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1 Introduction

Domain decomposition (DD) has been well developed to solve many classes of
elliptic PDEs. DD has also been utilized for parabolic PDEs in two ways: 1) semi-
discretizing in time and solving the resulting sequence of elliptic problems using
DD, for e.g. [6], and 2) decomposing the problem into space-time subdomains and
iterating within a Schwarz Waveform Relaxation (SWR) framework, for e.g. [14].

Relatively, there has been much less attention paid to DD for hyperbolic prob-
lems. To give a few examples, an early paper by Kopriva [19] provides a spectral DD
approach for quasilinear hyperbolic problems, systems of hyperbolic conservation
laws are considered in Lucier and Overbeek [21] and Quarteroni [26], and theoreti-
cally, SWR is considered for second order hyperbolic problems in Gander et al. [13].
A noniterative domain decomposition method for damped hyperbolic problems is
considered in [10].

The study of heterogeneous domain decomposition is closely related to DD for
mixed problems, our subject of interest. Heterogeneous DD is used to couple different
models (ie. different physics) using (usually) a non-overlapping spatial decomposi-
tion. For example, coupled hyperbolic and elliptic problems are solved using a two
subdomain method and asymptotics at the interface to determine appropriate trans-
mission conditions in [15, 9]. See also the nice article of Mathew and Chan [7] for
an introduction.

In this paper we consider the simple mixed problem studied first by Tricomi in
1923 [29]. Tricomi’s equation is given by

𝑦𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0. (1)

In any domain 𝐷 ⊂ R2 which contains both positive and negative 𝑦–values (1) will
be of mixed type: the problem is elliptic if 𝑦 > 0 and is hyperbolic if 𝑦 < 0.
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Generalizations of Tricomi’s equation are connected to the theory of plane tran-
sonic flow, see the early paper by Frankl [12]. There the required solution represents
the stream function for transonic jet flows in the hodograph plane, see also [8].
The Tricomi equation also arises in the study of isometric embedding problems in
differential geometry [18].

As will be discussed further below, the alternating Schwarz method (ASM) has
been used as a theoretical tool to prove existence of solutions for various mixed
problems, see for e.g. [20, 27]. The two subdomain splitting proposed in these
papers decomposes the mixed domain into an elliptic domain and a mixed domain
with a specially chosen boundary (which then acts as an artificial interface in the
ASM). Motivated by these theoretically inspired splittings, here we propose and
analyze further spatial splittings for the Tricomi problem.

Not surprisingly, there has been some work on numerical approximations for
mixed problems. Some of the first papers considering finite difference approxima-
tions include [24, 2] and finite element approximations are studied in [11, 3, 28].
Our hope is that our study of possible Schwarz approaches will provide the nexus
for future development of numerical approaches for mixed problems.

2 A few preliminaries

The characteristics of (1) are real for 𝑦 ≤ 0 and consist of two families of curves
satisfying

𝑑𝑦

𝑑𝑥
= (−𝑦)−1/2 and

𝑑𝑦

𝑑𝑥
= −(−𝑦)−1/2.

This yields the characteristics

𝑥 = 𝐶 ± 2
3
(−𝑦)3/2,

for some arbitrary constant 𝐶.
For positive values of 𝑦 the normal contours, introduced by Tricomi, play an

important role. For this specific PDE these are curves of the form

(𝑥 − 𝑎)2 + 4
9
𝑦3 = 𝑏2

for constants 𝑎 and 𝑏.
The characteristics and normal contours are used to define the domain of interest

and allows us to specify a well-posed boundary value problem. We consider (1) on a
domain, 𝐷, that is a bounded, connected, open subset of R2 with a piecewise smooth
boundary. Our intent is to consider choices of 𝐷 so that equation (1) is of mixed type.
The left plot of Figure 1 shows such a domain bounded by the characteristic curves
of (1), arcs 𝐵𝐶 and 𝐶𝐴, given by 𝜉 = 𝑥 − 2

3 (−𝑦)
3/2 = 0 and 𝜂 = 𝑥 + 2

3 (−𝑦)
3/2 = 1,

and a yet to be specified upper boundary, 𝜎, in the elliptic portion of the domain. On
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Fig. 1 Partitioning of a mixed domain, with characteristics 𝐴𝐶 and 𝐶𝐵, and normal contour 𝜎0
interior to elliptic boundary 𝜎.

