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Abstract
Large discontinuities (jumps) in coefficients often appear when modelling physical problems involving inhomogeneous
media. An example of this is the geophysical electromagnetic (EM) problem, where these jumps occur at interfaces which
separate regions of (high) conductivity contrasts. These interfaces, along with other problem features, such as singular EM
sources, motivate the use of adaptive mesh refinement to improve the efficiency of the solution of forward problems. Also,
pointwise observations are made in geophysical EM surveys, which motivates the use of goal-oriented mesh adaptivity.
In this work, we study the combined application of h- and r-refinements for the modelling of geophysical EM data. The
proposed hr-adaptivity algorithm is thoroughly investigated in 1D, and then extended, and numerically validated, in 2D,
using simple examples as well as a realistic model with irregular interfaces. In 1D, the steady-state diffusion and Helmholtz
equations, which are commonly solved for the EM scalar and vector potentials, respectively [16], constitute the physical
partial differential equations (PPDEs). In 2D, the Helmholtz equation is used as the PPDE. Additionally, a real 2D problem
with a benchmark model is considered where the transverse electric (TE) mode of Maxwell’s equations is used as the PPDE.
The r-refinements are based on an equidistribution principle and variational methods, for the 1D and 2D cases, respectively,
which lead to mesh PDEs (MPDEs). The coupled PPDE and MPDE are solved in an iterative manner to enhance the accuracy
of the PPDE solution by improving the equidistribution of a monitor function based on a posteriori error estimates. The
results, in 1D, with two hierarchical error–based monitor functions and a residual error–based monitor function display the
similarity between these functions in terms of the accuracy that could be achieved. In both 1D and 2D, comparisons are
made between global and goal-oriented adaptivity which show the advantage of goal-oriented error estimates in gaining
higher accuracy at a target, compared to global error estimates. In 2D, the results also demonstrate the higher efficiency of
hr-adaptivity compared with pure h-refinement, in terms of computation time.

Keywords hr-refinement · Finite element · Electromagnetics · Mesh adaptivity

1 Introduction

In the numerical solution of PDEs, it is common to use
mesh refinement to achieve higher accuracy or to reduce
the computational cost. There are three main refinement
strategies: h-refinement, where the mesh is locally refined
or coarsened by adding or removing nodes; p-refinement,
where the order of the underlying polynomial space is
adjusted; and r-refinement, where the number of nodes in
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the mesh is fixed but they are moved or redistributed in order
to gain higher numerical accuracy. It is also common to use
combinations of these adaptivity techniques [1]. The goal
of this study is to investigate combined application of h-
and r-adaptivity for the geophysical electromagnetic (EM)
modelling problem. While h- and p-refinements have been
extensively studied for this problem [18, 32, 33, 36–38, 50,
52], hr-refinement has not been considered before in the
geophysical EM literature. Furthermore, since observations
in geophysical EM are made pointwise and local accuracy
is desired, we consider goal-oriented adaptivity.

There are two main approaches to the EM modelling
problem: the direct EM field approach where the problem
is formulated in terms of electric and magnetic fields (E
and H), and the potential method where these fields are
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replaced by their representations in terms of the magnetic
vector potential and electric scalar potential (A and φ):

E = −iωA − ∇φ, (1)

∇ × A = μH. (2)

Here, ω = 2πf̃ is angular frequency where f̃ is the
ordinary frequency, i is the imaginary unit, μ is magnetic
permeability, and a time-dependence of eiωt is assumed
[19, 59]. The system of equations arising from the potential
method is larger than that from the EM field method,
but this larger system is better conditioned and can be
more efficiently solved using iterative solvers [29]. For this
reason, the model problems that are considered here are
chosen based on the potential method.

In low-frequency geophysical applications, E and H are
related by the following form of Maxwell’s equations in the
frequency domain:

∇ × E = −iωμ0H (3)

∇ × H = σ E + Jp, (4)

where σ is conductivity, μ0 is the permeability of free space,
and Jp is an electric source. Taking the curl of Eq. 3 and
substituting in Eq. 4 gives the Helmholtz equation for the
electric field

∇ × ∇ × E + iωμ0σE = −iωμ0Jp. (5)

Using Eqs. 1 and 2 and applying the Coulomb gauge, this
relation can be rewritten as

−∇2A + iωμ0σA + σμ0∇φ = μ0Jp. (6)

Since there are two unknowns in this relation, an
additional equation is required. This second equation is
derived by taking the divergence of Ampère’s law, Eq. 4,
which results in the equation of conservation of charge

−∇ · σE = ∇ · Jp. (7)

Replacing E with potentials gives

iω∇ · σA + ∇ · σ∇φ = ∇ · Jp. (8)

Commonly, either Eq. 5, in the EM field method [28, 43,
44], or Eqs. 6 and 8, in the potential method [16, 29,
42], are solved numerically, subject to boundary conditions
approximating vanishing fields far away from the sources.

In this work, as a preliminary study of hr-adaptivity, we
consider model problems based on analogues of Eqs. 6 and
8, i.e., the steady-state diffusion equation and the Helmholtz
equation

−∇ · (σ (x)∇u ) = f (x) , (9)

and

− ∇2u + σ(x) u = f (x) , (10)

respectively, where f represents EM sources, and x = x

or x = (x, y) for the 1D and 2D cases, respectively.
Although A and φ are complex, u is considered real-valued
in Eqs. 9 and 10, for simplicity. While in 2D, f represents
singular source terms, in 1D, typical singular EM sources
are simulated by Gaussian sources. (Note that solutions
due to 1D singular sources are piecewise linear and do
not replicate solutions due to 3D singular sources or the
behavior of real-life EM fields.)

We also consider a realistic 2D geophysical problem with
complex-valued solution and a singular point source which
represents an infinitely long wire parallel to the conductivity
strike. For a two-dimensional conductivity distribution
where σ is independent of z, the terms that involve ∂/∂z

vanish, which results in the reduction of Eq. 5 to

∇ · μ−1
0 ∇ u − iω σ(x) u = f (x) , (11)

where u represents Ez and f (x) = iω Jz is a point source.
Note that Eq. 11 is the transverse electric (TE) mode of
Maxwell’s equations [14] where the components Ez, Hx ,
and Hy are present. They are related by

∂Ez

∂x
= iωμ0 Hy,

∂Ez

∂y
= −iωμ0 Hx, (12)

and
∂Hy

∂x
− ∂Hx

∂y
= μ0σ(x) Ez. (13)

Of the three refinement methods mentioned earlier, h-
refinement is the most widely used. This method usually
starts with a uniform mesh which is then refined or
coarsened based on a measure of the solution error.
Typically, a threshold is used to identify the elements that
require refinement or the nodes to be eliminated. This
procedure is thus iterative, and it is continued until a desired
accuracy is achieved. p-refinement is commonly considered
in the context of the FE methods where local polynomials
are used to approximate solution inside the elements. In this
approach, the mesh is fixed but the order of the polynomials
is increased or decreased, locally, based on the solution
error. The combination of h- and p-refinements, i.e., hp-
refinement, is also common. It is known that, in some
cases, this combination may lead to exponential rates of
convergence [15, 48, 51, 54].

In contrast, r-refinement typically involves the mapping
of a uniform grid, Tc, of a computational domain, Ωc,
to a non-uniform grid, Th, in a physical domain, Ω . The
governing (physical) PDEs (PPDEs) are commonly solved
in Ω , and the mapping is performed by solving an auxiliary
(mesh) PDE (MPDE) posed on Ωc (or Ω). Here, we
consider a standard approach where the MPDE depends
on a monitor function, M, which guides the re-location of
the nodes of Th. In general, M is a function of a local
error estimate, constructed from standard a priori or a
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posteriori error estimates, or some measure of continuity
at element boundaries [10]. The MPDE is designed such
that its solution, Th, equidistributes M , which is likely to
reduce the solution error of the PPDEs [26]. While it is
possible to solve the PPDE and MPDE simultaneously or
alternately, we choose the latter due to its simplicity and the
resulting flexibility in choosing the PDE solvers. In practice,
the simultaneous method has been employed mainly for 1D
problems [26].

It is also common to combine h- and r-adaptivity
techniques [4, 8, 17, 34, 46, 56], in which r-refinement is
typically applied on an initial mesh which is then h-refined,
and this procedure is repeated until a desired solution
accuracy is reached. The most common h-refinement
strategy is local refinement and coarsening based on a
tolerance (see the references above). Here, in 1D, uniform
h-refinements are applied on subdomains of Ω , which are
then separately r-refined. In 2D, we use both uniform and
local h-refinement strategies.

As indicated above, the efficiency of an r-adaptivity
scheme depends on the underlying monitor function, which
is, itself, dependent on the error estimate used. A priori
estimates (e.g., based on the arc length or curvature of the
solution) are widely used in the context of mesh adaptivity
[1, 10, 30]. However, these estimates commonly require
a degree of the knowledge of the geometry or physics
of the solution which could be unavailable [23, 57]. For
practical problems, a posteriori estimates are usually used
where an approximation to the gradient or Hessian of the
solution is reconstructed from the numerical approximation
[63–65]. Alternatively, a posteriori error estimates can be
derived from hierarchical basis representations, measuring
the difference between two FE solutions with different
orders of accuracy [5, 23, 27, 31]. In this study, a
hierarchical error estimate and an FE residual error estimate
are used to construct monitor functions which are then
compared, using 1D examples.

