Diameter-2 distance-regular graphs (strongly regular graphs)

No. of verticesIntersection ArrayParameters $(n,k,\lambda,\mu)$Graph
5$\{2,1;1,1\}$$(5,2,0,1)$Paley graph $P_5$
6$\{4,1;1,4\}$$(6,4,2,4)$Octahedron
9$\{4,2;1,2\}$$(9,4,1,2)$Paley graph $P_9$
10$\{3,2;1,1\}$$(10,3,0,1)$Petersen graph
10$\{6,2;1,4\}$$(10,6,3,4)$$J(5,2)$
13$\{6,3;1,3\}$$(13,6,2,3)$Paley graph $P_{13}$
15$\{8,3;1,4\}$$(15,8,4,4)$$J(6,2)$
15$\{6,4;1,3\}$$(15,6,1,3)$$K(6,2) \cong \mathrm{NO}_4^-(3)$ graph
$\cong \mathrm{O}_5(2)$ graph $\cong \mathrm{Sp}_4(2)$ graph
16$\{5,4;1,2\}$$(16,5,0,2)$Clebsch graph
16$\{6,3;1,2\}$$(16,6,2,2)$Shrikhande graph
16$\{9,4;1,6\}$$(16,9,4,6)$Complement of Shrikhande graph
16$\{6,3;1,2\}$$(16,6,2,2)$$H(2,4)$
16$\{9,4;1,6\}$$(16,9,4,6)$$\mathrm{VO}_4^+(2)$ graph $\cong$ Bilinear forms graph $\mathrm{H}_2(2,2) \cong$ Complement of $H(2,4)$
16$\{10,3;1,6\}$$(16,10,6,6)$Complement of Clebsch graph
17$\{8,4; 1,4\}$$(17,8,3,4)$Paley graph $P_{17}$
21$\{10,4;1,4\}$$(21,10,5,4)$$J(7,2)$
21$\{10,6;1,6\}$$(21,10,3,6)$$\mathrm{K}(7,2)$
25$\{8,4;1,2\}$$(25,8,3,2)$$H(2,5)$
25$\{12,6; 1,6\}$$(25,12,5,6)$Paley graph $P_{25}$
25$\{12,6;1,6\}$$(25,12,5,6)$Paulus graphs on 25 vertices
26$\{10,6;1,4\}$$(26,10,3,4)$Paulus graphs on 26 vertices
26$\{15,6;1,9\}$$(26,15,8,9)$Complements of Paulus graphs on 26 vertices
27$\{10,8;1,5\}$$(27,10,1,5)$Complement of Schläfli graph
27$\{16,5;1,8\}$$(27,16,10,8)$Schläfli graph
28$\{12,5;1,4\}$$(28,12,6,4)$$J(8,2)$
28$\{15,8;1,10\}$$(28,15,6,10)$$K(8,2) \cong \mathrm{NO}_6^+(2)$ graph
28$\{12,5;1,4\}$$(28,12,6,4)$Chang graphs
28$\{15,8;1,10\}$$(28,15,6,10)$Complement of Chang graphs
29$\{14,7; 1,7\}$$(29,14,6,7)$Paley graph $P_{29}$
29$\{14,7; 1,7\}$$(29,14,6,7)$40 (non-Paley) $\mathrm{SRG}(29,14,6,7)$s
35$\{16,9;1,8\}$$(35,16,6,8)$Folded Johnson graph $J(8,4) \cong$ Merged Johnson graph $J(7,3)$
35$\{18,8;1,9\}$$(35,18,9,9)$Grassmann graph $J_2(4,2) \cong \mathrm{O}_6^+(2)$ graph
36$\{14,9;1,6\}$$(36,14,4,6)$$\mathrm{G}_2(2)$ graph
36$\{14,6;1,4\}$$(36,14,7,4)$$J(9,2)$
36$\{21,10;1,15\}$$(36,21,10,15)$$K(9,2)$
36$\{10,5;1,2\}$$(36,10,4,2)$$H(2,6)$
36$\{15,8;1,6\}$$(36,15,6,6)$$\mathrm{NO}_6^-(2)$ graph $\cong \mathrm{NO}_5^{- \perp}(3)$ graph
37$\{18,9; 1,9\}$$(37,18,8,9)$Paley graph $P_{37}$
40$\{12,9;1,4\}$$(40,12,2,4)$Point graphs of $GQ(3,3)$s
41$\{20,10; 1,10\}$$(41,20,9,10)$Paley graph $P_{41}$
45$\{12,8;1,3\}$$(45,12,3,3)$Point graph of $GQ(4,2)$
45$\{16,7;1,4\}$$(45,16,8,4)$$J(10,2)$