𝐷 equation (1) transitions from elliptic to hyperbolic along the line segment of the
𝑥–axis 𝐴𝐵. For any set 𝑋 ⊂ R2, we denote 𝑋

⋂{𝑦 > 0} as 𝑋+ and 𝑋
⋂{𝑦 < 0} as

𝑋− . This allows us to define the positive and negative parts of the domain 𝐷 as 𝐷+

and 𝐷− .
The problem of interest, is called Problem T in the literature.

Problem T For a mixed domain 𝐷 we wish to find𝑢 ∈ 𝐶 (𝐷) ⋂𝐶1 (𝐷) ⋂𝐶2 (𝐷+ ⋃
𝐷− )

which satisfies equation (1) subject to 𝑢 = 𝜙 on �̄� and 𝑢 = 𝜓 on the charateristic curve
𝐴𝐶, where 𝜙 and 𝜓 are given smooth functions. We impose the capability condition
𝜙 (0, 0) = 𝜓 (0, 0) . Such a solution is called a regular solution.

Problem T is an example of an open boundary value problem since 𝑢 is not
specified on the entire boundary of 𝐷. In general the closed boundary value problem
for a mixed equation will not be well-posed [25].

Tricomi [29] proves the existence and uniqueness of solutions for Problem T on
the domain 𝐷0 bounded by the normal contour 𝜎0 and arcs 𝐴𝐶 and 𝐴𝐵 using a
matching approach at the parabolic line of degeneracy 𝑦 = 0. His analysis primarily
makes use of representations of solutions in terms of singular integral equations and
Green’s functions. The final result then follows using the Fredholm alternative. For
reference we state this result as Lemma 1.

Lemma 1 Problem T has a unique regular solution on the domain 𝐷0.

In this short paper we will not concentrate on questions of regularity, leaving this
for other venues. At this point we simply note that the notion of a regular solution
allows for the more interesting behaviour at the points 𝐴 and 𝐵.

Choosing the domain 𝐷0 bounded above in the elliptic region by a portion of
the normal contour 𝜎0 greatly simplifies the integral representations of the solution
expressions and appears to be instrumental in Tricomi’s analysis. Since then many
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authors have worked to lift this restriction on the elliptic arc. As we will see in
the next section, Tricomi’s technique was later generalized to allow the boundary
in the elliptic domain, 𝜎, to be a general curve of Lyanponuv class which ends in
arbitrarily small arcs of a normal contour. Indeed, a novel splitting using a normal
contour as an artificial interface followed by an alternating Schwarz analysis utilizing
various maximum principles for mixed problems has been instrumental in extending
Tricomi’s result to general mixed domains.

We begin with a known result for elliptic equations.

Lemma 2 ([17, 5]) The elliptic problem, (1) on 𝐷+ (with specified smooth boundary
data on 𝜕𝐷+), has a unique regular solution.

The following results are direct consequences of the well-known maximum prin-
ciple for elliptic equations.

Lemma 3 If 𝑢 is a regular solution to (1) on any subdomain, Ω+, of 𝐷+, then unless
𝑢 is a constant, then the maximum of 𝑢 on Ω+ occurs on 𝜕Ω+.

Lemma 4 If 𝑢 is a regular solution to (1) satisfying 𝑢 = 0 on 𝜎, then for (𝑥, 𝑦) ∈
𝐷+ ⋃

𝜎

|𝑢(𝑥, 𝑦) | ≤ 𝜃 max
𝑥∈𝐴𝐵

|𝑢(𝑥, 0) |, 0 < 𝜃 < 1.