While global error estimates are intended to give
proportional measures of accuracy over the entire domain,
in many applications, including geophysical EM modelling,
high accuracy is only required at limited observation
locations. In such applications, it is common to use a
local error estimate which is typically constructed by
weighting the global error estimate, or a measure of it,
by a function which is derived by solving a dual (adjoint)
form of the original PPDE [45, 49]. Such “goal-oriented”
error estimates are employed by [3] and [40, 41] for
mesh optimization with hr- and r-refinement, respectively.
In geophysical EM, goal-oriented schemes have been
implemented for h-refinement [32, 33, 50]. In this work, we
investigate the application of these weighted error estimates
in combination with monitor functions used within hr-
refinement.

h-refinement techniques, both global or combined with
goal orientation, have been successfully implemented
and studied for the modelling of geophysical EM data.
The (goal-oriented) dual error estimate weighting (DEW)
method is employed in [33, 37] and [36] for the
2D magnetotelluric (MT) and 2.5D controlled source
EM (CSEM) problems, respectively. An alternative dual
weighted residual (DWR) method, proposed in [47], is
applied in [32] for 2D MT and 2.5D CSEM problems. An
adaptive higher order FE method is studied in [52] for the
3D CSEM problem, and [38, 50] apply the goal-oriented
method proposed in [45] for the 3D MT problem. Goal-
oriented hp-refinement is employed in [18] for 3D MT
problem. A self-adaptive, goal-oriented, hp-finite element
algorithm with exponential convergence was used in [48]
for a 2D well logging problem. In this work, we propose a
framework for the modelling of CSEM data using a goal-
oriented hr-refinement procedure. We present examples in
1D and 2D, but all the components of the algorithm can be
readily extended to 3D.

In Section 2 of this manuscript, the model problems,
error estimates, and the monitor functions are described, and
in Section 3, the hr-refinement algorithm is detailed and
numerical examples are presented.

2 Error estimates and equidistribution

In this section, we first introduce the model problems and
error estimates. Then, the equidistribution principle and
monitor functions are described and, finally, a goal-oriented
strategy is presented where a modification of the original
error estimates is used.

2.1 Model problems and error estimates

The variational formulation of the governing equations,
Eqs. 9, 10, and 11 lead to weak forms written as

a (u, v) = b (v) , ∀ v ∈ V, (14)

where u is the unknown solution, V is a Hilbert space of
functions over a bounded domain Ω ⊂ R

n, n = 1, 2, a(·, ·)
is a bilinear form, and b (·) is a linear functional. Therefore,
we have

a (u, v) =
∫

Ω

σ ∇u · ∇v dx, (15)

a (u, v) =
∫

Ω

(∇u · ∇v + σ u v) dx, (16)

and

a (u, v) =
∫

Ω

(
∇u · μ−1

0 ∇v + iω σ u v
)

dx, (17)
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for Eqs. 9, 10, and 11, respectively, with

b (v) =
∫

Ω

f v dx. (18)

An FE approximation, uh, of u, for a given mesh Th,
satisfies

a (uh, vh) = b (vh) , ∀ vh ∈ Vh, (19)

where Vh ⊂ V , uh ∈ Vh and Vh is a space of continuous
piecewise polynomials corresponding to the elements of Th,
which is on the physical domain Ω .

To minimize the error in an approximation to the solution
of one of the problems above, first an estimate of this error
is required. Since the true error, eh = u − uh, is generally
unavailable, mesh adaptivity strategies commonly rely on
a posteriori error estimates. Two types of these estimates
are considered here: a hierarchical estimate, zh = u

q
h −

uh, based on the assumption that, for a given norm ‖·‖,
an alternative or reconstructed solution, u

q
h, gives a better

approximation to u, i.e.,∥∥uq
h − u

∥∥ � β ‖uh − u‖ , (20)

where 0 � β < 1 is a constant [23]. In practice, u
q
h usually

corresponds to solutions with higher order basis functions
or a finer mesh than that used for uh. In this work, uh and u

q
h

will be solutions with piecewise linear and quadratic basis
functions, respectively, on the same mesh, Th.

The second type is an FE residual-based error estimate,
which is only considered in the 1D case here. This error
estimate is constructed based on the second derivative of the
1D solution, u′′

h. If uh represents the piecewise linear FE
approximation, considering that u′′

h is zero except at nodes
of the mesh, the modified residual of Eq. 9 can be defined as

rh = f + σ ′ u′
h. (21)

Using the continuum solution to express f, this relation can
be rewritten as

rh = −σ ′ u′ − σ u′′ + σ ′ u′
h. (22)

However, assuming σ is a piecewise constant function with
jumps only at element interfaces, within any element, σ ′ =
0. Therefore, away from the nodes, we can formally write
rh = −σu′′. We then approximate u′′ at the interior nodes of
the grid by forming the 3-point Lagrange interpolation of uh

and taking its second derivative. Using these nodal values, u′′
is approximated inside the elements by linear interpolation.
Although this approximation of u′′ restores a dependency
on the discrete solution, uh, which has a vanishing second
derivative, we see that this dependency is rather indirect and,
so, is not expected to result in a sharp estimate.

While the application of the residual-based estimate
described above can be extended to 2D, results will show

that this error estimate does not replicate the true error, and
therefore, it is presented here for the solution of the 1D
diffusion problem only. (There are various post-processing
techniques to construct accurate residual-based estimates
[64, 65], but these approaches often have cost comparable to
hierarchical basis estimates.) The hierarchical- and residual-
based error estimates, zh and rh, respectively, defined here,
are used in Section 2.4 to construct monitor functions.

2.2 Equidistribution principle in 1D

As discussed in Section 1, a mesh, Th, on the 1D physical
domain, Ω , is generated by a coordinate transformation of
a uniform 1D grid, Tc, on a computational domain, Ωc, i.e.,
xi = x (ξi), i = 1, . . . , N + 1, where N is the number of
elements. If u = u (x (ξ)) is the solution to the PPDE on
Th, the equidistribution of a monitor function M (u, x (ξ))

over Th can be expressed as∫ xi+1

xi

M (u, x (ξ)) dx = 1

N
θ, i = 1, . . . , N, (23)

or equivalently
∫ x(ξi )

x1

M (u, x (ξ)) dx = i − 1

N
θ, i = 1, . . . , N + 1,

(24)

where θ = ∫ xN+1
x1

M (u, x (ξ)) dx. The continuous
generalization of this relation can be written as∫ x(ξ)

x1

M (u, x (ξ)) dx = ξ − ξ1

|Ω| θ . (25)

Taking the second derivative of Eq. 25 with respect to ξ

gives the 1D MPDE,

− d

dξ

(
M (u, x (ξ))

dx

dξ

)
= 0. (26)

It is common to solve the discretized form of this relation
as a nonlinear BVP with Dirichlet boundary conditions
using Newton’s method [26] or a simple linearization. This
MPDE can also be written in terms of the inverse coordinate
transformation, ξ = ξ (x), as

− d

dx

(
1

M (u, x)

dξ

dx

)
= 0, (27)

which can be discretized and solved as a linear BVP. Since
the solution of this MPDE is in Ωc, either this solution
should be transferred to Ω , where the solution of the PPDE
is defined, or the corresponding PPDE should be coordinate
transformed and solved for solutions in Ωc. Note that the
discrete solution of the linear MPDE in Eq. 27 is not
necessarily equivalent to that of the nonlinear MPDE in
Eq. 26. For an equivalent solution at the discrete level,
it might be necessary to solve the linear MPDE in an
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iterative manner [26]. The nonlinear MPDE is, however,
more popular and in this study a fixed-point iteration
method applied to the linear FE discretization is used to
solve Eq. 26. In 2D, however, we prefer to solve linear
MPDEs, as explained in the following section.

