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Maximizing production from an oil field is a crucial task, givthe enormous financial investment at
stake in any large-scale field development. Careful planmiith respect to the placement of new wells
and control of injection and production rates at existindlsvis essential, as these decisions can have
a significant impact on production. Placing wells poorly +égions of low permeability, for instance

— may make it difficult to achieve good flow rates, while suldopt control strategies may result in
premature waterflooding at production wells. The vast nurobpotential development scenarios drives
the need for efficient, computerized optimization appresdo assist in making these decisions.

I ntroduction

Finding optimal well locations and determining optimal xentrol are often treated as separate prob-
lems (Ciaurri et al. (2011)). Well placement problems ireobptimizing over parameters corresponding
to the positions and orientations of injection and prodarctivells. We limit ourselves in this paper to
considering vertical wells, which are parameterized synpl the well's(x,y) co-ordinates. A simple
control scheme is typically assumed in well placement @olgl, for instance, injection wells can be
held at a fixed bottom hole pressure (BHP), while producezsald at a lower BHP in order to generate
flow. Well control problems, on the other hand, focus on margthe injection and production rates at
wells that are already in place. The optimization varialiethis case are usually either the BHP or the
flow rate for each well, which can be changed at specified tirtevals.

The objective function that one wishes to maximize in bottheke problems is typically either the total
amount of oil extracted, or the net present value (NPV) ofexteacted oil. The NPV function is related
to the total amount of oil extracted, but emphasizes produoiore oil early in the reservoir’s lifetime
(due to the time value of money) and also usually incorpsrite costs of water injection and disposal
of any water produced. Evaluating this objective functiegquires running a reservoir simulator, and is
therefore a computationally expensive operation. Theviebaof the objective function is notably dif-
ferent in well control and well placement problems. Spealfic the function tends to vary smoothly as
control parameters are perturbed, while in well placemealblems, the function is usually nonsmooth,
due to heterogeneous properties of the reservoir such asepéility. Thus, different optimization ap-
proaches have typically been used for addressing these rolmens. Optimization studies on well
placement have often focused on global algorithms with sstmehastic element in order to avoid local
optima, while well control problems have tended to make dsketerministic algorithms based on local
search techniques (Ciaurri et al. (2011)).

A unified approach to optimizing well placement and well cohat the same time has the potential to
provide benefits over the treatment of these problems sigbardn particular, the best well configura-
tion when producers are held at some fixed BHP is not necBstagisame as the best configuration if
the control can vary with time (Zandvliet et al. (2008)). Atitthally, determining the optimal placement
of new wells may also require adjusting the control paramsetewells already in place. The problem of
simultaneous optimization of well placement and contr@ baen largely unexplored in academic liter-
ature. Here, we investigate approaches to addressingridiéepn using a two optimization algorithms:
particle swarm optimization (PSO) and generalized patiearch (GPS). We find that hybridizing these
two algorithms and applying them simultaneously providégaatages in some simple experiments; in
more complicated cases, applying them in sequential steyssark best.

Existing research

Well placement studies have tended to use stochastic @gatilom approaches aimed at exploring the
solution space globally. Genetic algorithms (GAs) haveired the widest use (Bittencourt and Horne
(1997); Yeten et al. (2003); Guyaguler and Horne (2004)uéet al. (2006); Ozdogan et al. (2005);
Nogueira and Schiozer (2009); Emerick et al. (2009); Buksianet al. (2010)). Other optimization

algorithms that have been applied to the problem includeiéameous perturbation stochastic approxi-
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mation (SPSA) (Bangerth et al. (2006)), covariance matlegpgation (Bouzarkouna et al. (2010)), and
particle swarm optimization (PSO) (Onwunalu and Durlofék§10, 2011)). These methods were found
to outperform GAs in most cases, in that they found bettertsmis, or else required fewer function eval-
uations to match the performance of GAs. In addition to deiteing suitable algorithms, well placement
papers have addressed other issues such as parametrazadi@aptimal placement of non-conventional
wells (Yeten et al. (2003); Bukhamsin et al. (2010)), coesition of geological uncertainty when deter-
mining optimal positions (Guyaguler and Horne (2004); Aréi al. (2006)), placement of well patterns
rather than individual wells (Ozdogan et al. (2005); Onwuraand Durlofsky (2011)), and inclusion of
nonlinear constraints as part of the optimization (Zaret\dit al. (2008); Emerick et al. (2009)).

A popular optimization algorithm for well control problemsn the other hand, has been the adjoint
method (Brouwer and Jansen (2002); Sarma et al. (2006);\#iahdt al. (2007); Jansen et al. (2009);
van Essen et al. (2011)). The adjoint method determinesedeslirections on the objective function
surface by approximating the gradient of the function. Tddigorithm is well-suited to the optimal
control problem due to the smoothly varying nature of thesotiye function. Formulating the gradient
approximations requires in-depth knowledge of the workio the reservoir simulator, however, and
may be challenging as a result. This issue can be avoidedity tdack box” optimization algorithms,
which deal only with inputs and outputs to the simulator. fapées of black-box algorithms that have
been applied to the well control problem include stochastithods like SPSA (Wang et al. (2009)) and
GAs (Yang et al. (2003)), as well as deterministic methodf s generalized pattern search (GPS) and
Hooke-Jeeves directed search (Ciaurri et al. (2010, 2011))

Several well control studies have developed the conceplostd-loop reservoir management (Jansen
et al. (2009); Wang et al. (2009); Peters et al. (2009)), wlhiee geology of the reservoir must be esti-
mated based on measured observational data. Thus, thezgiton approach must include a history-
matching component, which builds an approximate model®féiservoir based on measurements taken
during production. The updated model is then used to deterhie optimal control scheme for the next
time period. We assume in this study that an accurate modkekoEtservoir is available, and thus do not
consider the problem of history matching.

