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Abstract

A well known property of an M-matrix A is that the inverse is element-wise non-negative, which we write
as A−1 � 0. In this paper we consider perturbations of M-matrices and obtain bounds on the perturbations so
that the non-negative inverse persists. The bounds are written in terms of decay estimates which characterize
the decay (along rows) of the elements of the inverse matrix. We obtain results for diagonal and rank-1
perturbations of symmetric tridiagonal M-matrices and rank-1 perturbations of non-symmetric tridiagonal
M-matrices.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

Ostrowski [1] introduced, with reference to the work of Minkowski [2,3], a rich class of matrices
known as M-matrices in 1937. There are many characterizations of M-matrices. Bermann and
Plemmons [4] give approximately 50 different but equivalent definitions. For our purposes we will
say a matrix A is a nonsingular M-matrix if and only if A is nonsingular with aij � 0 for i /= j ,
aii > 0 and A−1 � 0. A condition which is easy to check is that a matrix A is a nonsingular M-
matrix if and only if aij � 0 for i /= j , aii > 0 and A is generalized strictly diagonally dominant.
A matrix A is said to be generalized (strictly) diagonally dominant if there exists a diagonal matrix
D with positive entries so that AD is (strictly) diagonally dominant. It is clear that a sufficient,
but not necessary, condition for A to be an M-matrix is that A is strictly diagonally dominant with
non-positive off-diagonal entries.
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We consider the effect of perturbations on the inverse of M-matrices. Specifically, we perturb a
tridiagonal M-matrix through the addition of sub- and super-diagonals. If these diagonal perturba-
tions are non-positive, then a sufficient condition to ensure the inverse is non-negative is obtained
by imposing the required diagonal dominance property. In this paper we explore perturbations in
the form of positive sub- and super-diagonals and ask under what conditions is the inverse of the
resulting matrix non-negative.

The remainder of the paper is as follows. In Section 2 we review known results about the inverses
of symmetric tridiagonal M-matrices. Specifically, we review decay estimates which characterize
the behavior of the elements of the inverse. In Section 3 we use these decay estimates and the Sher-
mann–Morrison–Woodbury formula to obtain a bound on the size of diagonal perturbations for
which the non-negative inverse persists. In Section 4 we extend the results to handle perturbations
of non-symmetric tridiagonal M-matrices. Section 5 contains some numerical experiments to val-
idate our results. We conclude in Section 6 with some comments and discussion of ongoing work.

2. Inverses of symmetric tridiagonal M-matrices

Consider a symmetric tridiagonal M-matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

a1 −b2
−b2 a2 −b3

. . .
. . .

. . .
−bn−1 an−1 −bn

−bn an

⎞
⎟⎟⎟⎟⎟⎠

.

In accordance with the definition of a M-matrix provided above, we assume the entries ai, bi are
non-negative and ai > bi + bi+1, i.e. the matrix is strictly diagonally dominant. In all that follows
we set b1 = bn+1 = 0.

Characterizations of the inverse of banded matrices have been considered by many authors,
cf. [5–8]. Concus, Golub and Meurant [9–11] have used explicit Cholesky (LU ) and UL factor-
izations of M to detail the inverses of symmetric tridiagonal matrices. We quote their result as
Lemma 1.

Lemma 1. The entries of the inverse of M are given explicitly as

M−1
ij = bi+1 · · · bj

dj+1 · · · dn

δi · · · δn

for all i, and j > i (1)

and

M−1
ii = di+1 · · · dn

δi · · · δn

for all i.

The quantities di and δi are given by the recurrences

dn = an, di = ai − b2
i+1

di+1
, i = n − 1, n − 2, . . . , 1

and

δ1 = a1, δi = ai − b2
i

δi−1
, i = 2, . . . , n,

respectively.
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Using Lemma 1 the authors are able to quantify the rate of decay of the entries of M−1. We
quote this result as Lemma 2.