45$\{28,12;1,21\}$$(45,28,15,21)$$K(10,2)$
49$\{24,12; 1,12\}$$(49,24,11,12)$Paley graph $P_{49}$
49$\{24,12; 1,12\}$$(49,24,11,12)$Peisert graph on 49 vertices
49$\{12,6;1,2\}$$(49,12,5,2)$$H(2,7)$
50$\{7,6;1,1\}$$(50,7,0,1)$Hoffman-Singleton graph
53$\{26,13; 1,13\}$$(53,26,12,13)$Paley graph $P_{53}$
55$\{18,8; 1,4\}$$(55,18,9,4)$$J(11,2)$
55$\{36,14;1,28\}$$(55,36,21,28)$$\mathrm{K}(11,2)$
56$\{10,9;1,2\}$$(56,10,0,2)$Gewirtz graph
61$\{30,15; 1,15\}$$(61,30,14,15)$Paley graph $P_{61}$
63$\{30,16; 1,15\}$$(63,30,13,15)$$\mathrm{Sp}_6(2)$ graph $\cong \mathrm{O}_7(2)$ graph
64$\{14,7;1,2\}$$(64,14,6,2)$$H(2,8)$
64$\{21,12;1,6\}$$(64,21,8,6)$Bilinear forms graph $\mathrm{H}_2(2,3) \cong$ Van Lint–Schrijver graph on 64 vertices
64$\{28,15;1,12\}$$(64,28,12,12)$Halved folded 8-cube
64$\{18,15;1,6\}$$(64,18,2,6)$Point graph of $GQ(3,5)$
64$\{27,16;1,12\}$$(64,27,10,12)$$\mathrm{VO}_6^-(2)$ graph
64$\{35,16;1,20\}$$(64,35,18,20)$$\mathrm{VO}_6^+(2)$ graph
65$\{32,16;1,16\}$$(65,32,15,16)$Gritsenko graph
66$\{20,9;1,4\}$$(66,20,10,4)$$J(12,2)$
66$\{45,16;1,36\}$$(66,45,28,36)$$\mathrm{K}(12,2)$
73$\{36,18; 1,18\}$$(73,36,17,18)$Paley graph $P_{73}$
77$\{16,15;1,4\}$$(77,16,0,4)$$\mathrm{M}_{22}$ graph
78$\{22,10;1,4\}$$(78,22,11,4)$$J(13,2)$
78$\{55,18;1,45\}$$(78,55,36,45)$$\mathrm{K}(13,2)$
81$\{20,18;1,6\}$$(81,20,1,6)$Brouwer–Haemers graph $\cong \mathrm{VO}_4^-(3)$ graph
81$\{16,8;1,2\}$$(81,16,7,2)$$H(2,9)$
81$\{40,20;1,20\}$$(81,40,19,20)$Paley graph $P_{81}$
81$\{40,20;1,20\}$$(81,40,19,20)$Peisert graph on 81 vertices
81$\{30,20;1,12\}$$(81,30,9,12)$$\mathrm{VNO}_4^-(3)$ graph
81$\{32,18;1,12\}$$(81,32,13,12)$$\mathrm{VO}_4^+(3)$ graph $\cong$ Bilinear forms graph $\mathrm{H}_3(2,2)$
85$\{20,16;1,5\}$$(85,20,3,5)$Point graph of $GQ(4,4)$
89$\{44,22; 1,22\}$$(89,44,21,22)$Paley graph $P_{89}$
91$\{24,11; 1,4\}$$(91,24,12,4)$$J(14,2)$
91$\{66,20;1,55\}$$(91,66,45,55)$$\mathrm{K}(14,2)$
97$\{48,24; 1,24\}$$(97,48,23,24)$Paley graph $P_{97}$
100$\{18,9;1,2\}$$(100,18,8,2)$$H(2,10)$
100$\{22,21;1,6\}$$(100,22,0,6)$Higman-Sims graph
100$\{36,21;1,12\}$$(100,36,14,12)$Hall-Janko graph
101$\{50,25; 1,25\}$$(101,50,24,25)$Paley graph $P_{101}$
105$\{32,27;1,12\}$$(105,32,4,12)$Goethals-Seidel graph
105$\{26,12;1,4\}$$(105,26,13,4)$$J(15,2)$
105$\{78,22;1,66\}$$(105,78,55,66)$$\mathrm{K}(15,2)$
109$\{54,27;1,27\}$$(109,54,26,27)$Paley graph $P_{109}$
112$\{30,27;1,10\}$$(112,30,2,10)$1st subconstituent of McLaughlin graph