Unlike the elliptic case, hyperbolic problems generally do not satisfy a maximum
principle. But for Problem T in the hyperbolic domain we have the following result.

Lemma 5 ([1]) Suppose 𝑢 is a solution to (1) in the so-called characteristic triangle,
𝐷− , with 𝑢 = 0 on 𝐴𝐶, then the maximum of 𝑢 over 𝐷− occurs on 𝐴𝐵.

Maximum principles for some mixed problems, including Problem T above, were
first obtained by Germain and Bader [16], and then generalized by many authors,
see for e.g. [1, 23, 27]. We will need the following result.

Lemma 6 ([1]) Suppose 𝑢 is a regular solution of (1) on 𝐷. If 𝑢 = 0 (ie. 𝜓 = 0) on
the characteristic arc 𝐴𝐶, then 𝑢 ≤ 𝑀 on 𝜕𝐷 imples 𝑢 < 𝑀 in 𝐷.

A nice review of these results (and others!) may be found in [22]. As is typical,
these maximum principles also directly lead to uniqueness results.

Before proceeding to our main result in Section 3, we give a quick overview,
following [5] and [27], of the use of the ASM to obtain existence results for Problem
T for mixed domains bounded by quite general elliptic arcs 𝜎.

Consider Problem T on a domain 𝐷 as shown in the left of Figure 1 now bounded
above by a general curve 𝜎 in the elliptic portion of the domain and chacteristic
curves 𝐴𝐶 and 𝐵𝐶. We introduce a normal contour 𝜎0 as an artificial interface,
interior to 𝐷+ and connecting 𝐴 to 𝐵. We assume that 𝜎0 and 𝜎 do not share
common tangents near 𝐴 and 𝐵. We define 𝐷0 to be the region bounded by 𝜎0 and
the portions of the characteristics 𝐴𝐶 and 𝐵𝐶.

Suppose 𝑢1 (𝑥, 𝑦) is a solution to (1) in 𝐷0 subject to 𝑢1 = 0 on 𝜎0 and 𝑢1 = 𝜓 on
arc 𝐴𝐶. This solution exists and is unique since it is a solution to Tricomi’s problem
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on a mixed domain with a normal contour as a boundary in the elliptic domain
(Lemma 1). Assume 𝑣1 satisfies (1) on 𝐷+ subject to 𝑣1 = 𝜙 on 𝜎 and 𝑣1 = 𝑢1 on
𝐴𝐵. The existence of solutions of elliptic problems bounded by a parabolic line of
degeneracy is guaranteed by Lemma 2. We recursively define 𝑢𝑛, 𝑛 = 2, 3, . . ., as
regular solutions of (1) satisfying 𝑢𝑛 = 𝑣𝑛−1 on 𝜎0 and 𝑢𝑛 = 𝜓 on arc 𝐴𝐶, while
𝑣𝑛, 𝑛 = 2, 3, . . ., satisfy (1) and 𝑣𝑛 = 𝜙 on 𝜎 and 𝑣𝑛 = 𝑢𝑛 on line segment 𝐴𝐵.

We show the sequences {𝑢𝑛} and {𝑣𝑛} converge uniformly on 𝐷+ and 𝐷0. By
linearity the differences 𝑢𝑛+1 − 𝑢𝑛 and 𝑣𝑛+1 − 𝑣𝑛 solve (1) and have values of zero on
𝜎 and on the arc 𝐴𝐶 respectively, and hence Lemma 4 and 5 may be applied. These
results ensure

|𝑢𝑛+1 (𝑥, 𝑦) − 𝑢𝑛 (𝑥, 𝑦) | ≤ max
𝑥∈𝐴𝐵

|𝑣𝑛+1 (𝑥, 0) − 𝑣𝑛 (𝑥, 0) | ≤ max
𝐷0

|𝑣𝑛+1 − 𝑣𝑛 |

and

|𝑣𝑛+1 − 𝑣𝑛 | ≤ max
𝜎0

|𝑢𝑛 − 𝑢𝑛−1 | ≤ 𝜃 max
𝑥∈𝐴𝐵

|𝑢𝑛 (𝑥, 0) − 𝑢𝑛−1 (𝑥, 0) | ≤ 𝜃 max
𝐷0

|𝑣𝑛 − 𝑣𝑛−1 |.