The need to include nonlinear constraints during optinorais a key issue that arises in well control
problems (Sarma et al. (2006); Zandvliet et al. (2007); @iaat al. (2010)). When wells are controlled
by BHP, for example, the flow rate at each well has a complitatenlinear dependence on not only the
well’'s BHP, but also on numerous other factors, such as therveir's permeability field and the well’s
proximity to other wells. In addition to straightforward pgr and lower bounds on BHP, there may
also be maximum or minimum permissible flow rates prescrigedach well, which are not directly
controlled. It is not generally possible to determine whketthese constraints are satisfied without
performing a reservoir simulation. Any optimization appch must therefore include some mechanism
for handling solutions that improve the value of the objextiunction, but violate these constraints.
Constraints of this type have major implications on thergti control. If no constraints are present
then the optimal control is guaranteed to be of the “banggbaype, meaning that the BHP should
be held only at either its maximum or minimum permissibleuea(Sudaryanto and Yortsos (2001);
Zandvliet et al. (2007); Wang et al. (2009)). If the problentonstrained, then the optimal control may
include BHP values from anywhere within the permissiblegean

Optimization approach

Combining global and local optimization techniques shdidddvantageous when addressing well con-
trol and well placement in a unified way, given the differirgture of these two problems. We use PSO
as a global optimizer in this study, and GPS for the localdeaDur choice of these algorithms is moti-
vated by the fact that both have performed well in previowxlpction optimization studies (Onwunalu
and Durlofsky (2010); Ciaurri et al. (2010)); both are bldmkx methods that do not require in-depth
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knowledge of the simulator; and both are easily paralldliimehelp mitigate the expensive cost of func-
tion evaluations. We now give an overview of PSO and GPS, disasef the specific optimization
approaches used in this paper.

Particle swarm optimization

Particle swarm optimization (Kennedy and Eberhart (19€%¢yc (2006)) is an optimization algorithm
based on modeling the behaviour of a herd of animals actitigatively. PSO utilizes a number of
particles(typically 20 to 40) to explore solution space in a semi-@ndvay. The position of particle
at iterationk, denotecki(k), is a vector of sizéN, whereN is the number of variables in the optimization
problem. Every position is associated with the correspamdbjective function value, and every patrticle
remembers the best position it has found so far. Particldedénswarm also communicate with one
another to share the best positions that have been foundebsviarm on the whole. Givexfk), the
position of the particle at iteratiok+ 1 is:

Xi(k+1) _ Xi(k) —|—Vi(k+1), (1)

where the particle’s velocity vectm‘k“) is given by

K K K 0 (K K 0 (K
v +1):lvi()+ur(1>®(pi()—xi( ))+vr(2)®(gi()—xi( >>. )

The velocity is a combination of three terms. The first termdeis the tendency of the particle to
continue traveling in the direction given by its currento@ty. The second term represents the tendency
of the particle to move toward the best position it has foundas, denoted b)pi(k). Finally, the third
term represents the tendency of the particle to move towsrdést position found by any other particle
with which it communicates, denoted gW The constants, u andv are parameters whose values
are chosen to weight these three terms appropriately. €otinindomness into the particle movement,
the N-vectorsr(lk) andrg‘) are generated from the uniform distribution (1) at every iteration, then
multiplied componentwise with the terms in brackets by gheperator. The PSO iteration continues
until some convergence criterion is met; for example, uht velocities of the particles have become
sufficiently small, until the particles are sufficiently seoto one another, or simply until some maximum
number of iterations have been performed.

If every particle communicates with every other particlethie swarm, then one can replace the term
gi(k) in (2) with a single valug¥, representing the overall global best solution found solfiaxder this
global neighbourhood topology, PSO may quickly converge to a miminbefore the solution space
is fully explored. Thus, it is usually recommended that epalticle communicate only with 2 to 4
other particles at any one time (Clerc (2006)). At everyaitiem of the algorithm, the neighbourhood of
particles with which each particle communicates can beemoandomly. Thisandomneighbourhood
topology was used for this study, as well as a swarm size ofdfcfes, and parameter values of
1 =0.721, u = v = 1.193. These parameter values have been found to provide gmogrgence
results in many numerical experiments (Clerc (2006)).