113$\{56,28;1,28\}$$(113,56,27,28)$Paley graph $P_{113}$
117$\{36,20;1,9\}$$(117,36,15,9)$$\mathrm{NO}_6^+(3)$ graph
119$\{54,32;1,27\}$$(119,54,21,27)$$\mathrm{O}_8^-(2)$ graph
120$\{28,13;1,4\}$$(120,28,14,4)$$J(16,2)$
120$\{91,24;1,78\}$$(120,91,66,78)$$\mathrm{K}(16,2)$
120$\{42,33;1,18\}$$(120,42,8,18)$$\mathrm{L}_3(4).2^2$ graph
120$\{56,27;1,24\}$$(120,56,28,24)$Merged Johnson graph $J(10,3)$
120$\{51,32;1,24\}$$(120,51,18,24)$$\mathrm{NO}_5^-(4)$ graph
120$\{63,32;1,36\}$$(120,63,30,36)$$\mathrm{NO}_8^+(2)$ graph
120$\{56,27;1,24\}$$(120,56,28,24)$$\overline{\mathrm{NO}_8^+(2)}$ graph
121$\{20,10;1,2\}$$(121,20,9,2)$$H(2,11)$
121$\{60,30;1,30\}$$(121,60,29,30)$Paley graph $P_{121}$
121$\{60,30;1,30\}$$(121,60,29,30)$Peisert graph on 121 vertices
121$\{40,24;1,12\}$$(121,40,15,12)$Van Lint–Schrijver graph on 121 vertices
125$\{62,31;1,31\}$$(125,62,30,31)$Paley graph $P_{125}$
126$\{25,16;1,4\}$$(126,25,8,4)$Folded Johnson graph $J(10,5) \cong$ Merged Johnson graph $J(9,4)$
126$\{50,36;1,24\}$$(126,50,13,24)$Goethals graph
126$\{45,32;1,18\}$$(126,45,12,18)$Zara graph on 126 vertices $\cong \mathrm{NO}_6^-(3)$ graph
130$\{48,27;1,16\}$$(130,48,20,16)$Grassmann graph $J_3(4,2)$
135$\{64,35;1,32\}$$(135,64,28,32)$$\overline{\mathrm{O}_8^+(2)}$ graph
135$\{70,32;1,35\}$$(135,70,37,35)$$\mathrm{O}_8^+(2)$ graph
136$\{30,14;1,4\}$$(136,30,15,4)$$J(17,2)$
136$\{105,26;1,91\}$$(136,105,78,91)$$\mathrm{K}(17,2)$
136$\{75,32;1,40\}$$(136,75,42,40)$$\mathrm{NO}_5^+(4)$ graph
136$\{60,35;1,28\}$$(136,60,24,28)$$\overline{\mathrm{NO}_5^+(4)}$ graph
136$\{63,32;1,28\}$$(136,63,30,28)$$\mathrm{NO}_8^-(2)$ graph
137$\{68,34;1,34\}$$(137,68,33,34)$Paley graph $P_{137}$
144$\{39,32;1,12\}$$(144,39,6,12)$Faradžev–Klin–Muzychuk
graph from $\mathrm{L}_3(3)$
144$\{66,35;1,30\}$$(144,66,30,30)$Halved Leonard graph
144$\{22,11;1,2\}$$(144,22,10,2)$$H(2,12)$
149$\{74,37;1,37\}$$(149,74,36,37)$Paley graph $P_{149}$
153$\{32,15;1,4\}$$(153,32,16,4)$$J(18,2)$
153$\{120,28;1,105\}$$(153,120,91,105)$$\mathrm{K}(18,2)$
155$\{42,24;1,9\}$$(155,42,17,9)$Grassmann graph $J_2(5,2)$
156$\{30,25;1,6\}$$(156,30,4,6)$Point graphs of $\mathrm{GQ}(5,5)$s
157$\{78,39;1,39\}$$(157,78,38,39)$Paley graph $P_{157}$
162$\{56,45;1,24\}$$(162,56,10,24)$2nd subconstituent of McLaughlin graph
162$\{105,32;1,60\}$$(162,105,72,60)$Complement of the 2nd sub–
constituent of McLaughlin graph
165$\{36,32;1,9\}$$(165,36,3,9)$Point graph of $\mathrm{GQ}(4,8) \cong \mathrm{U}(5,2)$ graph
