-strike wavenumber. This set of
equations is solved on a 2D mesh at 21 values of the along-
strike wavenumber, using an iso-parametric finite-element met-
hod, described by Sugeng et al. (1993). The source behaviour
is encompassed by the primary field, eliminating the need to
explicitly include the magnetic dipole sources in the finite el-
ement scheme. The other components of the wavenumber do-
main secondary fields are known in terms of spatial derivatives
of the along-strike fields and can be computed by numerical
differentiation. The frequency domain magnetic fields at the
receiver locations are recovered by inverse Fourier transfor-
mation from the wavenumber domain.

Thus, the forward problem is composed of solving 21 inde-
pendent wavenumber domain 2D problems and converting the
resulting magnetic fields at the observation locations to the
time domain. The independence of these wavenumber domain
problems presents an obvious opportunity for parallelization.
In a cluster or grid environment, solving multiple wavenumber
domain problems concurrently proved to be a very successful
strategy but on a single workstation, in the context of inversion
where the Jacobian matrix must be stored concurrently with all
data required for the forward solve, each wavenumber domain
problem still requires too much memory for more than one to
be run concurrently. Since developing a code that is efficient
on a multi-core workstation was a key goal of this project, it
was necessary to look for opportunities for parallelization and
calculations that could be performed using faster algorithms
within each 2D problem.

The two main bottlenecks in the 2D problem are the solution of
the finite element system of equations and the computation of
the primary electric field in the wavenumber domain. Since the
inversion algorithm requires only the magnetic fields at the ob-
servation locations, only those fields need to be inverse Fourier
transformed from the wavenumber domain and thus that trans-
formation is a negligible part of the overall forward modelling
run-time.

Efforts to increase the performance of the forward solver were
focused almost exclusively on these two bottleneck calcula-
tions. It was suspected that the solution of the finite element
equations would be by far the most time consuming compo-
nent of the forward modelling calculation but profiling revealed
the primary field computation to be another significant bot-
tleneck. Together, these two computations make up approxi-
mately 99% of the forward modelling run-time on large prob-
lems. The number is slightly misleading because the assembly
and solution of the finite element equations are interspersed in
the original version of ArjunAir. Computation of the primary
electric field in the wavenumber domain will be discussed first.

Primary electric field

The electric field due to a harmonic magnetic dipole of fre-
quency ω and unit magnetization, oriented in the x-z plane at
an angle θ from the z axis, is given in Cartesian coordinates by
the closed form expression

E =
iωµ

4πr3 (ycosθ x̂+(zsinθ − xcosθ)ŷ+ ysinθ ẑ) (2)

where x̂, ŷ, and ẑ are unit vectors and r =
√

x2 + y2 + z2. A
closed form expression for the free-space magnetic dipole field
in the wavenumber domain does not exist. It must be computed
by numerical Fourier transformation of equation 2. The digital
filtering technique (e.g., Anderson, 1982; Christensen, 1990),
applied more often in electromagnetic geophysics for the com-
putation of Hankel transforms, provides an efficient method for
computing Fourier transforms when the sample points in the
wavenumber domain are logarithmically spaced, as in Arju-
nAir. The ArjunAir developers wrote their own digital filtering
routine using filter coefficients computed using software de-
veloped by Christensen (1990). The transform of the primary
electric field must be computed for each transmitter location
and frequency, at every node in the finite element mesh.

If this is done by explicit use of digital filtering at every node,
frequency and transmitter, a time domain problem using 100
transmitter locations and a mesh of 10,000 elements would re-
quire ∼ 108 calls to the digital filtering routine for each 2D
subproblem and ∼ 109 calls for a full forward modelling. This
was the method used in the original version of ArjunAir. How-
ever, the Fourier integrals required to compute each transform
do not depend on frequency, and spatially they depend only on
the quantity ρ = x2 + z2, not on x and z separately. For exam-
ple, the y component of the wavenumber domain primary field,
Ẽy, is given by

Ẽy =
iωµ

4π
(zsinθ − xcosθ)

∫
∞

−∞

e−ikyy

(ρ2 + y2)3/2
dy. (3)