Generalized Pattern Search

Generalized Pattern Search (Lewis and Torczon (1999); Aade Dennis (2004)) is an optimization
algorithm that begins from a singiecumbent poinand consists of a series séarchandpoll steps. At
every iteratiork, a discrete mesh, centred at the current incumkhtis defined by:

M — {x(k) +aMDz: z€ N”D}, )

whereA® is the resolution of the mesh at iterati&nD is a matrix whose columns form theearch
directions N is the set of natural numbers, ang is the number of search directions. The search
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directions must form @ositive spanning séb solution space; i.e., one must be able to specify any point
in solution space by adding together only positive scalaltiples of these directions. Two common
choices of search directions are:

‘@:{e17e27"'7eNv_ela_e2>"'7_a\|};Or (4)
N

-@z{el,ez,---,eN,—Zen}, (5)
n=1

where theg, are the canonical basis vectds0,0,...,0)T, (0,1,0,...,0)T, etc. HereZ refers to the
set of search directions, which form the columns of the mdxi

The search step consists of selecting a finite number of paintM® and evaluating the objective
function at each one. If any of those points improves theathje function value, the point with the best
value becomes the new incumbent. The search step can enmglsyrategy in selecting points, and may
even be omitted, if desired. If none of the points selectdtdrsearch step are better than the incumbent,
then the algorithm proceeds to the poll step. The poll steists of evaluating the objective function
at all the points that are immediate neighbours of the in@mhpoint on the meskl¥). These points

are given by:
[y} = {x9 +ad; vdj € 7). (6)

If the poll step finds one or more points with a better objexfinction value than the incumbent, then
the point with the best value becomes the new incumbento®gti, A¥' may be increased for the next
iteration. If the poll step is unsuccessful, th&ff) is reduced and another iteration begins, using the
same incumbent point as before. The algorithm is considerdgve converged ona&® is reduced
beyond a specified threshold, which indicates that the oupgeint is at least close to a local optimum.

Bound and general constraints

Broadly speaking, there can exist two types of constraintthe@ optimization vectok: boundand
generalconstraints. Bound constraints are simple componentwisguiality constraints of the form

X <x < x4, (7)

wherex' andx! are the lower and upper bounds rnrespectively. In the context of a reservoir opti-
mization problem, these could be the minimum and maximuurhigdices (for well placement) or upper
and lower limits on the control parameters.

Both PSO and GPS can easily incorporate bound constramt®S0O, any particles that travel outside
of the bounds are projected back onto the boundary of sepates For instance, if componethtof
particlei’s position exceeds the maximum valdgafter being updated, then the particle’s position and
velocity are modified as follows:

Xid = X4 (8)

Vid =0

The velocity component is set to zero to ensure that thegiadbes not continue to travel in the direction
that led it out of bounds. Bound constraints are treatedailyin GPS; namely, points which lie outside
of search space are projected back onto the boundary dimengail step (Lewis and Torczon (1999)).

General constraints refer to any constraints on the inpiarpaters other than simple bound constraints.
Input that violates general constraints (which we referstimfeasibleinput) can sometimes be identified
prior to evaluating the objective function; for instandehe input specifies placing two wells at the same
location. Other constraints, such as an upper limit on the fade for wells controlled by BHP, require
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running the reservoir simulator to determine if they arés$igd. A simple mechanism for PSO to handle
general constraints is to allow particles to move to infiel@spositions, but not store these positions in
the particle’s memory (Hu and Eberhart (2002)). Thus, pkesican explore search space freely, but are
only attracted to positions that are feasible, in additmproviding good objective function values. This
strategy requires that every particle be initialized to asfble position, so that the particle always has
at least one feasible position stored in its history. To legéneral constraints in GPS, one can simply
ignore any infeasible points during polling, and thus ontgept feasible points which also reduce
the objective function value. This approach is not idealdeneral-purpose optimization, as it may
prevent the algorithm from traveling through the infeasibgion to find the true optimum; alternative
approaches such éftering are recommended instead (Audet and Dennis (2004); Ciauati €£010)).

We found that this first approach was sufficient for this stumbyvever, possibly because GPS was used
in conjunction with PSO, rather than as a stand-alone op&imi

Hybrid algorithm

An optimization algorithm that hybridizes PSO and GPS havipusly been proposed in (Vaz and
Vicente (2007, 2009)). This algorithm, denoted PSwarmsseatially a GPS algorithm that uses PSO
as thesearchstep. Thus, the algorithm behaves exactly like PSO for ag ésrthe search step continues
to find points that improve the objective function value. Whkis step fails to improve the solution,
polling takes place around the current best position foufdhe poll step finds a better solution, the
current best position is updated and a new iteration of P3fihbeotherwise, the polling stencil size is
reduced, as described in the section on GPS. The algoritboeeds until the convergence criteria for
both PSO and GPS are met; i.e., the velocity of the partislasfficiently small, and the polling stencil
size is reduced beyond a specified threshold.

In this paper we have made the following maodifications to P@wia order to adapt it to the simultane-
ous well placement and control problem:

1. We have extended the PSO and GPS components of the atgadthandle general constraints,
as described in the previous section. The PSwarm algorithmeacribed in (Vaz and Vicente
(2009)) handles linear constraints, but not general caimi of the types seen in this problem.