169$\{24,12;1,2\}$$(169,24,11,2)$$H(2,13)$
169$\{84,42;1,42\}$$(169,84,41,42)$Paley graph $P_{169}$
169$\{72,40;1,30\}$$(169,72,31,30)$Rank-3 $\mathrm{SRG}(169,72,31,30)$
171$\{34,16;1,4\}$$(171,34,17,4)$$J(19,2)$
171$\{136,30;1,120\}$$(171,136,105,120)$$\mathrm{K}(19,2)$
173$\{86,43;1,43\}$$(173,86,42,43)$Paley graph $P_{173}$
175$\{72,51;1,36\}$$(175,72,20,36)$Distance-2 graph of line graph of Hoffman-Singleton graph
176$\{40,27;1,8\}$$(176,40,12,8)$$\overline{\mathrm{NU}_5(2)}$ graph
176$\{135,32;1,108\}$$(176,135,102,108)$$\mathrm{NU}_5(2)$ graph
176$\{70,51;1,34\}$$(176,70,18,34)$$\mathrm{SRG}(176,70,18,34)$
176$\{105,36;1,54\}$$(176,105,68,54)$$\mathrm{SRG}(176,105,68,54)$
181$\{90,45;1,45\}$$(181,90,44,45)$Paley graph $P_{181}$
190$\{36,17;1,4\}$$(190,36,18,4)$$J(20,2)$
190$\{153,32;1,136\}$$(190,153,120,136)$$\mathrm{K}(20,2)$
196$\{26,13;1,2\}$$(196,26,12,2)$$H(2,14)$
208$\{75,44;1,25\}$$(208,75,30,25)$$\mathrm{NU}_3(4)$ graph
210$\{38,18;1,4\}$$(210,38,19,4)$$J(21,2)$
210$\{171,34;1,153\}$$(210,171,136,153)$$\mathrm{K}(21,2)$
216$\{40,35;1,8\}$$(216,40,4,8)$Rijeka graph
225$\{28,14;1,2\}$$(225,28,13,2)$$H(2,15)$
231$\{30,20;1,3\}$$(231,30,9,3)$Cameron graph
231$\{40,19;1,4\}$$(231,40,20,4)$$J(22,2)$
231$\{190,36;1,171\}$$(231,190,153,171)$$\mathrm{K}(22,2)$
243$\{22,20;1,2\}$$(243,22,1,2)$Berlekamp-van Lint-Seidel graph
243$\{110,72;1,60\}$$(243,110,37,60)$Delsarte graph
253$\{42,20;1,4\}$$(253,42,21,4)$$J(23,2)$
253$\{210,38;1,190\}$$(253,210,171,190)$$\mathrm{K}(23,2)$
253$\{112,75;1,60\}$$(253,112,36,60)$$\mathrm{M}_{23}$ graph
255$\{126,64;1,63\}$$(255,126,61,63)$$\mathrm{Sp}_8(2)$ graph $\cong \mathrm{O}_9(2)$ graph
256$\{30,15;1,2\}$$(256,30,14,2)$$H(2,16)$
256$\{45,28;1,6\}$$(256,45,16,6)$$\mathrm{H}_2(4,2)$ graph
256$\{45,28;1,6\}$$(256,45,16,6)$Halved folded 10-cube
256$\{102,63;1,42\}$$(256,102,38,42)$$2^8.\mathrm{L}_2(17)$ graph
256$\{85,60;1,30\}$$(256,85,24,30)$Van Lint–Schrijver graph on 256 vertices
256$\{51,48;1,12\}$$(256,51,2,12)$$\mathrm{VO}_4^-(4)$ graph
256$\{75,48;1,20\}$$(256,75,26,20)$$\mathrm{VO}_4^+(4)$ graph $\cong \mathrm{H}_4(2,2)$ graph
256$\{119,64;1,56\}$$(256,119,54,56)$$\mathrm{VO}_8^-(2)$ graph
256$\{135,64;1,72\}$$(256,135,70,72)$$\mathrm{VO}_8^+(2)$ graph
275$\{112,81;1,56\}$$(275,112,30,56)$McLaughlin graph
276$\{44,21;1,4\}$$(276,44,22,4)$$J(24,2)$
276$\{231,40;1,210\}$$(276,231,190,210)$$\mathrm{K}(24,2)$