Combining these results and iterating we have

|𝑣𝑛+1 − 𝑣𝑛 | ≤ 𝜃𝑛max
𝐷0

|𝑣1 − 𝑣0 |.

This gives the uniform convergence of 𝑣𝑛 (𝑥, 𝑦) → 𝑣(𝑥, 𝑦) in 𝐷0, and 𝑢𝑛 (𝑥, 𝑦) →
𝑢(𝑥, 𝑦) in 𝐷+, where 𝑢 and 𝑣 are regular solutions of (1). Moreover, the limiting
functions agree in the overlap region.

As mentioned above the argument above can be further modified to allow 𝜎 to
be more general, coinciding with 𝜎0 as 𝜎 approaches 𝑦 = 0. A further extension to
allow 𝜎 to approach 𝑦 = 0 at an arbitrary angle is possible using the construction
demonstrated in the proof of Theorem 1 in [4].

Please refer to [5, 27] for details of the regularity of iterates 𝑢𝑛 and 𝑣𝑛 and the
limiting functions.

3 A further Schwarz iteration

We now proceed to consider further splittings of the mixed problem and obtain our
main convergence result.

In the right plot of Figure 1 we further decompose 𝐷 into overlapping subdomains
Ω1 and Ω2 where Ω1 is bounded by the arcs 𝐴𝑄, 𝑄𝑄′, and 𝑄′𝐴, and Ω2 is bounded
by the arcs 𝑃𝐶, 𝐶𝑃′, and 𝑃′𝑃. Hence we have 𝐷 = Ω1

⋃
Ω2 and Ω1

⋂
Ω2 = ∅.

We will also need the domains Ω+
1 ,Ω

+
2 , Ω10 = Ω1

⋃
𝐷0, and Ω20 = Ω2

⋃
𝐷0. The

interfaces Γ2 ≡ 𝑃𝑃′ and Γ1 ≡ 𝑄𝑄′ are chosen to be (strictly) interior to Ω1 and Ω2
respectively.

In addition to Lemmas 3 and 4, we also need the following classical result in the
elliptic portions of the subdomains.
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Lemma 7 If 𝑢 is a solution to (1) on Ω+
1 satisfying 𝑢 = 0 on 𝜎 , then for (𝑥, 𝑦) ∈

Γ2
⋃

Ω+
1

|𝑢(𝑥, 𝑦) | ≤ 𝛾 max
Γ1

|𝑢(𝑥, 𝑦) |,

and if 𝑢 is a solution of (1) on Ω+
2 , then for (𝑥, 𝑦) ∈ Γ1

⋃
Ω+

2

|𝑢(𝑥, 𝑦) | ≤ 𝛾 max
Γ2

|𝑢(𝑥, 𝑦) |

for some constant 𝛾 < 1.

With the partitioning shown in Figure 1 many iterations are possible. Here we
outline just one possibility which builds upon the theoretical pieces described above.
We sequentially compute solutions 𝑢𝑛1 , 𝑢

𝑛
2 , 𝑧

𝑛
2 and 𝑧𝑛1 in the domains Ω+

1 ,Ω
+
2 ,Ω20 and

Ω10 respectively.
Given initial guesses for the solutions on Ω20 and Ω+

1 we compute approximate
solutions using the alternating Schwarz iteration: for 𝑛 = 1, 2, . . .