2. PSwarm uses the global network topology as the commimncatodel during the PSO step. We
have replaced this model with the random variable neighimaa topology, as discussed in the
section on PSO. Each particle’s communication neighbadhmnsists of itself and two other
particles, which are selected randomly at each iteration.

3. The PSwarm algorithm, as originally proposed, perforrpslastep every time the PSO (search)
step fails to improve the objective function value. We hagkxed this condition so that the
PSO step was allowed to fail up to five times consecutivelpiteeGPS was applied. This choice
was made in light of the fact that evaluating our objectivection requires running the reservoir
simulator, and is thus more computationally expensive thanost optimization problems. The
cost of polling is therefore greater. The failure toleran€dive iterations was chosen after some
experimentation showed that it provided comparable resaltvhen polling was performed more
frequently, despite requiring far fewer function evaloas on average.

4. We have chosen specially selected direction veciots use during the poll step.

Regarding the fourth item, a common choice for GPS seardttilins are the canonical vectors given
in (4). In the context of the well placement and control penb) each of these directions corresponds
to incrementally perturbing either theor y component of one well’s position, or a single BHP value at
one well for one time interval. We instead chose a specidlgsat of search directions that are likely to
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Figure 1 Specialized search directions used during the GPS algarfthr the mock problem. A red entry
corresponds to a value of -1, and a black entry to +1.

result in a greater improvement to the objective functidre (Net Present Value, in this case) in a single
step. Specifically, the NPV is more likely to be improved byéring the BHP at production wells, since
doing so generates a higher flow rate. The opposite is trusmjection wells. Furthermore, we gain
more by increasing production in early years, due to theodisting rate applied in the NPV calculation.
The search directions were chosen with these two facts id.min

We illustrate this second set of search directions in Figum a mock problem, involving the placement
and control for a group of four vertical wells, consistingteb injectors and two producers. Each well’s
position is determined by itéx,y) co-ordinates, and the BHP at each producer can be changed eve
year over an 8-year production period. The BHP at inject®iseid fixed. Thus, there are 24 variables;
the (x,y) co-ordinates of each of the four wells, and the 8 BHP valueg#&th of the two producers.
The four components along tlyeaxis in Figure 1 (labeled) correspond to th& andy co-ordinates of
the first injector-producer pair, and the next 8 componénts the BHP specified at the first producer
in each year of production. LabeG andD correspond to the equivalent components for the second
injector-producer pair.

Each column of the matrix represents one search directibn.fifst 8 directions (labeled correspond
to lowering the BHP at the first producer, with the first direstcorresponding to lowering BHP in the
first year, the second direction to lowering it in years 1 anaiil the 8th direction lowers the BHP at the
well for all 8 years. The directions labeléiddo the same for the second producer. Directiinandiv
correspond to raising the BHP at the first and second prodiesgrectively. These ensure that directions
i —iv, taken together, form a positive spanning set over the ocbpirameters. Finally, directionsand

vi alter thex andy co-ordinates of the first and second injector-producerspagspectively. This last
group of directions are scaled independently of the comadbbles during the polling step, so that we
only ever alter thex or y co-ordinate of a well by one grid space during polling. Theads that the
optimization of the well positions is primarily achieved the PSO step. Well positions should only
need to be perturbed slightly during the poll step, whichnseal mainly at optimizing the controls.

Experiments

We now describe several experiments that were used to egtettiormance of the different optimiza-
tion approaches. All experiments were performed using ttalad Reservoir Simulation Toolbox
(MRST) (Lie et al. (2011); SINTEF Applied Mathematics (2Q)L&s the reservoir simulator. MRST
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Table 1 Economic parameters used in all experiments.
Parameter Value

Co $80/bbl
CW,diSp $12/bb|
Cwinj  $8/bbl
r 10%

is an open-source simulator implemented in Matlab, whickuies routines for processing and visual-
izing unstructured grids, as well as several solvers fagleiand two-phase flow. The flow and transport
equations are solved in alternating steps in order to détertime phase pressures, flow rates and sat-
urations at every time point. Modeling of simple verticadamorizontal wells is provided using the
Peaceman model (Peaceman (1978)).

The objective function we used in these experiments was ¢ blver the entire production period
[0, T]. The NPV was computed as in (Bangerth et al. (2006)):

NPV(x) — /

et t
0 > Cw.mJQn,w(t)}(l—l-r) dt, 9)

neinj

T
{ Z g [Coqg,o(t) - CW.dispQRW(t)] -
nepro

The parameters,, Cydisp @ndcyinj represent the price per barrel of produced oil, disposédl pasbarrel
of produced water, and cost per barrel of injected watepeetively. The functions, ,(t) andgp,,(t)
are the production rates (barrels/day) of oil and watepeesvely, at welln, while g, (t) is the water
injection rate at wellh. These rates are implicitly functions of the optimizatiosctor X, since they
depend on the prescribed bottom hole pressures. The yasshest rate is specified oy We used the
parameter values provided in Table 1 for all experimentsis Thoice of values meant that production
became unprofitable once the water cut at a well reached lpiu§Po. This threshold value is often as
high as 90 or 95% in practice; a lower value was chosen to erthat shutting in a well was the optimal
choice in some experiments.