280$\{36,27;1,4\}$$(280,36,8,4)$Cocliques in Hall–Janko graph (Graph with valency 36)
280$\{135,64;1,60\}$$(280,135,70,60)$Cocliques in Hall–Janko graph (Graph with valency 135)
280$\{117,72;1,52\}$$(280,117,44,52)$Mathon–Rosa graph
280$\{36,27;1,4\}$$(280,36,8,4)$Point graph of $GQ(9,3)$
289$\{32,16;1,2\}$$(289,32,15,2)$$H(2,17)$
289$\{144,72;1,72\}$$(289,144,71,72)$Paley graph $P_{289}$
289$\{96,60;1,30\}$$(289,96,35,30)$Van Lint–Schrijver graph on 289 vertices
297$\{40,32;1,5\}$$(297,40,7,5)$Point graph of $\mathrm{GQ}(8,4) \cong$ Dual polar graph $\phantom{.}^2 \mathrm{A}_4(2)$
300$\{46,22;1,4\}$$(300,46,23,4)$$J(25,2)$
300$\{253,42;1,231\}$$(300,253,210,231)$$\mathrm{K}(25,2)$
300$\{104,75;1,40\}$$(300,104,28,40)$$\mathrm{NO}_5^-(5)$ graph
300$\{65,54;1,15\}$$(300,65,10,15)$$\mathrm{NO}_5^{- \perp}(5)$ graph
324$\{34,17;1,2\}$$(324,34,16,2)$$H(2,18)$
325$\{48,23;1,4\}$$(325,48,24,4)$$J(26,2)$
325$\{276,44;1,253\}$$(325,276,231,253)$$\mathrm{K}(26,2)$
325$\{144,75;1,60\}$$(325,144,68,60)$$\mathrm{NO}_5^+(5)$ graph
325$\{60,44;1,10\}$$(325,60,15,10)$$\mathrm{NO}_5^{+ \perp}(5)$ graph
325$\{68,64;1,17\}$$(325,68,3,17)$Point graph of $\mathrm{GQ}(4,16) \cong \mathrm{O}_6^-(4)$ graph
330$\{63,38;1,9\}$$(330,63,24,9)$Merged Johnson graph $J(11,4)$
351$\{50,24;1,4\}$$(351,50,25,4)$$J(27,2)$
351$\{300,46;1,276\}$$(351,300,253,276)$$\mathrm{K}(27,2)$
351$\{126,80;1,45\}$$(351,126,45,45)$$\mathrm{NO}_7^{- \perp}(3)$ graph
357$\{100,64;1,25\}$$(357,100,35,25)$$\mathrm{O}_6^+(4)$ graph
361$\{36,18;1,2\}$$(361,36,17,2)$$H(2,19)$
361$\{180,90;1,90\}$$(361,180,89,90)$Paley graph $P_{361}$
361$\{180,90;1,90\}$$(361,180,89,90)$Peisert graph on 361 vertices
361$\{144,84;1,56\}$$(361,144,59,56)$Rank-3 $\mathrm{SRG}(361,144,59,56)$
364$\{120,81;1,40\}$$(364,120,38,40)$$\mathrm{O}_7(3)$ graph
364$\{120,81;1,40\}$$(364,120,38,40)$$\mathrm{Sp}_6(3)$ graph
378$\{52,25;1,4\}$$(378,52,26,4)$$J(28,2)$
378$\{325,48;1,300\}$$(378,325,276,300)$$\mathrm{K}(28,2)$
378$\{117,80;1,36\}$$(378,117,36,36)$$\mathrm{NO}_7^{+ \perp}(3)$ graph
400$\{38,19;1,2\}$$(400,38,18,2)$$H(2,20)$
400$\{56,49;1,8\}$$(400,56,6,8)$Point graphs of $\mathrm{GQ}(7,7)$s
406$\{54,26;1,4\}$$(406,54,27,4)$$J(29,2)$
406$\{351,50;1,325\}$$(406,351,300,325)$$\mathrm{K}(29,2)$
416$\{100,63;1,20\}$$(416,100,36,20)$$\mathrm{G}_2(4)$ graph
435$\{56,27;1,4\}$$(435,56,28,4)$$J(30,2)$
435$\{378,52;1,351\}$$(435,378,325,351)$$\mathrm{K}(30,2)$
441$\{40,20;1,2\}$$(441,40,19,2)$$H(2,21)$