2.3 Mesh PDEs in two dimensions

In higher dimensions, it is common to use a variational
approach to derive the MPDE. In a 2D variational method,
the coordinate transformation, x = (x (ξ, η) , y (ξ, η)),
is defined as the minimizer of a functional, Ĩ , which
commonly involves a monitor function, and possibly other
measures to determine mesh properties. This functional can
be formulated in terms of x or its inverse transformation,
ξ = (ξ (x) , η (x)). It can be shown that the solution of
the linear 1D MPDE in Eq. 27 is the minimizer of the
functional,

Ĩ [ξ ] = 1

2

∫
Ω

1

M

(
∂ξ

∂x

)2

dx, (28)

[10]. A generalization of this functional in two dimensions
is given by

Ĩ [ξ, η] = 1

2

∫
Ω

(
∇ξT M−1∇ξ + ∇ηT M−1∇η

)
dx, (29)

where ∇ = (
∂x, ∂y

)T and M is a matrix-valued monitor
function [11, 24]. The MPDEs whose solutions minimize
the functional in Eq. 29 are

∇ ·
(
M−1∇ξ

)
= 0, ∇ ·

(
M−1∇η

)
= 0. (30)

Since Th is in Ω , it is usual to write these MPDEs in terms
of x, and then solve nonlinear BVPs in Ωc [6, 12, 13, 22,
25, 35, 55, 56, 62]. However, it is also common to solve the
equations in Eq. 30 directly, as linear BVPs with appropriate
boundary conditions, and then map (coordinate transform)
the solutions to Ω in order to calculate the physical
mesh [20, 35]. A simpler alternative to this coordinate
transformation, which can be as expensive as solving the
nonlinear BVPs, is to use bilinear interpolation as an
approximation to the transformation between x and ξ [7, 26,
58]. For the 2D examples in Section 3.7, we use the linear
MPDEs in Eq. 30 combined with bilinear interpolation.
Also, we consider an isotropic mesh adaptation, i.e., M =
MI , where I is the 2 × 2 identity matrix and M is a
scalar monitor function defined in the following section.
This choice of M gives Winslow’s variable diffusion mesh
generation method [60, 61]. The evaluation of various
existing MPDEs and anisotropic monitor functions will be
considered in a future study.

2.4 Monitor functions

The hierarchical and FE residual error estimates introduced
in Section 2.1 are used to construct three types of piecewise-
constant monitor functions, M . In the first type, the
hierarchical error estimate, zh = u

q
h − uh, is directly

used to create an error-based monitor function, following a
procedure similar to [21]. We first define an elementwise
error indicator,

〈zh〉j = 1∣∣Kj

∣∣2
∫

Kj

|zh|2 dx, j = 1, . . . , N, (31)

where Kj is the j th element of Th,
∣∣Kj

∣∣ represents the size
of Kj , and dx is written for both the 1D and 2D cases. Using
Eq. 20 and the triangle inequality gives

‖u − uh‖ � C
∥∥uq

h − uh

∥∥ = C

⎛
⎝ N∑

j=1

∫
Kj

|zh|2 dx

⎞
⎠

1
2

= C

⎛
⎝ N∑

j=1

∣∣Kj

∣∣2 〈zh〉j
⎞
⎠

1
2

� C

⎛
⎝ N∑

j=1

∣∣Kj

∣∣2 [αh + 〈zh〉j
]
⎞
⎠

1
2

= C α
1
2
h

⎛
⎝ N∑

j=1

∣∣Kj

∣∣2
[

1 + 1

αh

〈zh〉j
]⎞
⎠

1
2

, (32)

where C = 1/ (1 − β) , (0 � β < 1), ‖·‖ = ‖·‖2, and αh is
an arbitrary positive value used for regularization.

Equation 32 gives an upper bound for the hierarchical
error estimate. For this upper bound, a lower bound can be
derived using Hölder’s inequality,
N∑

j=1

∣∣Kj

∣∣2
(

1 + 1

αh

〈zh〉j
)
� 1

N

⎡
⎣ N∑

j=1

∣∣Kj

∣∣
(

1 + 1

αh

〈zh〉j
) 1

2

⎤
⎦

2

. (33)

The minimum value of this lower bound is realized by
having equality in this relation, i.e., requiring

|Ki |
(

1 + 1

αh

〈zh〉i
) 1

2 = 1

N

N∑
j=1

∣∣Kj

∣∣
(

1 + 1

αh

〈zh〉j
) 1

2

,

(34)

where i = 1, . . . , N . Comparing this relation with the
equidistribution principle in Eq. 23 indicates that the
hierarchical error–based monitor function can be defined as

Mj =
(

1 + 1

αh

〈zh〉j
) 1

2

, j = 1, . . . , N, (35)

where Mj is the value of M on element Kj . To define
αh, which is often called the intensity, or regularization,
parameter, the method used by [22] is considered, which
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positions approximately 50% of the nodes where Mj 
 1.
This is achieved by requiring

N∑
j=1

∣∣Kj

∣∣Mj �
N∑

j=1

∣∣Kj

∣∣
(

1 + α
− 1

2
h 〈zh〉

1
2
j

)
� 2 |Ω| , (36)

which can be rewritten as

|Ω| + α
− 1

2
h

N∑
j=1

∣∣Kj

∣∣ 〈zh〉
1
2
j � 2 |Ω| , (37)

where |Ω| represents the domain size. Note that Eq. 35 and
Jensen’s inequality are used to obtain the first inequality
in Eq. 36. The easiest option to define αh is to use equality
in Eq. 37 which results in

αh =
⎛
⎝ N∑

j=1

∣∣Kj

∣∣ 〈zh〉
1
2
j

⎞
⎠

2

/ |Ω|2 . (38)

As αh → ∞, Mj → 1, which results in a uniform mesh
as the solution of the MPDE. When αh → 0, however,
the effect of the error indicator increases and the mesh
adaptivity intensifies.

The second type of hierarchical error–based monitor
function used here is based on the Hessian of this error
estimate. For this, we use the anisotropic interpolation
error bound derived by [23] which states that ‖u − uh‖ �
C ‖zh‖, where

C ‖zh‖ � C

N∑
j=1

(∣∣Kj

∣∣
[

1 + 1

αh

〈zh〉j
] 2

5
)5

� C N−4

⎛
⎝ N∑

j=1

∣∣Kj

∣∣
[

1 + 1

αh

〈zh〉j
] 2

5

⎞
⎠

5

. (39)

In this relation, again C = 1
1−β

, (0 � β < 1), but the error
indicator is the second derivative of the hierarchical error
estimate, i.e., 〈zh〉j = z′′

h,j . (We apply this Hessian-based
monitor function in 1D only.) We note that z′′

h,j is a constant

on element j, since zh = u
q
h − uh, and u

q
h and uh are

piecewise quadratic and piecewise linear approximations.
Also, note that Hölder’s inequality is used to obtain the
lower bound of the hierarchical error estimate in Eq. 39.
Again, to derive a monitor function, equality in Eq. 39
should be considered which is satisfied if

|Ki |
(

1 + 1

αh

〈zh〉i
) 2

5 = 1

N

N∑
j=1

∣∣Kj

∣∣
(

1 + 1

αh

〈zh〉j
) 2

5

,

(40)

where i = 1, . . . , N . Comparing this relation with the
equidistribution principle in Eq. 23 indicates that the

hierarchical error Hessian-based monitor function can be
defined as

Mj =
(

1 + 1

αh

〈zh〉j
) 2

5

, j = 1, . . . , N, (41)

where, again, 〈zh〉j = z′′
h,j . Following [23], the intensity

parameter, αh, is calculated by solving

N∑
j=1

∣∣Kj

∣∣
(

1 + 1

αh

〈zh〉j
) 2

5 = 2 |Ω| , (42)

using a bisection method, subject to the bounds⎡
⎣ 0.5

|Ω|
N∑

j=1

∣∣Kj

∣∣ 〈zh〉
2
5
j

⎤
⎦

5
2

� αh �

⎡
⎣ 1

|Ω|
N∑

j=1

∣∣Kj

∣∣ 〈zh〉
2
5
j

⎤
⎦

5
2

. (43)

In the third type of monitor function, the FE residual
error estimate, rh, is used to form a residual-based monitor
function (used here for the diffusion problem and in 1D
only). The residual-based monitor function derived in [21]
and [26] is used, where

Mj =
(

1 + 1

αh

〈rh〉2
j

) 1
3

, j = 1, . . . , N, (44)

with the intensity parameter defined as

αh =
⎛
⎝∑

j

∣∣Kj

∣∣ 〈rh〉 2
3
j

⎞
⎠

3

/ |Ω|3 , (45)

and the residual error indicator, 〈rh〉, is defined as

〈rh〉j =
(

1∣∣Kj

∣∣
∫

Kj

|rh|2 dx

) 1
2

. (46)

These monitor functions are compared in Section 3.4.

2.5 Goal-oriented error estimate

In the context of goal-oriented adaptivity, typically the goal
is to control the error in a (physically relevant) quantity of
interest that is given by a goal functional g (u). Due to the
linearity of g, the error of this functional, εg , can be written
as

εg = g (u) − g (uh) = g (u − uh) = g (eh) . (47)

The aim, therefore, is to derive a local error estimate with
respect to g (eh). If the variational form of the primary
PPDE problem is given as a (u, v) = b (v), ∀ v ∈ V , then
a (v, w) = g (v), ∀ v ∈ V , is an adjoint (dual) of this
problem [45], where u and w are the solutions of the primary
and dual problems, respectively. If the error in w is given by
ew, we can write

g (eh) = a (eh, w) = a (eh, wh + ew) . (48)
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Since a (eh, wh) = 0, due to Galerkin orthogonality, we
have

g (eh) = a (eh, ew) . (49)

Also, note that a (eh, w) = a (w, eh), since a (., .) is self-
adjoint. Brenner and Scott, Oden and Prudhomme, and Ren
et al. [9, 45, 50] use the Cauchy-Schwarz inequality to
derive an upper bound for the local error g (eh) as

|g(eh)| = |a (ew, eh)| �
N∑

j=1

∣∣aj (ew, eh)
∣∣

�
N∑

j=1

‖eh‖e,j ‖ew‖e,j

∼=
N∑

j=1

Cn ‖eh‖2,j ‖ew‖2,j , (50)

where Cn is a constant that depends on the size of Th

and ‖·‖e,j , ‖·‖2,j , and aj (·, ·) denote the restrictions of the
energy norm, L2-norm, and the bilinear form to the j th
element of Th, respectively. Therefore, if global hierarchical
error estimates for eh and ew are given as zh and zw,
respectively, using Eq. 50, an error estimate for g (eh) can
be derived as
∥∥zg

∥∥
2,j

= ‖zh‖2,j ‖zw‖2,j , j = 1, . . . , N . (51)

This goal-oriented error estimate, zg , is then used instead of
the global zh in the construction of any of the three monitor
functions defined in the previous section.