𝑦𝑢𝑛1𝑥𝑥 + 𝑢𝑛1𝑦𝑦 = 0, on Ω+
1 ,

𝑢𝑛1 = 𝑢𝑛−1
2 on Γ1 ∪ 𝜕Ω+

1 ,

𝑢𝑛1 = 𝑧𝑛−1
1 on 𝐴𝐵 ∪ 𝜕Ω+

1 ,

𝑦𝑢𝑛2𝑥𝑥 + 𝑢𝑛2𝑦𝑦 = 0, on Ω+
2 ,

𝑢𝑛2 = 𝑢𝑛−1
1 on Γ2 ∪ 𝜕Ω+

2 ,

𝑢𝑛2 = 𝑧𝑛−1
2 on 𝐴𝐵 ∪ 𝜕Ω+

2 ,

𝑦𝑧𝑛2𝑥𝑥 + 𝑧𝑛2𝑦𝑦 = 0, on Ω20,

𝑧𝑛2 = 𝑧𝑛−1
1 on Γ2 ∪ 𝜕Ω20,

𝑧𝑛2 = 𝑢𝑛−1
1 on 𝜎0 ∪ 𝜕Ω20,

𝑦𝑧𝑛1𝑥𝑥 + 𝑧𝑛1𝑦𝑦 = 0, on Ω10

𝑧𝑛1 = 𝑧𝑛−1
2 on Γ1 ∪ 𝜕Ω10,

𝑧𝑛1 = 𝑢𝑛−1
1 on 𝜎0 ∪ 𝜕Ω10.

Theorem 1 The Schwarz iteration defined above is well-posed, generating regular
approximations of solutions for Problem T on each subdomain.

Proof. The well-posedness of the subdomain problems for 𝑢𝑛1 and 𝑢𝑛2 follows from
Lemma 2, while Lemma 1 gives the well-posedness of the subdomain problems for
𝑧𝑛1 and 𝑧𝑛2 . ⊓⊔

The maximum principles (Lemma 3 and 4) give the following inequalities.

Theorem 2 For any initial guesses on the interior interfaces, Γ1 and Γ2, the subdo-
main solutions defined above satisfy the inequalities
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|𝑢𝑛+1
1 − 𝑢𝑛1 | ≤ max

(
max
𝐷0∩Ω1

|𝑧𝑛1 − 𝑧𝑛−1
1 |, 𝛾 · max

Γ2
|𝑢𝑛2 − 𝑢𝑛−1

2 |
)
, on Ω+

1 ,

|𝑢𝑛+1
2 − 𝑢𝑛2 | ≤ max

(
max
𝐷0∩Ω2

|𝑧𝑛2 − 𝑧𝑛−1
2 |, 𝛾 · max

Γ1
|𝑢𝑛+1

1 − 𝑢𝑛1 |
)
, on Ω+

2 ,

|𝑧𝑛+1
2 − 𝑧𝑛2 | ≤ 𝜃 max

𝐴𝐵∩Ω2

|𝑢𝑛+1
2 − 𝑢𝑛2 | on Ω20,

|𝑧𝑛+1
1 − 𝑧𝑛1 | ≤ 𝜃 max

𝐴𝐵∩Ω1

|𝑢𝑛+1
1 − 𝑢𝑛1 | on Ω10.

This leads to our main result.

Theorem 3 The alternating Schwarz iteration for Problem T on the domain 𝐷 is
convergent.

Proof. The uniform contraction on the interfaces 𝜎0 and 𝐴𝐵 follows by combining
the inequalities in Theorem 2. Convergence in the interior of the domains follows
by applying the appropriate maximum principle. The argument mimics that given at
the end of Section 3. ⊓⊔

4 Concluding Remarks

In this short note we give an initial result indicating convergence of standard (over-
lapping) ASMs for mixed problems. At a distance the usual tools are used, however,
the well-posedness and convergence of the iteration is complicated due to the un-
famliar nature of the required results for mixed problems. The details of our analysis
are obtained for the simplest of the mixed problems and extensions to more practical
problems of interest, details of regularity, and numerical experiments will follow.

Competing Interests This study was funded by the author’s NSERC discovery grant (Canada).
The author has no conflicts of interest to declare that are relevant to the content of this paper.
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