465$\{58,28;1,4\}$$(465,58,29,4)$$J(31,2)$
465$\{406,54;1,378\}$$(465,406,351,378)$$\mathrm{K}(31,2)$
484$\{42,21;1,2\}$$(484,42,20,2)$$H(2,22)$
495$\{238,128;1,119\}$$(495,238,109,119)$$\mathrm{O}_{10}^-(2)$ graph
496$\{60,29;1,4\}$$(496,60,30,4)$$J(32,2)$
496$\{435,56;1,406\}$$(496,435,378,406)$$\mathrm{K}(32,2)$
496$\{255,128;1,136\}$$(496,255,126,136)$$\mathrm{NO}_{10}^+(2)$ graph
496$\{240,119;1,112\}$$(496,240,120,112)$$\overline{\mathrm{NO}_{10}^+(2)}$ graph
525$\{144,95;1,36\}$$(525,144,48,36)$$\mathrm{NU}_3(5)$ graph
527$\{270,128;1,135\}$$(527,270,141,135)$$\mathrm{O}_{10}^+(2)$ graph
528$\{62,30;1,4\}$$(528,62,31,4)$$\mathrm{J}(33,2)$
528$\{465,58;1,435\}$$(528,465,406,435)$$\mathrm{K}(33,2)$
528$\{255,128;1,120\}$$(528,255,126,120)$$\mathrm{NO}_{10}^-(2)$ graph
529$\{44,22;1,2\}$$(529,44,21,2)$$H(2,23)$
529$\{264,132;1,132\}$$(529,264,131,132)$Paley graph $P_{529}$
529$\{264,132;1,132\}$$(529,264,131,132)$Peisert graph on 529 vertices
529$\{264,132;1,132\}$$(529,264,131,132)$Sporadic Peisert graph on 529 vertices
529$\{176,112;1,56\}$$(529,176,63,56)$Van Lint–Schrijver graph on 529 vertices
540$\{224,135;1,96\}$$(540,224,88,96)$$\mathrm{NU}_4(3)$ graph
540$\{187,128;1,68\}$$(540,187,58,68)$Trsat graphs
560$\{208,135;1,80\}$$(560,208,72,80)$$\mathrm{Aut(Sz(8))}$ graph
561$\{64,31;1,4\}$$(561,64,32,4)$$\mathrm{J}(34,2)$
561$\{496,60;1,465\}$$(561,496,435,465)$$\mathrm{K}(34,2)$
576$\{46,23;1,2\}$$(576,46,22,2)$$H(2,24)$
585$\{72,64;1,9\}$$(585,72,7,9)$Point graph of $\mathrm{GQ}(8,8)$
595$\{66,32;1,4\}$$(595,66,33,4)$$\mathrm{J}(35,2)$
595$\{528,62;1,496\}$$(595,528,465,496)$$\mathrm{K}(35,2)$
625$\{144,100;1,30\}$$(625,144,43,30)$Rank-3 graph on 625 vertices with valency 144
625$\{240,144;1,90\}$$(625,240,95,90)$Rank-3 graph on 625 vertices with valency 240
625$\{48,24;1,2\}$$(625,48,23,2)$$H(2,25)$
625$\{312,156;1,156\}$$(625,312,155,156)$Paley graph $P_{625}$
625$\{208,144;1,72\}$$(625,208,63,72)$Van Lint–Schrijver graph on 625 vertices
625$\{260,154;1,110\}$$(625,260,105,110)$$\mathrm{VNO}_4^-(5)$ graph
625$\{104,100;1,20\}$$(625,104,3,20)$$\mathrm{VO}_4^-(5)$ graph
625$\{144,100;1,30\}$$(625,144,43,30)$$\mathrm{VO}_4^+(5)$ graph $\cong \mathrm{H}_5(2,2)$ graph
630$\{68,33;1,4\}$$(630,68,34,4)$$\mathrm{J}(36,2)$
630$\{561,64;1,528\}$$(630,561,496,528)$$\mathrm{K}(36,2)$
651$\{90,56;1,9\}$$(651,90,33,9)$Grassmann graph $J_2(6,2)$
666$\{70,34;1,4\}$$(666,70,35,4)$$\mathrm{J}(37,2)$