Lemma 2. An element of M−1, M−1
i,j+1, may be bounded in terms of M−1

ij as

ρ̂jM
−1
ij < M−1

i,j+1 < ρjM
−1
ij ,

where

ρj = bj+1

aj+1 − bj+2
and ρ̂j = bj+1

aj+1
.

If M is strictly diagonally dominant M-matrix, we have 0 < ρ̂j < ρj < 1 for each j . It is clear
that this may be extended to compare any off-diagonal entry of M−1 to the diagonal entry in that
row,

ρ̂|i−j |M−1
ii < M−1

ij < ρ|i−j |M−1
ii , (2)

where we have defined

ρ = max
1�j�n−1

bj+1

aj+1 − bj+2
and ρ̂ = min

1�j�n−1

bj+1

aj+1
. (3)

To compare M−1
ij to an entry closer to the diagonal (along a row) we have

ρ̂|k−j |M−1
ik � M−1

ij � ρ|k−j |M−1
ik for |j − i| > |k − i|.

And to bound M−1
ij in terms of an entry further from the diagonal (along a row) we have

1

ρ|k−j | M
−1
ik � M−1

ij � 1

ρ̂|k−j | M
−1
ik for |j − i| < |k − i|.

Due to symmetry the estimates also work column wise. Care must be taken that the entries being
compared are on the same side of the diagonal.

In addition, we require a bound on the diagonal entries of M−1. Ostrowski [12] obtained the
following bound on M−1

ii for strictly row diagonally dominant matrices:

M−1
ii � 1

|Mii |(1 − ξi)
, where ξi = 1

Mii

∑
j /=i

|Mij |.

This bounds are typically quite pessimistic. The decay estimates above give much better bounds
which are easy to compute.

To this end, we let C = M−1 and equate diagonal entries of the matrix identity CM = I to
give

−bici,i−1 + aicii − bi+1ci,i+1 = 1.

Using the decay estimates above we have

aicii = 1 + bici,i−1 + bi+1ci,i−1 � 1 + ρ(bi + bi+1)cii ,

which is satisfied if

cii � 1

ai − ρ(bi + bi+1)
≡ μi.

We introduce

μ = max
1�i�n

μi, (4)

as an upper bound on the diagonal entries of M−1.
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In the case of the tridiag{−1, 4, −1} matrix this gives M−1
ii � 3/10 as compared to Ostrowski’s

bound of 1/2. The actual bound, found numerically, is approximately 0.2887.

3. Positivity subject to a perturbation

In this section we investigate diagonal perturbations of symmetric tridiagonal M-matrices.
Specifically we wish to find the maximum allowable perturbation for which the non-negative
inverse persists. As we will see, a bound on the perturbation may be expressed in terms of the
decay estimates from the previous section.

Specifically, we consider the matrix B given by

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 −b2 h

−b2 a2 −b3 h

h −b3 a3 −b4 h

. . .
. . .

. . .
. . .

. . .
h −bn−3 an−2 −bn−1 h

h −bn−1 an−1 −bn

h −bn an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where ai, bi > 0, h /= 0, and the tridiagonal part of B is an M-matrix. For what values of h is the
inverse of B non-negative?

If h < 0, then it will suffice to choose h so that B is strictly diagonally dominant (or generalized
strictly diagonally dominant). If h > 0 then the entries of B no longer satisfy the sign pattern
necessary to be an M-matrix. However, due to continuity, if h is chosen small enough then
we would expect B−1 � 0. Our goal is to find a bound on h which will ensure a non-negative
inverse.

3.1. A rank-1 perturbation

We begin by considering a simpler case. Suppose B is given as B = M + E, where M is the tri-
diagonal M-matrix with entries {−bi−1, ai, −bi} and E = uvT is a rank one matrix. We choose u

and v so that the (1, 3) entry of B is h. The vectors u = (h, 0, . . . , 0)T and v = (0, 0, 1, 0, . . . , 0)T

give the correct matrix. An expression for B−1 follows from the Sherman–Morrison formula
[13,14]

B−1 = (M + uvT)−1 = M−1 − M−1uvTM−1

1 + vTM−1u
.