The expressions for Ẽx and Ẽz are similar. The value of the
integrals for all three components vary smoothly as a function
of ρ . Therefore it should be possible to compute the integrals
for a representative set of values of ρ and interpolate between
these values to find the value of the integrals at the 2D mesh
node points for each transmitter location. This strategy proved
successful and reduced the primary field computation run-time
by 92-93% on medium and large problems. Figure 1 shows
run-time as a function of the number of transmitter locations
for a VTEM style survey on a mesh with 71221 nodes (23432
elements). Fourier integrals were computed using digital filter-
ing at a set of linearly spaced values of ρ . For each transmitter
location, cubic spline routines from ArjunAir were used to in-
terpolate the values of the Fourier integrals from the sampled
values of ρ to the mesh node points less than a given cutoff dis-
tance from transmitter. The primary field was set to zero for
nodes outside the cutoff distance. Using a lookup table with
integrals evaluated at 2231 values of ρ and a cutoff distance
of 2000 m provided sufficient accuracy to introduce negligible
error in the final results on all models tested.

Parallelizing ArjunAir

0 100 200 300 400
0

2

4

6

8

10

12

of transmitters

ti
m

e
 (

s
)

Figure 1: Primary field computation run-times. The solid
black line shows results using explicit Fourier transformation
at each node. The dashed blue line shows the lookup table
results.

Solving the finite element equations

ArjunAir allows the user to customize the range of frequen-
cies used to approximate the time domain behaviour of the EM
fields. By default, 28 frequencies are used. Each frequency do-
main problem is in turn decomposed into 21 2D wavenumber
domain problems. Thus in a typical forward problem, 588 2D
problems need to be solved. This leads to 588 finite-element
coefficient matrices that each need to be solved against nt right
hand sides (RHS), where nt is the number of transmitters being
modelled. When using an iterative solver, solving against each
RHS represents a separate problem, and run-time scales lin-
early with the number of transmitters. However, if one is able
to factor the coefficient matrices, solving the factored systems
against multiple transmitters is very fast, with solve time per
transmitter being 1-2% of the factorization time (Wilson et al.,
2006; Oldenburg et al., 2013).

Developing an efficient sparse direct solver is a very special-
ized task. Several excellent high performance parallel sparse
direct solvers are now available (Gould et al., 2007), which
was not the case when ArjunAir was originally developed. It
uses a custom made sparse direct solver, the developers’ own
implementation of the frontal method of sparse matrix factor-
ization, due to Irons (1970). Although impressive considering
it was written by geophysicists and not experts in numerical
linear algebra, ArjunAir’s frontal solver is naive and inefficient
compared to modern software packages that take advantage of
advanced matrix reordering techniques and highly optimized
dense linear algebra library routines.

Two such packages, MuMPS (Amestoy et al., 2001) and Par-
diso (Schenk et al., 2000) were tested in this study. The version
of Pardiso included in release 10.3.6 of the Intel Math Kernel
Library was used. MuMPS is a fully scalable distributed mem-
ory MPI solver that uses a multifrontal factorization technique.
Pardiso is a shared memory code parallelized with OpenMP
that uses a supernodal factorization algorithm. Figure 2 com-
pares the run-times of each solver run in sequential mode on an
assortment of ArjunAir forward problems, showing how per-
formance varies as a function of the order of the finite element

coefficient matrix (twice the number of nodes in the mesh) and
as a function of the number of transmitters for a fixed matrix
size. These plots show that even without parallel speedup, the
MuMPS and Pardiso solvers show substantial improvement
over the original ArjunAir code, with Pardiso offering supe-
rior performance to MuMPS.

4 6 8 10 12 14

x 10
5

0

50

100

150

200

250

300

350

of unknowns

ti
m

e
 (

s
)

(a)

0 100 200 300 400

5

10

15

20

25

30

35

40

of transmitters

ti
m

e
 (

s
)

(b)

Figure 2: Time to assemble, factor and solve the finite ele-
ment equations plotted against a) the number of unknowns for
a fixed number of RHS, and b) the number of RHS for a fixed
mesh size. Original ArjunAir solver times are plotted on the
solid black line. MuMPS run-times are on the dashed blue line
and Pardiso times are on the dot-dashed red line.