666$\{595,66;1,561\}$$(666,595,528,561)$$\mathrm{K}(37,2)$
672$\{495,128;1,360\}$$(672,495,366,360)$$\mathrm{NU}_6(2)$ graph
672$\{176,135;1,48\}$$(672,176,40,48)$$\overline{\mathrm{NU}_6(2)}$ graph
676$\{50,25;1,2\}$$(676,50,24,2)$$H(2,26)$
693$\{180,128;1,45\}$$(693,180,51,45)$$\mathrm{U}_6(2)$ polar graph
703$\{72,35;1,4\}$$(703,72,36,4)$$\mathrm{J}(38,2)$
703$\{630,68;1,595\}$$(703,630,561,595)$$\mathrm{K}(38,2)$
729$\{112,110;1,20\}$$(729,112,1,20)$Games graph
729$\{52,26;1,2\}$$(729,52,25,2)$$H(2,27)$
729$\{104,72;1,12\}$$(729,104,31,12)$$\mathrm{H}_3(2,3)$ graph
729$\{364,182;1,182\}$$(729,364,181,182)$Paley graph $P_{729}$
729$\{364,182;1,182\}$$(729,364,181,182)$Peisert graph on 729 vertices
729$\{224,162;1,72\}$$(729,224,61,72)$$\mathrm{VO}_6^-(3)$ graph
729$\{260,162;1,90\}$$(729,260,97,90)$$\mathrm{VO}_6^+(3)$ graph
741$\{74,36;1,4\}$$(741,74,37,4)$$\mathrm{J}(39,2)$
741$\{666,70;1,630\}$$(741,666,595,630)$$\mathrm{K}(39,2)$
756$\{130,125;1,26\}$$(756,130,4,26)$Point graph of $\mathrm{GQ}(5,25) \cong \mathrm{O}_6^-(5)$ graph
780$\{76,37;1,4\}$$(780,76,38,4)$$\mathrm{J}(40,2)$
780$\{703,72;1,666\}$$(780,703,630,666)$$\mathrm{K}(40,2)$
784$\{54,27;1,2\}$$(784,54,26,2)$$H(2,28)$
806$\{180,125;1,36\}$$(806,180,54,36)$$\mathrm{O}_6^+(5)$ graph
820$\{78,38;1,4\}$$(820,78,39,4)$$\mathrm{J}(41,2)$
820$\{741,74;1,703\}$$(820,741,666,703)$$\mathrm{K}(41,2)$
820$\{90,81;1,10\}$$(820,90,8,10)$Point graphs of $\mathrm{GQ}(9,9)$s
841$\{56,28;1,2\}$$(841,56,27,2)$$H(2,29)$
841$\{420,210;1,210\}$$(841,420,209,210)$Paley graph $P_{841}$
841$\{168,120;1,30\}$$(841,168,47,30)$Rank-3 $\mathrm{SRG}(841,168,47,30)$
841$\{280,180;1,90\}$$(841,280,99,90)$Van Lint–Schrijver graph on 841 vertices
861$\{80,39;1,4\}$$(861,80,40,4)$$\mathrm{J}(42,2)$
861$\{780,76;1,741\}$$(861,780,703,741)$$\mathrm{K}(42,2)$
900$\{58,29;1,2\}$$(900,58,28,2)$$H(2,30)$
903$\{82,40;1,4\}$$(903,82,41,4)$$\mathrm{J}(43,2)$
903$\{820,78;1,780\}$$(903,820,741,780)$$\mathrm{K}(43,2)$
946$\{84,41;1,4\}$$(946,84,42,4)$$\mathrm{J}(44,2)$
946$\{861,80;1,820\}$$(946,861,780,820)$$\mathrm{K}(44,2)$
961$\{60,30;1,2\}$$(961,60,29,2)$$H(2,31)$
961$\{480,240;1,240\}$$(961,480,239,240)$Paley graph $P_{961}$
961$\{480,240;1,240\}$$(961,480,239,240)$Peisert graph on 961 vertices
961$\{240,168;1,56\}$$(961,240,71,56)$Rank-3 $\mathrm{SRG}(961,240,71,56)$
961$\{360,220;1,132\}$$(961,360,139,132)$Rank-3 $\mathrm{SRG}(961,360,139,132)$
977$\{488,244;1,244\}$$(977,488,243,244)$Paley graph $P_{977}$