A quick calculation shows that vTM−1u = hM−1
31 and uvTM−1 is a matrix whose first row is h

times the third row of M−1 and the rest zeros.
So B−1 � 0 if

M−1 · h

1 + hM−1
31

·

⎛
⎜⎜⎜⎝

M−1
31 M−1

32 · · · M−1
3n

0 0 · · · 0
...

. . .
...

0 0 · · · 0

⎞
⎟⎟⎟⎠ � M−1.
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We will now use the decay estimates (2) to find an upper bound on h to ensure B−1 � 0. The
(1, 1) entry of the matrix product on the left of the above inequality is sM−1

11 M−1
31 where s =

h/(1 + hM−1
31 ). So comparing the (1, 1) entries we require

sM−1
11 M−1

31 � M−1
11 .

Using the decay estimates we have the following sequence of inequalities:

sM−1
11 M−1

31 � sρ2M−1
11 M−1

33 � sρ2μM−1
11 � M−1

11 .

This indicates that s � 1/μρ2 is a sufficient requirement.
For the (1, 2) entries we have to find s so that

sM−1
11 M−1

32 � M−1
12 .

In this case, the sequence of inequalities

sM−1
11 M−1

32 � sρM−1
11 M−1

33 � sρμM−1
11 � ρ̂M−1

11 � M−1
12 ,

implies that s � ρ̂/μρ is sufficient.
To compare the (1, k) entries for k � 3 we note that M−1

3k > M−1
1k since the M−1

3k entries are
closer to the diagonal. Taking advantage of symmetry we use the decay estimates column-wise
to obtain

M−1
3k �

M−1
1k

ρ̂2

and therefore

sM−1
11 M−1

3k � s
μ

ρ̂2
M−1

1k � M−1
1k if s � ρ̂2/μ.

Now consider the j th row, for j � 2. We want to show

sM−1
j1 M−1

3k � M−1
jk for all k = 1, . . . , n.

If k � j we compare M−1
j1 to M−1

jk , which is closer to the diagonal along a row, and we simply

compare M−1
3k to the maximum diagonal entry. So we have for k � j ,

sM−1
j1 M−1

3k � sμρk−1M−1
jk � M−1

jk if s � 1

μρk−1
.

If k > j then we compare M−1
3k to M−1

jk , which is closer to the diagonal along a column, and we

compare M−1
j1 to the maximum diagonal entry. So we have

sM−1
j1 M−1

3k � sμρj−3M−1
jk if s � 1

μρj−3
.

All the bounds on s obtained above are necessary to guarantee the non-negativity of specific
elements of the inverse of the perturbed M-matrix B. The following condition on h ensures that
all the required restrictions on h above are satisfied and hence is sufficient to ensure a non-negative
inverse of the perturbed M-matrix.

Theorem 1. Assume M is a symmetric tridiagonal M-matrix which is diagonally dominant. Let
u = (h, 0, 0, . . . , 0, 0)T and v = (0, 0, 1, 0, . . . , 0)T form the rank-1 matrix uvT. The matrix
B = M + uvT has a non-negative inverse (element-wise) if
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h � ρ̂2

μ
,

where ρ̂ and μ are defined in (3) and (4) respectively.

As an illustration consider the 40 × 40 M-matrix where bi = 1 for all i and ai = 4 for all i.
Our bound implies h � 0.208333 to ensure positivity of the inverse. The actual largest value of
h for which the inverse will be positive, is 0.25. We compute the actual value by numerically
requiring (M + uvT)−1 � 0 element-wise.