Experiment 1

The first experiment used a simple 2D reservoir model, ctingi®f 50x60 grid cells measuring 25
metres per side (total field size: 12501500 x 25m, or 4100x 4920 x 82 ft). The small size of this
reservoir block allowed us to run many iterations of eacloddgm and study the convergence behaviour.
The permeability field of the reservoir is shown in Figure Bislfield contained several regions of high
permeability where we would expect optimally configuredla/&d be placed. A uniform porosity value
of 20% was assumed throughout the reservoir. The initialratibn of the reservoir was assumed to be
100% oil.

We considered four problems using this reservoir modelhinfirst two problems, we placed a single
vertical injector/producer pair. The injector was held dixead BHP of 350 bars (5076 psi), while the
producer BHP was permitted to lie between 175 and 350 ba3(Z®76 psi), and could be changed
every year over a twelve-year production period. Thus,ghgere 16 variables in this problem; 4
positional variables and 12 control variables. We also ictamed two situations: one where there were
no general constraints on the optimization (denoted Pnoldla), and one where a maximum flow rate
of 600 n/day (3774 bpd) was imposed on both wells (denoted 1B). Thétfiro problems (1C and 1D)
involved placing two injectors and two producers in the saeservoir, under the same conditions. This
doubled the size of the problem to 32 variables. Again, wesiclamed both the unconstrained problem
(Problem 1C) and the problem where the maximum flow rate wastcained at 600 Aiday (Problem
1D). The experimental parameters of these four problemswarenarized in Figure 3 (top image).
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Figure 2 Permeability field of 2D reservoir used in first experiment.

We applied three different optimization approaches todhmeblems. The fact that every optimization
approach that we considered included a stochastic compaererssitated performing multiple runs of
each approach, in order to assess the average performanch.approach was, therefore, applied 20
times to the appropriate problems. Figure 3 (bottom image)jrsarizes which optimization approaches
(described below) were applied to each of the four problems.

The first approach was simply to apply PSO. PSO was run for &mamr of 200 iterations for Problems
1A and 1B, and up to 300 iterations for Problems 1C and 1D, thighalgorithm terminated early if the
average velocity of the swarm decreased beyond a certaéshbid. We subsequently applied GPS to
the best solution found in each run of PSO. This step comk@téy of polling, starting from a stencil
size (A\(9)) of 32 bars for the control variables. The stencil size waticed by a factor of 2 any time
that polling did not find a better incumbent point, and theodthm was terminated ona&® was equal

to 1 bar. The application of GPS was not considered to be panecptimization approach, but rather
as a test to see how close the solutions found by PSO werertg logially optimal.

The second approach was to apply the hybrid algorithm (mextifiSwarm) described in the previous
section. This algorithm was run for a maximum of 200 itenagidor all four test cases, but could be
terminated early if the convergence criteria for both PS® @RS were satisfied. We then applied GPS
to the best solution found by each run in order to test itsnoglity, as we did with the solutions found
by PSO. Solutions found by the hybrid algorithm could onlyitn@roved by this step if the maximum
number of iterations had been reached, since the convergeiterion for GPS had to have been satisfied
already for the algorithm to terminate early.

The third approach that we considered was to decouple tleemlant and control components of the
problem. The first step of this approach consisted of trgaitie problem strictly as a well placement
problem, by assuming that the producers were held at somz Bk throughout the 12-year produc-
tion period. We used up to 200 iterations of PSO to deterntieeoptimal well positions under these
assumptions. Once optimal positions had been found, weedldhe controls to vary year-by-year and
optimized the control using GPS. The positions could alsmtementally adjusted in this second step.
This second step ensured that the solutions found by theuglsmb approach were guaranteed to be
locally optimal. The advantage of the decoupled approathaisit splits the problem into two smaller
problems which are easier to solve than the full problem. feptial disadvantage is that we may find
suboptimal solutions by not optimizing over all variablédree same time. We applied this approach
only to Problems 1B and 1D, since the optimal control was etgueto be “bang-bang” in Problems 1A
and 1C, and could thus be found relatively easily. Whenatiplacing the wells, the producers were
held at a BHP of 200 bars, which was slightly higher than theimiim value of 175 bars, in order to
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Figure 3 Top image: Experimental parameters that were changed &fdhr problems in Experiment 1.
Bottom image: Optimization approaches that were appliegbith of the four problems in Experiment 1.

allow the control to be iteratively improved by GPS in the@at step.

Experiment 2

The second experiment used a reservoir model provided biNdmeegian University of Science and
Technology (NTNU) as part of the Norne benchmark case (NTRWEntre (2012)). The full model of
the Norne field is a 48 112x 22 grid consisting of 44,927 active cells. The reservoir ei@slsubdivided
into four different formations from top to base, denotgdrn, lle, TofteandTilje. In order to reduce
simulation time, we extracted the seven layers correspgnth thelle formation to provide a smaller
reservoir model, consisting of 15,004 active cells. Theopity of the reservoir ranged between 25-30%
and the permeability from 20 to 2500 mD. The reservoir geoynistshown in Figure 4 (left image).
The initial saturation was assumed to be 100% oil, as in Emxysatt 1.