Following [45, 50], g(v), which gives a measure of
solution at the target and contains the source term of the dual
PPDE problem, is given by

g (v) =
∫

Ω

f (u) v dx, (52)

where dx is written for both the 1D and 2D cases, and the
source term is defined as

f (u) =
Ñ∑

j=1

1

|K̃j |
∫

K̃j

u dx. (53)

In this relation, u is the solution of the primary PPDE
problem, K̃j , j = 1, . . . , Ñ , are the elements inside the
target region and Ñ is the number of these elements. In
practice, f (u) represents singular sources located at the
center of the elements inside the target region. Note that
to calculate zw, linear and quadratic solutions of the dual
problem with the source terms f = f (uh) and f = f

(
u

q
h

)
,

respectively, are required, which means that the cost of the
calculation of the local error estimate, zg , is twice that of the
global zh.

3 Numerical examples

In this section, we propose and validate hr-adaptivity proce-
dures for the solution of the problems presented in Section 2.1.
We compare the effectiveness of the three monitor functions
described in Section 2.4 when applied to a selection of 1D
test problems, considering the effect of the number of start-
ing elements, N, and the influence of fixing nodes at the
interfaces of the regions. Furthermore, the stopping criteria
for the r-refinement procedure and the effectiveness of the
goal-oriented error estimates are investigated. The section
concludes with validation of the algorithm by applying it to
2D problems.

3.1 Test problems in 1D

The test problems considered here, corresponding to the 1D
version of the diffusion and Helmholtz equations, Eqs. 9 and
10, are{− (σ(x) u′ )′ = f (x) , x ∈ (0, 10) ,

u(0) = 0, u(10) = 0,
(54)

and{− u′′ + σ(x) u = f (x) , x ∈ (0, 10) ,

u(0) = 0, u(10) = 0,
(55)

respectively. The physical domain, Ω = [0, 10], represents
a layered halfspace which is schematically shown in Fig. 1.
The layers in this model consist of an air layer, x ∈ [5, 10],
a ground layer, x ∈ [0, 5], and an anomalous layer inside the
ground, x ∈ [3, 4]. Therefore, there are interfaces at x = 3,

0
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3

4

5

6

7

8

9

10

x 
(d

ep
th

)

 ground

 anomaly

 ground

 air

Fig. 1 The layered halfspace model used for the 1D examples. Various
coefficient values for these layers are given in Eqs. 56–58
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4, and 5. In the following examples, piecewise constant
coefficients for these layers, from x = 0 to 10, are⎧⎪⎨

⎪⎩
σ1 = 106, 103, 106, 1, (56)

σ2 = 105, 1010, 105, 1, (57)

σ3 = 106, 102, 106, 10−6, (58)

where σ1 and σ2 are used for the diffusion problem and
σ3 for the Helmholtz problem. These values are chosen to
represent common underground conductivity contrasts, and
also to give solution behaviors which necessitate, or at least
benefit from, refinement.

The source terms used for the problems in Eqs. 54 and 55
are

f (x) = − 8 c4 (x − 4)2

(
1 + c2 (x − 4)2)3 + 2 c2

(
1 + c2 (x − 4)2)2 , (59)

and

f (x) = − 8 c4 (x − 4)2

(
1 + c2 (x − 4)2)3 + 2 c2

(
1 + c2 (x − 4)2)2

+ 1

1 + c2 (x − 4)2
, (60)

respectively. The constant c controls the width of these
Gaussian-like functions. In the 1D examples that follow,
c = 20 and c = 2 are chosen for the diffusion and
Helmholtz problems, respectively. The solution to the test
problems with these sources in a wholespace with σ = 1
is u (x) = 1/

(
1 + c2 (x − 4)2), which simulates solutions

with singular sources commonly used in EM modelling
problems in higher dimensions.

3.2 hr-refinement algorithm

The procedure proposed for the hr-refinement of the FE
models is described by Algorithms 1–4. Algorithm 1
lays out the main hr-adaptivity workflow which uses the
procedures in Algorithms 2 and 3 or 4. Algorithm 2
describes the h-refinement, and Algorithms 3 and 4 give
the procedure for r-refinement using the hierarchical and
residual error estimates, respectively.

In Algorithm 1, given an initial number of elements,
N , and computational and physical domains, Ωc and Ω ,
respectively, uniform meshes, Tc and Th (on Ωc and Ω ,
respectively) are created. Th is then r-refined by finding a
mapping of Tc which is (approximately) M-uniform, i.e.,
M is equidistributed among the elements of Th. This is
done by solving an MPDE, from Sections 2.2 and 2.3, as
a BVP, using a linear FE method. If the desired accuracy
(measured by the L2-norm of an error estimate) in the
solution of the PPDE problem, with this r-refined grid, is
not reached, an h-refinement is performed which is followed
by another r-refinement and this procedure is continued

Algorithm 1 The main hr-refinement procedure.

1: procedure hr-refinement(N,Ωc,Ω, m, σ, τp, τh, τr , τe)
� N is the initial number of elements. Ωc and Ω are
the computational and physical domains, respectively.
m is the number of regions in Ωc and Ω . σ is a coeffi-
cient function for the PPDE. τp is a tolerance for the
r-refinement. τh is a parameter to calculate the number
of h-refinement steps and τr is a limit for this number.
E is the of error estimate or the global level of equidis-
tribution and τe is a target value for E to be reached by
this procedure.

2: Tc = uniform-grid ( Ωc, N)
3: Th = uniform-grid ( Ω, N)

� Initially, Tc and Th are both uniform meshes.
4: (Th, M, E) = r-refinement (σ, Tc, Th, τp)

� r-refine Th and generate a new mesh with the same
name.

5: while E > τe do
6: (Tc, Th, N)=h-refinement(Ωc, Ω, m, Th, N, M,

τh, τr )
� h-refine Th and generate a new mesh with the

same name.
7: (Th, M, E) = r-refinement (σ, Tc, Th, τp)
8: end while
9: end procedure

until the termination criterion is satisfied. If Ω consists
of a single region and the MPDE is sufficiently solved,
then the global equidistribution is complete in a single
iteration of the procedure in Algorithm 1. If there is need
for higher accuracy, h-refinement is performed by dividing
each element of Th into 2 n elements (where Ω ⊂ R

n). (In
this way, ideally, the relative equidistribution is preserved).
However, in general, Ω consists of multiple regions, i.e.,

Ω =
m⋃

k=1
Ω(k) and Th =

m⋃
k=1

T(k)
h , and we solve the

MPDE problem over Ω as m separate MPDE problems
for each Ω(k) (more details in Section 3.3). Also, in this
scenario, subsequent to a successful r-refinement, M is
equidistributed inside each region, i.e., θ(k) defined by

θ(k) =
∫

K

M dx, ∀K ∈ T(k)
h , k = 1, . . . , m, (61)

is a constant. However, it is likely that M is not
equidistributed over Ω , and θ(k) have different values. If
there is need for higher accuracy, and hence h-refinement,
then the global equidistribution of M is improved by h-
refining those regions which exhibit higher values of θ(k).
This sequence of h- and r-refinements (explained in more
detail in the following paragraphs) is continued until the
stopping criterion is satisfied. We should note, however,
that in a multi-region scenario the goal is not to reach a
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Algorithm 2 h-refinement of a given mesh, based on the
difference in error values between the regions.

1: procedure h-refinement(Ωc, Ω, m, Th, N, M, τh, τr )
� Ωc and Ω are the computational and physical
domains, respectively. m is the number of regions in
Ωc and Ω . Th and N are the given mesh, in Ω , and
its number of elements, respectively. M is the monitor
function corresponding to Th. τh is a parameter to
calculate the number of h-refinement steps and τr is a
limit for this number. n = 1 and 2, for 1D and 2D,
respectively.

2: θK ← ∫
K

M dx, ∀K ∈ Th

3: for k = 1 to m do
4: r = floor(log(max(θ(k)

K )/min(θK ))/log(τh))
5: r = min(r, τr )

� The number of times to refine the kth region,
based on τh and τr .