3.2. Higher rank perturbations

To generalize the result of the previous section we consider a perturbation given by E = UV

where U = hI and V is a matrix of zeros except for a second super-diagonal of ones. The
generalized Sherman–Morrison–Woodbury formula says, if I + V M−1U is nonsingular then

(M + UV )−1 = M−1 − M−1U(I + V M−1U)−1V M−1.

Rows 1 through n − 2 of V M−1 are just the last n − 2 rows of M−1. Rows n − 1 and n of V M−1

consist entirely of zeros.
To ensure B−1 = (M + UV )−1 is non-negative we require

M−1U(I + V M−1U)−1V M−1 � M−1.

Under a suitable assumption1 on h it is possible to show using a Neumann expansion that

(I + V M−1U)−1 = (I + hV M−1)−1 � I. (6)

From this we may deduce

M−1U(I + V M−1U)−1V M−1 � M−1UV M−1.

We therefore wish to find a bound on h so that

hM−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M−1
31 M−1

32 · · · M−1
3n

M−1
41 M−1

42 · · · M−1
4n

...
. . .

...

M−1
n1 M−1

n2 · · · M−1
nn

0 0 · · · 0
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

� M−1. (7)

Computing directly we find the (ij)th entry of the matrix on the left hand side of (7) is given by
n−2∑
k=1

hM−1
ik M−1

k+2,j .

Hence, with our findings from Section 3, we arrive at the following result.

Theorem 2. Assume M is a symmetric tridiagonal M-matrix which is diagonally dominant. Let
U = hI and V be a matrix with ones in the first super-diagonal and zeros elsewhere. The matrix
M + UV has a non-negative inverse (element-wise) if

1 The bound on h obtained in Theorem 2 is sufficient to ensure (6) is valid.
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h � ρ̂2

(n − 2)μ
,

where ρ̂ and μ are defined in (3) and (4) respectively.

3.3. A symmetric perturbation

We now consider a symmetric rank 2 perturbation, that is we only perturb the (1, 3) and (3, 1)

entries of M by a quantity h. Let V be the matrix of zeros except for ones in the (1, 3) and (3, 1)

positions. Once again the Shermann–Morrison–Woodbury formula guarantees that B−1 � 0 if

hM−1(I + hV M−1)−1V M−1 � M−1. (8)

The structure of I + hV M−1 again allows us to deduce

hM−1(I + hV M−1)−1V M−1 � hM−1V M−1.

In this case the (i, j) entry of hM−1V M−1 is given by

h(M−1
i1 M−1

3j + M−1
i3 M−1

1j ).

Therefore, inequality (8) will be satisfied if

h(M−1
i1 M−1

3j + M−1
i3 M−1

1j ) � M−1
ij .

Applying the decay estimates as in the previous sections we deduce the following result.

Theorem 3. Assume M is a symmetric tridiagonal M-matrix which is diagonally dominant. Let
U = hI and V be the matrix with ones in the (1, 3) and (3, 1) positions and zeros elsewhere. The
matrix B = M + UV has a non-negative inverse (element-wise) if

h � ρ̂2

2μ
,

where ρ̂ and μ are defined in (3) and (4) respectively.

3.4. Extensions

We are now in a position to return to the matrix B of (5). Writing B as M + E we see that
E is a combination of the perturbations discussed in the previous two sections. It will come as
no surprise that a bound on h to ensure B−1 � 0 may be derived in a similar way to obtain the
following result.

The matrix B from Eq. (5) will have a non-negative inverse if

h � ρ̂2

2(n − 2)μ
.

This is a sufficient but not necessary condition.
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4. Non-symmetric case

Our development does not depend in any way on the symmetry of the matrix M . M is only
required to be a tridiagonal M-matrix. In the non-symmetric case, the decay estimates of Nabben
[15,16] and Peluso and Politi [17] assist in extending the result.

Let

M =

⎛
⎜⎜⎜⎜⎜⎝

a1 −c1
−b1 a2 −c2

. . .
. . .