The reservoir's irregular shape meant that wells whosetiposil co-ordinates fell within the bounds
prescribed by the grid might not correspond to valid loaagian the reservoir. Thus, any positional
co-ordinates in théx,y) plane which did not correspond to a valid reservoir locatieere projected
onto the nearest active cell during the optimization. Theepss is illustrated in Figure 4 (right image).
Black cells indicate grid locations which pass through ast@ne active cell in thedirection. The three
red x symbols indicate positions that are invalid, which werggxted onto the nearest valid location
(indicated by the greern symbols).

Experiment 2 consisted of placing seven wells (three injsctfour producers) in this field, and opti-
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Figure 4 Left side: reservoir geometry of the Norne field. Permefhili the x—y directions (in mD) is
shown. Right side: Projection of invalid vertical well lozats in the(x,y) plane onto the nearest valid
co-ordinates.

mizing production over a 16-year time period. As in Experning, the BHPs at injection wells were
held fixed, this time at 450 bars (6527 psi). The BHPs at pribailuevells could take any value between
150 and 450 bars (2176-6257 psi), and were allowed to be edasgry year. All wells were assumed
to be vertical and perforated in all seven layers of the fidldus, the optimization variables consisted
of of 14 positional parameters (tlie,y) co-ordinates of every well) and 16 control parameters fohea
of the four producers (64 total), for a total of 78 variabl&¥e again considered both the constrained
and unconstrained cases; in Problem 2A, there were no eamstion production, while in Problem 2B,
there was a maximum flow constraint of 3,508/day (22,014 bpd) at each injector and 2,500day
(15,725 bpd) at each producer.

The same optimization methodology was applied as in Exparirh. Five trials of each experiment were
run, with each trial consisting of up to 200 iterations of P&Q50 iterations of the hybrid algorithm.
Pattern search to the best solution found in each trial tesss$s optimality. For the decoupled approach,
up to 150 iterations of PSO were performed during the weltg@haent step, assuming that producers
were held at a fixed BHP of 175 bars.

Results

The results of both experiments are shown in Table 2. Theaqydrt of the table shows the average, best
and worst NPV values over the multiple runs of each approhahwere performed for each approach
(twenty runs for Experiment 1, and five runs for ExperimentT)e rightmost section shows the average
NPV after the GPS algorithm was applied to each solution ddoynPSO and the hybrid algorithm, as
well as the percentage improvemefg4) compared to the original average. These values indiaate h
close to being locally optimal the solutions found by eitb&gorithm were. Plots of the convergence
of the respective algorithms versus the number of functi@iuations (fevals) for both experiments are
shown in Figure 5.

Discussion
Experiment 1

Table 2 shows that overall, there was little difference ia fimal NPV values obtained by the hybrid
algorithm versus PSO. The average, best and worst soluibomsl by either algorithm were generally
within 5% of one other. The lone exception was Problem 1D, revltlee worst solution found by PSO
had roughly a 10% lower NPV than the worst solution found by tilgbrid algorithm. The results in
the rightmost column indicate that the solutions found byDR&ere less likely to be locally optimal
than those found the hybrid algorithm (particularly in Heshs 1B and 1D), since they were more often
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Figure 5 Convergence plots for the four problems of Experiment 1 hrdwo problems considered in
Experiment 2, showing best NPV found as a function of the auwifreservoir simulations (fevals).
Convergence of PSO shown in black, hybrid algorithm in rextodipled approach (where applicable)
in blue. The vertical axis scale is the same across each rquots.
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Table 2 Results of first and second experiments.

First run After GPS
Problem  Algorithm Avg. Best Worst Avg. A%
($x10%) ($x10®) ($x10%) ($x10P)

1A PSO 8.70 8.79 8.60 8.71 0.25
hybrid 8.68 8.79 8.47 8.68 0.00
1B PSO 6.52 6.67 6.36 6.58 1.20
hybrid 6.48 6.59 6.40 6.49 0.20
decoupled 6.72 6.92 6.37 — -
1C PSO 14.2 14.6 13.0 14.3 0.08
hybrid 14.3 14.6 12.4 14.3 0.08
1D PSO 11.1 12.2 9.61 114 264
hybrid 11.4 12.2 10.6 11.5 0.75
decoupled 11.3 12.1 10.3 — -
2A PSO 7.72 8.19 7.23 8.74 13.1
hybrid 7.75 8.28 7.11 834 7.6
2B PSO 6.47 7.05 6.09 7.63 18.0
hybrid 6.99 7.89 5.81 761 8.9
decoupled 8.21 8.73 7.72 —_ -

improved by the subsequent application of GPS. This resa#t @pected since the hybrid algorithm
included a polling step to provide local optimization.

The main difference in the performance of the two algorithsrepparent from plotting the convergence
of each algorithm against the number of function evaluatifievals), as shown in Figure 5. Note
that for PSO, the cost of each iteration was fixed at 20 fevhks jumber of particles), while for the
hybrid algorithm, it varied depending on whether or not tlodl ptep was performed in that iteration.
The convergence plots for Problems 1A and 1B show that thedhalgorithm had typically found an
optimal solution after roughly 1500 fevals, as indicatedthg plateau in the convergence plot. PSO
required 2500 to 3000 fevals to attain the same quality afteol. The gap in performance was even
more pronounced for Problem 1D, where the performance of R§ged behind the hybrid algorithm’s
even after 6000 fevals. Problem 1C was the only case out dbtivavhere the performance of the two
algorithms was essentially the same.