6: for l = 1 to r do
7: � = h-refine (T(k)

h , N(k))

8: T(k)
h ← �

� T(k)
h is h-refined by dividing each of its

elements into 2 n elements.
9: N(k) ← 2 n N(k)

� The new number of elements in the kth

region.
10: end for
11: T(k)

c = uniform-grid
(
Ω

(k)
c , N(k)

)
� Generate a uniform mesh for the kth region of

Ωc.
12: end for

13: Th ←
m⋃

k=1
T(k)

h , Tc ←
m⋃

k=1
T(k)

c

14: N ←
m∑

k=1
N(k)

15: end procedure

global equidistribution but to progress towards it in order to
efficiently improve the accuracy.

The h-refinement procedure is described by Algorithm 2.
The main inputs to this procedure are Th and the monitor
function corresponding to this mesh, M . A tolerance, τh,
should also be provided which controls the number of h-
refinement steps required to reduce the difference between
the values of θ(k) for the different regions. The number of
h-refinements for each region is limited by τr . In principle,
the ratio between max

k
θ(k) and min

k
θ(k) over Th, and the

tolerance τh, are used to decide the number of h-refinements
required for each region (see Algorithm 2 for more details).
However, since the equidistribution of M is never exactly
achieved, in practice θ(k) is not a constant, and therefore, for

Algorithm 3 r-refinement of a given mesh. Hierarchical
error estimates are used to construct the monitor functions.

1: procedure r-refinement1(m, σ, Tc, Th, τp)
� m is the number of regions in Ωc and Ω , σ is a
coefficient function for the PPDE, and Tc and Th are
meshes in Ωc and Ω , respectively. τp is a tolerance for
the r-refinement procedure.

2: i ← 1
3: Ti

h ← Th

4: zi
h ← 0

5: P ← τp + 1
6: while P > τp do
7: i ← i + 1
8: uh = FE-linear

(
σ, Ti−1

h

)

9: u
q
h = FE-quadratic

(
σ, Ti−1

h

)
� Solve the PPDE using linear and quadratic FE

schemes.
10: zi

h ← ∣∣uq
h − uh

∣∣
� Form the hierarchical error estimate.

11: P ←
(∥∥zi

h

∥∥
2 −
∥∥∥zi−1

h

∥∥∥
2

)
/
∥∥zi

h

∥∥
2 × 100

12: M = monitor-func
(
zi
h, Ti−1

h

)
� Form the monitor function.

13: for k = 1 to m do
14: T(k),i

h = MPDE-solve
(
M(k), T(k),i−1

h , T(k)
c

)
� Solve the MPDE for the kth region.

15: end for

16: Ti
h ←

m⋃
k=1

T(k),i
h

17: end while
18: Th ← Ti

h

19: E ← ∥∥zi
h

∥∥
2

20: end procedure

the kth region, the ratio between max
K∈T(k)

h

θK and min
K∈Th

θK is

used, where θK is a piecewise constant quantity defined as

θK =
∫

K

M dx, ∀K ∈ Th. (62)

Any region of the new mesh, T(k)
h , which has been h-

refined, as described above, should then be r-refined. This
procedure is described by Algorithms 3 and 4, which only
differ in the type of error estimate used and the stopping
criterion.

Algorithm 3 uses the hierarchical error estimate where
the difference between two solutions with different orders of
accuracy, uh and u

q
h, is used to construct the error estimate,

zh, as described in Section 2.1. This error estimate is then
used to form a monitor function, M, which is equidistributed
over the elements of each of the regions, T(k)

h , by solving an
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Algorithm 4 r-refinement of a given mesh. FE residual-
based error estimate is used to construct the monitor
function.

1: procedure r-refinement2(m, σ, Tc, Th, τp)
� m is the number of regions in Ωc and Ω , σ is a
coefficient function for the PPDE, and Tc and Th are
meshes in Ωc and Ω , respectively. τp is a tolerance for
the r-refinement procedure.

2: i ← 1
3: Ti

h ← Th

4: Qi ← 0
5: P ← τp + 1
6: while P > τp do
7: i ← i + 1
8: uh = FE-linear

(
σ, Ti−1

h

)
� Solve the PPDE using a linear FE scheme.

9: rh ← σu′′
h� Form the residual-based error estimate.

10: M = monitor-func
(
rh, Ti−1

h

)
� Form the monitor function.

11: θK ← ∫
K

M dx, ∀K ∈ Ti−1
h

12: Qi ←
(

max
K∈Th

θK − min
K∈Th

θK

)
/ min

K∈Th

θK × 100

13: P ← ∣∣Qi − Qi−1
∣∣ /Qi × 100

14: for k = 1 to m do
15: T(k),i

h = MPDE-solve
(
M(k), T(k),i−1

h , T(k)
c

)
� Solve the MPDE for the kth region.

16: end for

17: Ti
h ←

m⋃
k=1

T(k),i
h

18: end while
19: Th ← Ti

h

20: E ← Qi

21: end procedure

MPDE. Next, uh, u
q
h, and zh are updated, and a new M is

evaluated; the procedure is repeated until ‖zh‖2 changes by
less than the prescribed tolerance.

The only differences between Algorithms 3 and 4, is
that, in the latter, only the linear FE solution, uh, is used
to form the error estimate, rh (see Section 2.1), and the
procedure is continued until the level of equidistribution
reaches a steady state. (The level of equidistribution, Q, is
defined as max

K∈Th

θK − min
K∈Th

θK , expressed as a percentage

of min
K∈Th

θK .) In general, the true error of the PPDE is

not available, and therefore, the only available measures to
monitor the r-refinement procedure are the error estimate
and the level of equidistribution. Since the ultimate goal
of our hr-refinement is to reduce the solution error, the
hierarchical error estimate, zh, which accurately estimates
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Fig. 2 Top: a solution of Eq. 54 with σ as defined in Eq. 56, and with
nodes fixed at the interfaces, x = 3, 4, and 5. Bottom: a solution of
the same problem with no fixed nodes. In both panels, the number of
nodes is 41 and only r-refinement is performed

the true error, is used as the measure for stopping the r-
refinement procedure in Algorithm 3. However, the residual
error estimate used here, rh, is not an indicator of the true
error, and therefore, the level of equidistribution, Q, is used
to terminate Algorithm 4.

The 1D MPDE in Eq. 26 is discretized using a linear FE
scheme and a fixed-point iteration method is used to solve
the corresponding nonlinear BVP. The 2D linear MPDEs in
Eq. 30 are also discretized using a linear FE scheme and the
solutions of corresponding BVPs are followed by bilinear
interpolations to derive solutions in Ω (see Section 3.7 for
more details). In order to obtain smooth meshes, for both 1D
and 2D cases, the Hessian-based monitor function is scaled
by using the square root of z′′

h,j , and the error-based monitor
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Fig. 3 Solutions of Eq. 54 with σ as defined in Eq. 56, and with nodes
fixed at the interfaces, x = 3, 4, and 5. The starting number of nodes
are 11 and 41, and the final number of nodes are 41 and 65, for the top
and bottom panels, respectively

functions are scaled by using the square root of the L2-
norms of the error estimates, zh and rh, in Eqs. 31 and 46,
respectively. In the 2D case, this scaling also helps to reduce
the chance of mesh tangling. In practice, the minimum
error norms that could be achieved during each r-refinement
step were not affected by this modification. When goal-
oriented error estimates are used, the error estimates zh and
rh, in Algorithms 3 and 4, are weighted by error estimates
corresponding to the solution of the adjoint problems of the
main PPDE problems, as discussed in Section 2.5.

3.3 Starting grid and treatment of interfaces

In this section, we present the key findings from extensive
investigations of Algorithms 1–4. Our primary study is

of the 1D diffusion problem, Eq. 54, with the Helmholtz
problem, Eq. 55, used for further validation. In all the
figures that display 1D FE solutions, the solid lines show
the true solution, evaluated at 10,000 equispaced nodes. The
dashed lines show the linear FE solution, and the circles
show the true solution at the grid nodes.

Figure 2 shows solutions of the diffusion problem with
the four-layer model described in Section 3.1, and the
hierarchical error–based monitor function. This experiment
tests the effect of fixing nodes at the interfaces of the layers.
Since this prevents the rest of the nodes from crossing from
one region to another, r-refinement is, effectively, applied
only within subregions. In the top panel of Fig. 2, there are
fixed nodes at the interfaces of the layers (i.e., at x = 3, 4
and 5) while in the bottom panel there are no fixed nodes,
i.e., nodes can cross the interfaces. In both examples, 41
nodes are used and no h-refinement is employed. While
both the solutions in the top and bottom panels of Fig. 2
sufficiently equidistribute the monitor functions, it can be
seen that the solution shown in the bottom panel is highly
inaccurate.