. . .
−bn−2 an−1 −cn−1

−bn−1 an

⎞
⎟⎟⎟⎟⎟⎠

(9)

be a non-symmetric M-matrix with ci, bi non-negative and ai > 0. We will assume A is strictly
diagonally dominant, that is a1 > c1, an > bn−1 and ai > bi−1 + ci for i = 2, . . . , n − 1.

We define the following quantities, for i = 1, . . . , n

τi = ci

ai − bi−1
, ωi = bi−1

ai − ci

,

δi = ci

ai + bi−1
, γi = bi−1

ai + ci

,

where we set b0 = cn = 0 for consistency.
The following result was given in [16].

Lemma 3. The elements of C = M−1 satisfy

δj ci+1,j � cij � τj ci+1,j , i = 1, . . . , j − 1

and

γj ci−1,j � cij � ωjci−1,j , i = j + 1, . . . , n.

Peluso and Politi [17] point out that if M is an M-matrix the lower bounds δi and γi may be
replaced by the tighter bounds

δi = ci

ai

and γi = bi−1

ai

.

To obtain a bound on the perturbation for the non-symmetric case we proceed in a manner similar
to Section 3.

For purposes of illustration we consider the inverse of B = M + uvT where M is given in (9)
and u and v are chosen so that B1,3 = h. In the symmetric case we were able to rely on estimates
which quantified the decay both along rows and columns. For nonsymmetric matrices M which
are row diagonally dominant Theorem 3 quantifies decay along columns only.

As in Section 3, B−1 will be non-negative if

sM−1
j1 M−1

3k � M−1
jk for j, k = 1, . . . , n, (10)

where s = h/(1 + hM−1
31 ).

Using the decay estimates from Theorem 3 we find the following bounds on s which ensure
that the first row of the matrix inequality (10) is satisfied:
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B−1
1k k = 1 k = 2 k � 3

max s 1
ω2μ

δ
μω

δ2

μ

Here ω and δ are defined as

ω = max
1�i�n

bi−1

ai − ci

and δ = min
1�i�n

ci

ai

. (11)

As in the symmetric case no further restriction is imposed on s from rows 2 through n. Since
M is diagonally dominant, all the quantities τi, ωi, δi and γi are less than one in magnitude. This
implies δ < 1

ω
and we have the following result.

Theorem 4. Assume A is a non-symmetric tridiagonal M-matrix which is row diagonally dom-
inant. Let u = (h, 0, 0, . . . , 0)T and v = (0, 0, 1, 0, . . . , 0)T form the rank-1 matrix uvT. The
matrix B = M + uvT has a non-negative inverse (element-wise) if

h � δ2

μ
,

where δ is defined in (11) and μ is a bound on the diagonal entries of M−1.

The other results of Section 3 (higher rank and symmetric perturbations) may be obtained by
a similar analysis – although the details become quite tedious.

5. Numerical results

We present a number of simple experiments to illustrate the behavior of M matrices under
perturbations.

An irreducible M-matrix has an inverse with all positive elements. One might be tempted to
conclude, that the size of the smallest element of M−1 is an indicator of the extent to which M

may be perturbed and still retain the M-matrix property.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
10

-20

10
-10

10
0

a=2

h

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
10

-40

10
-30

10
-20

a=4

h

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
10

-45

10
-40

10
-35

a=8

h

Fig. 1. Size of smallest element in (M + hV )−1.
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This, however, is not the case. To illustrate, let

M(x) =
⎛
⎝

√
2 + x −1 0
−1

√
2 + x −1

0 −1
√

2 + x

⎞
⎠ ,

clearly M(0) is singular, the following is the explicit expression for the inverse. From this it is
easy to see that for positive x the matrix is an M-matrix, whereas for negative x it is not.