MuMPS was chosen for its ability to scale to a large number of
processors and work directly with unassembled finite-element
matrices. We tested it across multiple nodes of a Linux clus-
ter. Each node on the cluster has two six core Intel Xeon
CPUs. Limited benefit was derived from running MuMPS
with enough MPI processes to require multiple nodes. Scal-
ing was acceptable only with a small number of processes
running on a single node. The main metric used to evaluate
parallel scaling performance was speedup, defined as the run-
time for a sequential algorithm, divided by the run-time for the
parallel version of that algorithm on the same problem. Fig-
ures 3(a) and 3(b) show scaling results for MuMPS on a 16 km
long mesh, with 100 transmitters, spaced approximately every
170 m along the mesh. This tests the factorization performance
of the solvers on large matrices with a relatively small num-
ber of RHS for the length of the line. In a more typical large

Parallelizing ArjunAir

scale scenario, e.g. a 4 km mesh with 20 m transmitter loca-
tion spacing (362 transmitters), solving against the multiple
RHS dominates the computation time compared to factoriza-
tion. Better speedup is observed in this scenario, as shown in
Figure 3(c). Speedup in factorization is limited by the analysis
and pre-processing of the matrix and by its sparsity structure.
Solution of the system by back-substitution can be performed
independently for each RHS and is therefore a trivially parallel
calculation. This is reflected in Figure 3(c), where speedup in
the solve phase leads to almost linear speedup in the entire cal-
culation, for up to five threads. However, poorer scaling in the
analysis and factorization of the matrix limit the speedup be-
yond five threads. Similar factors limit the scaling of MuMPS
and in addition, as a distributed memory code, it likely has
greater overheads for communication and data movement than
Pardiso.

Parallelization over full 2D solves

The excellent absolute performance of Pardiso and its scaling
over a small number of threads, the poor scaling performance
of both Pardiso and MuMPS on larger numbers of threads or
processes, and the independent nature of the 2D wavenumber
domain subproblems in 2.5D modelling argue for a hybrid ap-
proach when adequate memory resources are available to solve
multiple subproblems concurrently. In a modern cluster set-
ting, each node is often a multi-core computer. On such a clus-
ter it makes sense to use MPI to split a computation into sev-
eral large tasks and assign each one to a separate node. Each
task can then be further parallelized using shared memory tools
such as OpenMP. In the case of ArjunAir, MPI was used to as-
sign one 2D problem to each node and OpenMP was used to
parallelize the solution of the 2D problems within the nodes.
When using only one thread per MPI process, almost linear
speedup was achieved, with a maximum speedup of 8 on 10
nodes, the largest number of nodes tested. The discrepancy
between the observed and ideal speedup is due to imperfect
load balancing. Unfortunately results using multiple threads
per process have not yet been obtained. Work on this front is
ongoing.

CONCLUSIONS AND FUTURE WORK

Improvements in the forward modelling routine have signifi-
cantly decreased ArjunAir inversion run-times. The improve-
ments have also resulted in a small decrease in the code’s mem-
ory footprint but memory constraints remain an impediment to
running inversions on larger datasets and meshes. Storing the
Jacobian matrix and its SVD is the biggest memory sink in
ArjunAir. It is a large dense matrix and must be formed in
the spatial wavenumber domain, with copies for all wavenum-
bers needing to be stored simultaneously. Current work on im-
plementing a minimum structure inversion using the ArjunAir
forward solver will eliminate the need to compute and store
the SVD of the Jacobian. Using a sparse representation of the
Jacobian is also being explored. When current work is com-
pleted, it is expected that speedups relative to the original code
of 20-30 on a 12 core workstation and over 100 on a cluster
will be achieved for full inversions.

0 5 10 15 20 25
0

5

10

15

20

25

of processes

s
p
e
e
d
u
p

(a)

2 4 6 8 10 12
0

2

4

6

8

10

12

of processes/threads

s
p
e
e
d
u
p

(b)

2 4 6 8 10 12
0

2

4

6

8

10

12

of threads

s
p
e
e
d
u
p

(c)

Figure 3: MuMPS scaling results, with ideal speedup shown
on the dashed black line, MuMPS observed speedup on the
solid blue line and Pardiso observed speedup on the dot-dashed
red line. a) MuMPS speedup with 572872 unknowns and 93
RHS on up to 2 full nodes (24 MPI processes). b) MuMPS
and Pardiso speedups with 572872 unknowns and 93 RHS on
a single node. c) Pardiso speedup with 142442 unknowns and
362 transmitters on a single node.