In Fig. 3, the effect of the number of nodes in the initial
(uniform) model is examined. In the top and bottom panels,
nodes are fixed at the interfaces of the layers, the initial
numbers of nodes are 11 and 41, and the final numbers of
nodes are 41 and 65, respectively (i.e., one h-refinement and
two r-refinements are used). Although the final numbers of
nodes are different, the final error values (L2-norm of the
true errors) are roughly the same (≈ 4.8 × 10−6), which
indicates that starting the procedure with a larger number of
nodes does not necessarily result in higher accuracy.

From the two examples in this section, we conclude that
it is advantageous to start the procedure with a relatively
coarse mesh, and to solve the MPDE problem over each
region separately. These two strategies are used for the
remainder of the examples in the following sections.

3.4 Testing themonitor functions

Figure 4 gives solutions of the diffusion problem with
the four-layer model, using the three monitor functions
described in Section 2.4. The starting grid for all the
monitor functions has 11 nodes, and the hr-refinement is
continued until the equidistribution of the monitor functions
is reached. Four, three, and three hr-refinement iterations
(of the main procedure, Algorithm 1) are used for the
solutions using the hierarchical error–based, hierarchical
Hessian–based and residual error–based monitor functions,
respectively (resulting in five, four, and four grids for each
solution, respectively). For each monitor function, final
solutions (i.e., after r-refinement) for four grids are shown
in the figure, and the corresponding true error L2-norms
are given in Fig. 5. These two figures show that the three
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Fig. 4 Solutions of Eq. 54 with σ as defined in Eq. 56, and with nodes
fixed at the interfaces, using different monitor functions. The left,
middle, and right panels use the hierarchical error–based, hierarchical

Hessian–based, and residual error–based monitor functions, respec-
tively. The four rows of panels correspond to three h-refinements. All
the panels show solutions after r-refinement. The L2-norms of the true
error corresponding to each of these panels are given in Fig. 5

monitor functions are very similar in terms of the final
solutions obtained, the final error values that are reached,
and the rate of convergence of error. Since the hierarchical
error–based monitor function is based on error, it is more
natural than the Hessian-based monitor function. Also, as
will be shown in the next section, the hierarchical error

estimate has an important advantage over the residual error
estimate in that it approximates the true error more closely.
Therefore, due to the similarity observed between the
monitor functions in Figs. 4 and 5, we use the hierarchical
error–based monitor function for all subsequent numerical
experiments.
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Fig. 5 L2-norms of true error versus the number of nodes for
the results in Fig. 4. The solid circles, squares, and empty circles
correspond to the hierarchical error–based, hierarchical Hessian–based
and residual error–based monitor functions, respectively. The dashed
and dash-dotted lines show cubic and quadratic convergence rates,
respectively

3.5 Stopping criteria

As explained in Section 3.2, there are three possible
measures to control the r-refinement: the true error, which
is in general unavailable; the error estimate; and the
level of equidistribution of the monitor function (defined
as Q in Section 3.2). The last two measures are used
for the termination criteria in Algorithms 3 and 4,
respectively. Figure 6 summarizes the results of extensive
numerical experiments on these measures for the solution
of the diffusion problem using the hierarchical error-
based monitor function. The four distinct curves in each
panel correspond to four grids with 21, 37, 65, and 81
nodes (so, three h-refinements), and the hierarchical error
estimate is used to stop the r-refinement for each of the
four grids. Despite occasional mismatches, it can be seen
that the hierarchical error estimate approximates the true
error very well, and therefore, it can be relied on as a
measure to monitor the r-refinement procedure. The level
of equidistribution, Q, is also a viable measure. However,
the trend in Q does not always follow the trend in the error.
Therefore, only if the error estimate is not a good indicator
of the true error, such as rh used in this study, should we use
Q as the measure to control the r-refinement.

An additional observation from Fig. 6 is that the finest
grids require fewer r-refinement steps (of Algorithm 3) to
reach convergence (here, reaching a steady-state in terms of
the error estimate). The grids with 21, 37, 65, and 81 nodes
require four, four, three, and two r-refinement iterations,
respectively. This means that starting the hr-refinement
procedure with the r-refinement of a relatively coarse mesh
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Fig. 6 The L2-norm of true error and hierarchical error estimate (top
and middle, respectively) and the level of equidistribution (defined
as Q in Section 3.2) (bottom panel) versus the number of r-
refinement steps. (The entire procedure used 13 r-refinement steps of
Algorithm 3.) The circles, squares, diamonds, and asterisks correspond
to grids with 21, 37, 65, and 81 nodes, respectively. The problem in
Eq. 54 with σ as defined in Eq. 56, is used
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Fig. 7 Solutions of Eq. 54 with σ as defined in Eq. 56, with the global
and goal-oriented hr-refinement techniques (top and middle panels,
respectively), and their corresponding convergence curves (bottom).
The solutions in the top and middle panels correspond to the final grids
with 41 and 46 nodes, respectively. The L2-norms measure the error
inside the target region, x ∈ [5, 6], only
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Fig. 8 Solutions of Eq. 54 with σ as defined in Eq. 57, and c = 200
in Eq. 59. The top and middle panels show solutions with the global
and goal-oriented hr-refinement techniques, respectively, and their
corresponding convergence curves are given at the bottom panel. The
solutions in the top and middle panels correspond to the final grids
with 53 and 46 nodes, respectively. The L2-norms measure the error
inside the target region, x ∈ [5, 6], only
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Fig. 9 Solutions of Eq. 55, with σ as defined in Eq. 58. In the
source term, Eq. 59, c = 2 is used. The top and middle panels show
solutions with the global and goal-oriented hr-refinement techniques,
respectively, and their corresponding convergence curves are given at
the bottom panel. The solutions in the top and middle correspond to the
final grids with 41 and 46 nodes, respectively. The L2-norms measure
the error inside the target region, x ∈ [7, 8], only

(e.g., here with 21 nodes) can help to avoid more expensive
r-refinement of finer grids (e.g., here the last grid with
81 nodes). It should also be noted that the numbers of r-
refinement steps observed here are typical, i.e., the initial
grids usually require 3–4 steps to converge, but after 2 or 3
h-refinements this is typically reduced to about 2 steps.

3.6 Examples with goal-oriented refinement

With a goal-oriented hr-refinement, we hope to achieve a
particular error norm in a specific part of the domain more
efficiently than using a global hr-refinement of the same
grid. Figures 7, 8, and 9 present solutions of the diffusion
and Helmholtz problems, Eqs. 54 and 55, respectively,
and the corresponding error norms at target regions, using
both goal-oriented and global refinements of the models
with the hierarchical error–based monitor function. Target
regions in geophysical applications can be defined as a set
of discrete observation points or, alternatively, continuous
regions which contain observation locations. Therefore, the
size and shape of these regions can be varied, depending
on the number and distribution of observation locations. For
the one-dimensional case, we choose an arbitrary segment
as the region of interest. This segment can be seen as
a region which contains a vertical profile of observation
points. These segments are chosen in the air region where
the solutions show relatively higher gradients.

Figure 7 shows solutions of the diffusion problem with
global (top) and goal-oriented (middle) refinements where
the target region for the goal-oriented refinement is at
x ∈ [5, 6]. The solution with global refinement shows a
balanced distribution of the nodes over the entire domain
while the solution obtained with goal-oriented refinement
concentrates most of the nodes inside the target region.
This figure also shows the convergence of true error norm
inside the target region for both solutions. The rates of
convergence are roughly similar. However, it is clear that
lower error values can be achieved by the goal-oriented
refinement, with the same number of grid nodes. To verify
this conclusion, another example with a different σ and
source term is presented in Fig. 8. In this example, the
diffusion problem is used with the same four-layer model
but with σ as defined in Eq. 57. Also, in this example, the
Gaussian-like source is narrower, with c = 200 in Eq. 59. It
can be seen that, again, the solution obtained with the goal-
oriented refinement concentrates most of the nodes in the
target region, and the error values for this solution are lower
than those for the solution computed with global refinement
of the grid.

The comparison conducted above is repeated for the
Helmholtz problem, Eq. 55, in Fig. 9. This example uses the
same four-layer model but with σ as defined in Eq. 58. Also,
in the source term, Eq. 60, c = 2 is used. As mentioned
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Fig. 10 Top, left to right: the layered and block-in-halfspace mod-
els and the realistic model used for the 2D examples. The σ values
are used in Eq. 63. The cross symbol and the thick line segment
show the locations of the singular source and the observation points,

respectively. The domain is composed of air and ground regions and
anomalous regions located inside the ground. Bottom: the starting
coarse grids used for these three models

earlier, σ and c values are chosen such that the solutions
are challenging enough to necessitate refinement. The target
region for the goal-oriented refinement is chosen to be at
x ∈ [7, 8]. It can be seen that, for these solutions, too,
the results with goal-oriented refinement are more accurate,
with the same level of refinement, compared to the results
using global refinement. Also, the final solution on the
finest goal-oriented grid shows that most of the nodes are
concentrated in the target region while the solution with
global refinement shows a balanced distribution of the nodes
over the domain.