M(x)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1+2
√

2x+x2

x
(

4+3
√

2x+x2
)

√
2+x

x
(

4+3
√

2x+x2
) 1

x
(

4+3
√

2x+x2
)

√
2+x

x
(

4+3
√

2x+x2
)

(√
2+x

)2

x
(

4+3
√

2x+x2
)

√
2+x

x
(

4+3
√

2x+x2
)

1

x
(

4+3
√

2x+x2
)

√
2+x

x
(

4+3
√

2x+x2
) 1+2

√
2x+x2

x
(

4+3
√

2x+x2
)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

As x → 0+, the elements of the inverse become arbitrarily large, whereas the M-matrix property
of M(x) becomes more susceptible to perturbations.

In our experiments we choose a matrix dimension of N = 40, and we work with the matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

a −1
−1 a −1

. . .
. . .

. . .
−1 a −1

−1 a

⎞
⎟⎟⎟⎟⎟⎠

.

2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Parameter a

h m
ax

Fig. 2. Largest perturbation hmax as a function of a (N = 40).
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We consider the perturbed matrix M + hV where V is the matrix with all ones along the second
sub- and super-diagonals and h is a scalar. The first plot, Fig. 1, shows the size of the smallest
element in (M + hV )−1 as a function of h for three values of a, namely a = 2, 4, 8. No line is
plotted for values of h for which M + hV has negative elements. It is evident that for larger a

one can only perturb with smaller values of h.
Fig. 2 shows the largest allowable perturbation h as a function of the parameter a for N = 40.

As a is increased the largest allowable perturbation in the first super- and sub-diagonals decrease.
This is expected since for fixed N the upper bound on h decays like ρ̂2/μ which for this matrix
scales like 1/a.

0 50 100 150 200 250 300
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0.064

0.065

0.066

0.067
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0.071

0.072

N

h m
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Fig. 3. Actual maximum perturbation, h as a function of N (a = 4).
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Fig. 4. Comparison of the largest perturbation hmax as a function of N (a = 4).
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The actual largest allowable h for which the inverse is non-negative is shown in Fig. 3 as a
function of N for a = 4. This bound was found numerically by searching for the maximum value
of h which ensures the inverse of the perturbed matrix is non-negative. This result was confirmed
by two approaches: the use of higher-precision numerical routines (up to 128 digits) and by adding
an appropriately scaled random matrix to the perturbed matrix and re-running the experiment.

Fig. 4 illustrates the largest allowable h as a function of N for a = 4 computed using our
analysis in two ways. The upper curve (with diamond markers) represents the maximum allowable
perturbation as computed numerically by enforcing hM−1V M−1 � M−1 element-wise. The
lower curve (with square markers) is the upper bound of h allowed by the result of Section
3.4. This figure demonstrates that our bound on h obtained from hM−1V M−1 � M−1 is quite
good. A comparison with Fig. 3, however, demonstrates that although we have theoretically found
a sufficient condition to ensure a non-negative inverse the requirement is far from necessary. The
true bound (Fig. 3) shows an initial decay in the maximum perturbation as the size of the matrix
(and the number of perturbed entries) is increased, however, there is no continued scaling with n

as our theoretical bounds indicate.

6. Conclusions

We have established sufficient upper bounds on constant super- and sub-diagonal perturbations
of symmetric tridiagonal M-matrices which ensure the non-negative inverse persists. A similar
bound is presented for a rank-1 perturbation of a general non-symmetric tridiagonal M-matrix.
These bounds depend on the decay rate of the entries of the inverse.

There are several possible improvements which are the subject of ongoing research. If the
tridiagonal M-matrix is non-constant then replacing the decay estimates ρj and ρ̂j by their
maximum and minimum values (respectively) will certainly effect the tightness of the bounds.
The decay estimates may also be improved in an iterative fashion [16] which will yield tighter
estimates. As shown in the previous section, numerically there is a n independent bound on the
maximum allowable positive perturbation of an M-matrix. This bound is not reflected in our
current analysis and is the focus of current investigation. Generalizations of these results by
considering more general perturbations and extensions involving perturbations of general banded
matrices are also underway.
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