The decoupled approach was applied only to Problems 1B andridwas effective in both cases. This
approach produced better solutions on average than dithérybrid or PSO algorithms for Problem 1B,
while its performance for Problem 1D was comparable (se¢eT2b The convergence of the decoupled
approach for these two experiments are shown in Figure 5. Méthat the decoupled approach began
from a better initial solution than the other two methods;eaese the BHPs at producers were initially
held near the low end of the range at 200 bars, as opposedrtg idomly initialized between the
minimum and maximum values of 175 and 350 bars. The hybridréiign was eventually able to
“catch up” with the decoupled approach in both problemspitieshis initial disadvantage; however,
in Problem 1B, the decoupled approach eventually improwedsblution further during the control
optimization step.

The best well positions found over all optimization runs éach of the four problems are shown in
Figure 6. Production wells in the two unconstrained proldgibA and 1C) were always placed in
the high-permeability regions in order to generate the ésgtpossible flow rate. The injection well
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1A (Two wells, no constraint) 1B (Two wells, constrained)
NPV = $879x 10° NPV = $692x 10°

1C (Four wells, no constraint) 1D (Four wells, constrained)
NPV = $146 x 10 NPV = $125x 1¢®

Figure 6 Best well placements found in each of the four problems irEix@nt 1. Injection wells shown
as blackx and producers as black

in Problem 1A was also placed in a high-permeability regiwhijle the two injectors in Problem 1C

had to be placed farther away from the producers in order laydereakthrough of water. The best
positions found in Problems 1B and 1D are noticeably difiefeom the unconstrained problems, due
to the effect of the maximum flow constraint of 60G/amy. While generating a high flow rate was the
primary consideration in the unconstrained problems, enabnstrained problems it was important to
delay the water breakthrough for as long as possible, wiiteraaching the maximum flow rate quickly.

The optimal solutions for Problems 1B and 1D therefore tdrideolace the wells farther away from one
another than did the solutions to the corresponding uncainsd problems.

The optimal control strategies for Problems 1A and 1C werghi to hold producers at the lowest BHP
(175 bars) until the water cut exceeded the profitable pdim88so, after which point the wells were
shut in. This result is consistent with previous studieg.(Zandvliet et al. (2007)) which indicate that
“bang-bang” control is the optimal choice in this case. 8hgtin the producer was not necessary in
Problem 1A, but in Problem 1C the second producer (denotdd P@jure 6, plot 1C) was shut in after
10 years. The optimal control in Problems 1B and 1D, on therdtand, required eventually raising the
BHP at the producers, in order to maintain a flow rate belowntagimum of 600 ri/day. The optimal
controls for these two problems, corresponding to the wialtgments shown in Figure 6, are shown in
Figure 7.
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1B (Two wells, constrained)
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Figure 7 Bottom hole pressures (left plots) and flow rates (rightglat the wells for the best solutions
found in Problems 1B and 1D. Black dashed line on plots of flates indicates the maximum flow
constraint of 600 fiday. Some curves overlap.
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The results of the second experiment indicate very litttiedince between the performances of PSO and
the hybrid algorithm for this problem. The quality of the siddns eventually found by either algorithm
(Table 2) was essentially the same for Problem 2A, while famblem 2B, the solutions found by the
hybrid algorithm were roughly 8% better, on average. The bemnof function evaluations (fevals) used
by the hybrid algorithm, however, was significantly largaren though only 150 iterations of the hybrid
algorithm were performed, compared to 200 iterations of PBxs is due to the fact that polling was a
very expensive operation in this experiment, requiring fEdals per polling step (twice the total number
of variables). Thus, when convergence is plotted agairsnhtimber of fevals, as shown in Figure 5,
it is apparent that the performance of the two algorithms essentially the same in both experiments.
This is in contrast to the results of Experiment 1, where tedgumance of the hybrid algorithm was
generally better. We note as well that in all optimizatiomsdor Experiment 2, the algorithms were
terminated early due to reaching the maximum number oftitera. Thus, the solutions found were not
locally optimal and could usually be improved significartily performing GPS afterwards, as indicated
by theA% values shown in Table 2. These values were significantiflsniar the hybrid algorithm than
for PSO in both cases, however, indicating that the solatfound were closer to being locally optimal,
as in Experiment 1. While it would have been desirable to roth lalgorithms for more iterations, this
was not feasible due to the high computational cost of therves simulations in this experiment.