3.7 Examples in 2D

The hr-refinement algorithm proposed and verified in
the previous sections is further validated here using 2D
examples. The linear MPDEs given by Eq. 30 are used
here for r-refinements, and both uniform and local h-
refinements are applied. Here, the open-source software
FEniCS [2, 39] is used for the initial triangular mesh
generation and for the FE solution of the PPDE and MPDE
problems. All of the resulting discretized systems (both

MPDEs and PPDEs) are solved using algebraic multigrid-
preconditioned CG. For brevity and since the Helmholtz
problem is more challenging than the diffusion problem,
only Eqs. 10 and 11 are considered for the 2D case. For
Eq. 10, the test problem used here is given by

⎧⎪⎨
⎪⎩

−∇2u + σ(x) u = f (x) , x ∈ (xl, xr
)× (yb, yt

)
u (x)

∣∣∣
x=xl

x=xr

= 0, u (x)

∣∣∣
y=yb

y=yt

= 0,

(63)

where xl = yb = 0 and xr = yt = 1. The physical domain,
Ω = [xl, xr

] × [yb, yt
]
, represents three models. The first

model is a layered halfspace which is the 2D equivalent
of the model used for the 1D examples. In this model, the
interfaces of the layers are at y = 0.3, 0.4, and 0.5, and for
these four layers from y = 0 to 1, the coefficient values are
σ = 1, 103, 1, and 10−8, respectively (see Fig. 10). The
second model is a block-in-halfspace comprising air and
ground regions at y > 0.5 and y < 0.5, and with σ = 10−8

and σ = 1, respectively, and an anomalous rectangular
region located inside the ground at [0.5, 0.6] × [0.25, 0.45],
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Fig. 11 A goal-oriented hr-adaptivity for the solution of Eq. 63, with
the layered halfspace model in Fig. 10. Top and middle panels: the
computational and physical meshes at the end of the 5th iteration,
respectively. Bottom: the norm of error estimate at the target and over
the entire mesh, and the number of elements for the h- and r-refinement
iterations

Fig. 12 A global hr-adaptivity for the solution of Eq. 63, with the
layered halfspace model in Fig. 10. Top and middle panels: the
computational and physical meshes at the end of the 5th iteration,
respectively. Bottom: the norm of error estimate at the target and over
the entire mesh, and the number of elements for the h- and r-refinement
iterations
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Fig. 13 The L2-norm of error estimate over the entire mesh (top) and
at the target (middle) versus the number of elements for global and
goal-oriented solutions of Eq. 63, with the layered halfspace model
in Fig. 10. Bottom: the L2-norm of error estimate at the target versus
computation time. Results with both (pure) h-refinement and with hr-
refinement are depicted. The results with hr-refinement correspond to
the error values in the bottom panels of Figs. 11 and 12

Fig. 14 A goal-oriented hr-adaptivity for the solution of Eq. 63, with
the block-in-halfspace model in Fig. 10. Top and middle panels: the
computational and physical meshes at the end of the 5th iteration,
respectively. Bottom: the norm of error estimate at the target and over
the entire mesh, and the number of elements for the h- and r-refinement
iterations
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Fig. 15 A global hr-adaptivity for the solution of Eq. 63, with the
block-in-halfspace model in Fig. 10. Top and middle panels: the
computational and physical meshes at the end of the 5th iteration,
respectively. Bottom: the norm of error estimate at the target and over
the entire mesh, and the number of elements for the h- and r-refinement
iterations

Fig. 16 The L2-norm of error estimate over the entire mesh (top) and
at the target (middle) versus the number of elements for global and
goal-oriented solutions of Eq. 63, with the block-in-halfspace model
in Fig. 10. Bottom: the L2-norm of error estimate at the target versus
computation time. Results with both (pure) h-refinement and with hr-
refinement are depicted. The results with hr-refinement correspond to
the error values in the bottom panels of Figs. 14 and 15
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Fig. 17 A goal-oriented hr-adaptivity for the solution of Eq. 63,
with the realistic model in Fig. 10. Top and middle panels: the
computational and physical meshes at the end of the 4th iteration,
respectively. Bottom: the norm of error estimate at the target and over
the entire mesh, and the number of elements for the h- and r-refinement
iterations

Fig. 18 A global hr-adaptivity for the solution of Eq. 63, with the
realistic model in Fig. 10. Top and middle panels: the computational
and physical meshes at the end of the 4th iteration, respectively.
Bottom: the norm of error estimate at the target and over the entire
mesh, and the number of elements for the h- and r-refinement
iterations
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Fig. 19 The L2-norm of error estimate over the entire mesh (top) and
at the target (middle) versus the number of elements for global and
goal-oriented solutions of Eq. 63, with the realistic model in Fig. 10.
Bottom: the L2-norm of error estimate at the target versus computation
time. Results with both (pure) h-refinement and with hr-refinement are
depicted. The results with hr-refinement correspond to the error values
in the bottom panels of Figs. 17 and 18

with σ = 103. The target in these models consists of 21
equidistant observation points along a horizontal profile at
x = 0.45–0.65, y = 0.5 (see Fig. 10). As for the 1D
case, σ values are chosen to represent common underground
conductivity contrasts. If (xs, ys) gives the source location,
for the two models described above, (xs, ys) = (0.4, 0.5).
The third model is more realistic in the sense that the
air-ground interface is uneven and the anomalous region
is no longer a rectangle (see Fig. 10). The σ values in
the third model are the same as in the second model and
(xs, ys) = (0.35, 0.47). The target consists of 21 equidistant
observation points along a linear profile at the air-ground
interface with coordinates ranging from x = 0.5-0.7, y =
0.5–0.54 (see Fig. 10).

For the PPDE in Eq. 11, the test problem is given by

⎧⎪⎨
⎪⎩

∇ · μ−1
0 ∇ u − iω σ(x) u = f (x) , x ∈ (xl, xr

)× (yb, yt
)

u (x)

∣∣∣
x=xl

x=xr

= 0, u (x)

∣∣∣
y=yb

y=yt

= 0, (64)

where xl = yb = −1000 m and xr = yt = 1000 m.
The physical domain, Ω = [xl, xr

] × [yb, yt
]
, represents

a block-in-halfspace. The σ (conductivity) values of the
ground and the block are 1/30 and 100/3 S/m, respectively,
and the block occupies the region given by [−3.35, 3.35] ×
[−52, −10] m. We choose 36 equidistant observation points
along a profile at x = [−80, 100] m, z = 0 m. In this
model, the source is located at (xs, zs) = (−139.6, 0) m and
operates at f̃ = 400 Hz.

It was concluded in Section 3.3 that it is advantageous to
preserve the interfaces between the regions by fixing nodes
at these locations. The 2D equivalent of that is to maintain
nodes at the internal (and external) boundaries but allow
them to move along these interfaces, during r-refinement, for
higher accuracy. For the 2D models, with vertical or hori-
zontal internal and external boundaries, the MPDEs can be
solved as BVPs with mixed boundary conditions, given by⎧⎪⎨
⎪⎩

∇ · (M−1∇ξ
) = 0, x ∈ (xl, xr

)× (yb, yt
)
,

ξ (x) = x, ∀ x ∈ ∂Ωc

∣∣
n̂=êx

,

∇ξ (x) · n̂ = 0, ∀ x ∈ ∂Ωc

∣∣
n̂=êy

,

(65)

and⎧⎪⎨
⎪⎩

∇ · (M−1∇η
) = 0, x ∈ (xl, xr

)× (yb, yt
)
,

η (x) = y, ∀ x ∈ ∂Ωc

∣∣
n̂=êy

,

∇η (x) · n̂ = 0, ∀ x ∈ ∂Ωc

∣∣
n̂=êx

,

(66)

where ∂Ωc represents any internal or external boundary of
Ωc, n̂ denotes the unit normal to ∂Ωc, and êx and êy are
unit vectors parallel to the x- and y-axes, respectively. M in
Eqs. 65 and 66 is a scalar monitor function corresponding
to the current physical mesh, Th. The MPDE problems are
discretized and solved on Th and their solutions constitute
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the coordinates of the nodes of a mesh designated here as
T∗

c . Since T∗
c is in Ωc while the PPDEs are solved in Ω here,

T∗
c should be mapped to Ω using x = (x (ξ, η) , y (ξ, η)).

When the internal boundaries of the model are not
vertical or horizontal, as is the case with the realistic model
in the right panels of Fig. 10, we apply an additional stage
in which we first map the mesh with irregular interfaces,
Th, to a new mesh, T∗

h, where all the interfaces are either
vertical or horizontal. This mapping is performed by solving
a pair of Laplace equations on Th with appropriate boundary
conditions (see, e.g., [22]). We then solve the BVPs in
Eqs. 65 and 66 on T∗

h and obtain T∗
c which is in Ωc.

Afterwards, T∗
c is mapped to Ω , using bilinear interpolation,

which results in T∗∗
h . (We note that all the interfaces in T∗

h,
T∗

c and T∗∗
h are either vertical or horizontal). Finally, T∗∗

h

is mapped back into a new mesh, in Ω , with the original
irregular interfaces, by solving a second pair of Laplace
equations, with appropriate boundary conditions.