Experiment 2

The decoupled approach was far more effective than eithéreobther two methods when applied to

Experiment 2B, as indicated by the results in Table 2 and byctinvergence plot in Figure 5 (bottom

right corner). It should be noted again that the decoupleiageh was started from a much better initial

solution than the other two approaches, since the BHPs dupens were held fixed at 175 bars, rather
than initialized randomly in the range of 150-450 bars. HelRSO and hybrid algorithms been given a
better initialization, the gap in performance would likélstve been smaller. This factor does not totally
account for the improved performance of the decoupled amprchowever. The convergence plot shows
that after roughly 1500 fevals, the solutions found by th©R8d hybrid approaches were generally on
par with the solutions used to initialize the decoupled rméitAs those algorithms proceeded, however,
the convergence was clearly slower than that of the decduwgeroach. The results indicate that in this
larger-scale problem, there was a clear advantage gaiogdrrducing the size of the problem from 78

variables to only 14 (the positions of the seven wells) bifalty assuming a fixed control scheme.

The increased cost of polling in this experiment reducedeffieiency of the hybrid algorithm consid-
erably. A possible solution to this issue would be to use it local optimization method, such as
SPSA (Bangerth et al. (2006)), which requires only two fiorcievaluations per iteration, regardless
of the number of variables involved in the problem. It shookdnoted that although we assessed the
performance of the algorithms by measuring convergencsugethe number of fevals, this may be a
misleading evaluation when a large number of parallel resgsuare available. If 40 simulations can
be performed in parallel, for instance, then the actual agatpnal time to perform up to 160 fevals is
only four times as great as that of performing two. Thus, tieegased number of fevals required for
GPS-style polling is not as significant an issue.

The best well positions and well control schemes found ineixpent 2 are shown in Figures 8 and 9,
respectively. The effect of imposing flow constraints irstexperiment is comparable to that observed in
Experiment 1. The best solution found for Problem 2A was twa¢ produced high flow rates by placing
wells in areas of high permeability, even though that mdzattthe wells were clustered together and that
water breakthrough at the producers occurred fairly e&kgll P1 was eventually shut in when the water
cut exceeded the profitable threshold. The best solutioBXperiment 2B was one that maintained the
flow rates at most of the wells near the maximum allowed vatueaning that wells did not have to be
placed in the regions of highest permeability. The BHPseaptioduction wells also had to be adjusted
slightly in later years in order to satisfy the constrainfbe fact that three out of four producers and two
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2A (Seven wells, no constraint) 2B (Seven wells, constrained)
NPV = $921x 1¢° NPV = $873x 10°

Figure 8 Best well positions found in Problems 2A and 2B.

out of three injectors were eventually close to the maximww flate indicates that the solution shown
is a good one, although there is no guarantee that it is optima

Conclusions

We have examined two approaches to simultaneous optimizafiwell placement and control, which
combine particle swarm optimization (PSO) with patternrcledGPS). The first approach is a hybrid
algorithm based on the previously proposed PSwarm algor{ftiz and Vicente (2009)), which acts
on all variables of the problem simultaneously. The secquut@ach is a decoupled method where
PSO is applied initially to a well placement problem (asswgna fixed control scheme), and GPS is
applied to the controls afterwards, once suitable postibave been established. These approaches
were compared with the basic PSO algorithm in two sets of raxygats, both of which consisted of
placing vertical wells and controlling them using BHP. Thetfset of experiments involved placing and
controlling up to four wells in a simple rectangular 2D res#r model, while the second used a more
realistic 3D reservoir model, and required placing and ilitig seven wells. The objective in all the
experiments was to maximize the NPV of the oil produced.

In the first set of experiments, the hybrid algorithm was fbto have faster convergence than PSO
in three out of the four test cases. (In the one other casegydaHermance of the two algorithms was
essentially the same). The advantage of using the hybridoapp was especially noticeable in the
fourth test case, which involved placing four wells and ired nonlinear constraints on production. In
the second set of experiments, there was little advantagsing the hybrid approach, largely as a result
of the large numbers of variables in the problem, which iasesl the cost of polling. The decoupled
approach was found to be the superior method for this profdenit significantly outperformed both of
the other approaches. In the first experiment, this apprpemhided slightly better results than the other
two algorithms when applied to one problem, and comparasslts for the other.

The results of our experiments suggest that the sequetéebupled approach to optimizing well place-
ment and control may be preferable to an approach that attetmmptimize over all variables simul-
taneously, especially if the number of variables is larghese experiments dealt with a fairly specific
situation (placement of vertical wells controlled by BHRYwever, and further studies are necessary to
see if the same is true in more general problems. We also natéstimportant that an appropriate fixed
control scheme be chosen during the well placement stepeaddlboupled approach. When maximum
flow constraints are present, for example, then holding getdn wells at the minimum BHP may result
in suboptimal solutions, since wells may be placed fartipartethan is necessary to avoid violating the
constraints. Choosing a BHP near the high end of the rangtheonther hand, may result in placing
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2A (Seven wells, no constraints)
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Figure 9 Bottom hole pressures (left plots) and flow rates (rightglat the wells for the best solutions
found for Problems 2A and 2B. Black dashed line on plots of fiaes for Experiment 2B indicate the
maximum flow constraints of 3500 uay for injectors and 2500 #day for producers. Some curves
overlap.
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wells too close to one another, leading to solutions thdéstrom early water breakthrough when BHPs
are allowed to drop during the second stage of the optintzatiVe obtained good results in this study
by choosing a fixed BHP near the lower end of the range for preidy but above the minimum value.
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