Following Algorithms 1–3 and the conclusions of the
previous sections, the procedure starts with a relatively
coarse mesh (Fig. 10, bottom panels) which is then hr-
refined until a desired error norm is reached. Here, the
hierarchical error–based monitor function, Eq. 35, is used
and the hierarchical error estimate is used as the stopping
criterion. The coordinate transformation is approximated by
an affine mapping between the nodes of Th and T∗

c and the
new physical mesh is found by interpolation at the nodes
of Tc. Following Algorithm 3, M is then updated using
the new Th, the MPDEs are solved to derive a new T∗

c

and the interpolation step is repeated. Note that unlike T∗
c ,

which is updated at each iteration of Algorithm 3, Tc is
fixed throughout this algorithm. Following Algorithms 1
and 2, the monitor function from the final solution of the r-
refinement is used as a measure to calculate the number of
h-refinements needed for each of the subdomains.

Figures 11, 12, 13, 14, 15, 16, 17, 18, and 19 show
examples of global and goal-oriented hr-adaptivity for the
solution of the Helmholtz problem, Eq. 63, with the three
corresponding 2D models described above. In Figs. 11, 12,
14, 15, 17, and 18, example Tc and Th grids are given at
the top and middle panels, respectively. (The final grids are
too dense to show here.) The panels at the bottom of these
figures give the L2-norm of error estimate at the target and
over the entire grid, and the number of elements for the
h- and r-refinement iterations. Note that, in these panels,
if the number of elements stays constant this indicates an
r-refinement iteration (of Algorithm 3) and an increase in
this number means an h-refinement (Algorithm 2). Also
note that, here, as for the 1D case, the initial coarse mesh
and each of the subsequent h-refined meshes are r-refined.
However, only solutions which reduce the error estimate
are preserved, which explains the consecutive h-refinements

without intermediate r-refinements, observed in the bottom
panels of the figures mentioned above.

Figures 11–13 show solutions of the Helmholtz problem
with the layered halfspace model, Figs. 14–16 with the
block-in-halfspace model and Figs. 17–19 with the realistic
model (irregular interfaces). Figures 11, 14, and 17 use
goal-oriented error estimates and Figs. 12, 15, and 18 use
global error estimates. Figures 13, 16, and 19 compare
the error norms of the solutions at the target and over the
entire grid with global and goal-oriented hr-refinements
and with pure h-refinements. These figures also give the
computation time to reach the given error norms with
pure h-refinement and with global and goal-oriented hr-
refinements. It can be seen that, as for the 1D case, higher
accuracies at the targets are achieved using the goal-oriented
error estimates. It can also be seen that the hr-refinements
are more efficient than the pure h-refinements, in terms
of computation time. Moreover, we see that, despite the
additional time required to solve the adjoint problems, the
goal-oriented hr-refinements are, in general, more efficient
than the global hr-refinements.

Additionally, a comparison between the middle panels in
Figs. 13, 16, and 19 reveals that goal-oriented hr-adaptivity
is relatively less effective in the second and third examples,
compared to the first example (layered halfspace). In the
second and third examples, the closeness of the anomalous
regions to the observation profiles pushes h-refinement
and global r-refinement to give higher refinements at the
observation profiles (see the top and middle panels in
Figs. 15 and 18), which reduces the relative effectiveness
of the goal-oriented hr-refinements in these two examples.
However, in the layered halfspace example, h-refinement
and global r-refinement do not give high refinement at
the observation profile (see the top and middle panels in
Fig. 12), and the goal-oriented hr-refinement is relatively
more effective in reducing the target error norm.

Figures 20, 21, and 22 show an example of goal-oriented
hr-adaptivity for the solution of the TE mode problem in
Eq. 64, where the source represents an infinitely long wire at
the air-ground interface and extended along the conductivity
strike, i.e., the z-axis. Since, in this example, the dimensions
of Ω , relative to the size of the anomalous region, are
much larger than those in the previous 2D examples, we
use local h-refinements here for higher efficiency. We use
the r-refinement monitor function as the parameter to mark
the elements to be refined, and we consider two different h-
refinement methods. In the pure h-refinement case, we use
the popular “maximum” strategy, based on refining a fixed
fraction (here 15%) of the elements with the highest values
of the monitor function. For hr-refinement, we employ an
alternative “equilibration” method, based on marking the
elements over which the sum of the monitor function values
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Fig. 20 Top: the model used for the TE problem with a long wire
source. The σ values are used in Eq. 64. The cross symbol and
the black disks show the locations of the singular source and the
observation points, respectively. The domain is composed of air and
ground regions and an anomalous region located inside the ground.
Middle and bottom: the starting coarse grid used for the TE model and
a close-up of its center

Fig. 21 A goal-oriented hr-adaptivity for the solution of Eq. 64, with
the model in Fig. 20. Top and middle panels: the computational and
physical meshes at the end of the 4th iteration, respectively. Bottom:
the norm of error estimate at the target and over the entire mesh, and
the number of elements for the h- and r-refinement iterations
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Fig. 22 The L2-norm of error estimate over the entire mesh and at
the target versus the number of elements (top) for a goal-oriented
solution of Eq. 64, with the model in Fig. 20. Middle: the L2-norm of
error estimate at the target versus computation time. Results with both
(pure) h-refinement and with hr-refinement are depicted. The results
with hr-refinement correspond to the error values in the bottom panels
of Fig. 21. The bottom panel gives wire response at the observation
profile compared with reference data in [53]

is a certain fraction (here 50%) of the total sum of monitor
function values [1, 57].

Figure 20 shows the model and the initial mesh, and
example Tc and Th grids are given at the top and middle
panels of Fig. 21, respectively (the final grids are too dense
to show here). The panel at the bottom of Fig. 21 gives the
L2-norm of the error estimate and the number of elements
for all the h- and r-refinement iterations. Similar to the
results of the previous examples, the accuracy and efficiency
results in Fig. 22 show that we can reach a higher accuracy
and efficiency, with the same number of elements, when we
combine an r-refinement with the h-refinement. The bottom
panel in Fig. 22 gives the wire response that is compared
against reference data in [53]. This response is the absolute
value of Hx and Hy at the observation points, normalized by
the absolute value of Hy due to the free space (homogeneous
wholespace).

4 Conclusions

In this study, we explore hr-adaptivity strategies suitable
for the solution of geophysical electromagnetic (EM) mod-
elling problem, and propose an algorithmic framework that
accounts for large discontinuities in coefficients and point-
wise EM observations. Motivated by the potential formu-
lation of Maxwell’s equations, one-dimensional Helmholtz
and diffusion equations and a two-dimensional Helmholtz
equation are considered as the physical PDEs. In 1D, a mesh
PDE based on the equidistribution principle, and in 2D,
mesh PDEs based on variational methods are used for the r-
refinements. The main procedure consists of consecutive h-
and r-refinements. An r-refinement requires the solution of
the physical PDE, updating of the monitor function, and the
solution of the mesh PDE, and this procedure is continued
until the desired accuracy is obtained.

Using examples with a one-dimensional layered halfs-
pace model, we conclude that fixing mesh points at the
interfaces of the layers defined by the PDE coefficients
and combining h- and r-refinements are both necessary for
the correct equidistribution and minimization of error. It
is also observed that starting the procedure with a rela-
tively fine grid is not necessarily more efficient, in terms
of the final accuracy achieved, compared to using a coarser
starting mesh. Using coarse starting grids can also help
to reduce the number of expensive r-refinement iterations
(Algorithm 3 or 4) for the finer grids, which are generated
by h-refinement, at the last iterations of the main proce-
dure (Algorithm 1). The starting coarse grids, typically,
require 3-4 r-refinements while the finer grids need about 2
iterations.

Two monitor functions based on hierarchical error
estimates (error based and Hessian based) and one monitor
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function based on a finite element residual error estimate
are considered here. These monitor functions are seen to
give solutions that are roughly equivalent in terms of the
level of accuracy achieved with specific numbers of nodes.
The rates of convergence of error with these three monitor
functions are also similar. However, since hierarchical error
estimates are more effective in approximating the true error,
the hierarchical error–based monitor function was chosen
for further experiments and combined with goal-oriented
refinement. The solutions with goal-oriented error estimates
show relatively higher refinement, and also improvement in
accuracy, within the local regions of interest.

While 1D examples were mainly used for the derivation
and testing of the algorithm, benchmark and realistic
2D examples were used for validation. These examples
demonstrate the advantage of combining h- and r-
refinements, compared to pure h-refinement, and the
effectiveness of goal-oriented adaptivity, in reducing the
computational effort required to reach a certain accuracy.
This verifies the efficacy of the proposed algorithm for
mesh adaptivity in the presence of singular sources and
jumping coefficients. In a future study, we will use the
proposed algorithm for practical geophysical EM modelling
problems in two and three dimensions, using triangular
and tetrahedral grids, respectively, leveraging recent work
on efficient solution of the 3D problem [18]. Comparing
hr-adaptivity with hp-refinement, and more complicated
models with anisotropic media, where a different mesh
generator could be required [23], may also be considered.
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