990$\{86,42;1,4\}$$(990,86,43,4)$$\mathrm{J}(45,2)$
990$\{903,82;1,861\}$$(990,903,820,861)$$\mathrm{K}(45,2)$
997$\{498,249;1,249\}$$(997,498,248,249)$Paley graph $P_{997}$
1009$\{504,252;1,252\}$$(1009,504,251,252)$Paley graph $P_{1009}$
1013$\{506,253;1,253\}$$(1013,506,252,253)$Paley graph $P_{1013}$
1021$\{510,255;1,255\}$$(1021,510,254,255)$Paley graph $P_{1021}$
1023$\{510,256;1,255\}$$(1023,510,253,255)$$\mathrm{Sp}_{10}(2)$ graph $\cong \mathrm{O}_{11}(2)$ graph
1024$\{62,31;1,2\}$$(1024,62,30,2)$$H(2,32)$
1024$\{93,60;1,6\}$$(1024,93,32,6)$$\mathrm{H}_2(2,5)$ graph
1024$\{155,112;1,20\}$$(1024,155,42,20)$Rank-3 $\mathrm{SRG}(1024,155,42,20)$
1024$\{341,220;1,110\}$$(1024,341,120,110)$Van Lint–Schrijver graph on 1024 vertices
1024$\{495,256;1,240\}$$(1024,495,238,240)$$\mathrm{VO}_{10}^-(2)$ graph
1024$\{527,256;1,272\}$$(1024,527,270,272)$$\mathrm{VO}_{10}^+(2)$ graph
1024$\{496,255;1,240\}$$(1024,496,240,240)$$\overline{\mathrm{VO}_{10}^+(2)}$ graph
1066$\{336,243;1,112\}$$(1066,336,92,112)$$\mathrm{O}_8^-(3)$ graph
1080$\{351,224;1,108\}$$(1080,351,126,108)$$\mathrm{NO}_8^+(3)$ graph
1089$\{64,32;1,2\}$$(1089,64,31,2)$$H(2,33)$
1107$\{378,260;1,135\}$$(1107,378,117,135)$$\mathrm{NO}_8^-(3)$ graph
1120$\{390,243;1,130\}$$(1120,390,146,130)$$\mathrm{O}_8^+(3)$ graph
1156$\{66,33;1,2\}$$(1156,66,32,2)$$H(2,34)$
1176$\{300,245;1,84\}$$(1176,300,54,84)$$\mathrm{NO}_5^-(7)$ graph
1210$\{156,108;1,16\}$$(1210,156,47,16)$Grassmann graph $\mathrm{J}_3(5,2)$
1225$\{68,34;1,2\}$$(1225,68,33,2)$$H(2,35)$
1225$\{384,245;1,112\}$$(1225,384,138,112)$$\mathrm{NO}_5^+(7)$ graph
1288$\{495,288;1,180\}$$(1288,495,206,180)$Complement of the Dodecad graph
1288$\{792,315;1,504\}$$(1288,792,476,504)$Dodecad graph
1296$\{70,35;1,2\}$$(1296,70,34,2)$$H(2,36)$
1369$\{72,36;1,2\}$$(1369,72,35,2)$$H(2,37)$
1408$\{567,320;1,216\}$$(1408,567,246,216)$Conway graph on 1408 vertices
1444$\{74,37;1,2\}$$(1444,74,36,2)$$H(2,38)$
1521$\{76,38;1,2\}$$(1521,76,37,2)$$H(2,39)$
1600$\{78,39;1,2\}$$(1600,78,38,2)$$H(2,40)$
1600$\{351,256;1,72\}$$(1600,351,94,72)$$\mathrm{SRG}(1600,351,94,72)$ from Tits group $\phantom{.}^2 F_4(2)'$
1681$\{80,40;1,2\}$$(1681,80,39,2)$$H(2,41)$
1716$\{882,425;1,450\}$$(1716,882,456,450)$Merged Johnson graph $J(13,6)$
1764$\{82,41;1,2\}$$(1764,82,40,2)$$H(2,42)$
1782$\{416,315;1,96\}$$(1782,416,100,96)$Suzuki graph
1849$\{84,42;1,2\}$$(1849,84,41,2)$$H(2,43)$
1936$\{86,43;1,2\}$$(1936,86,42,2)$$H(2,44)$
2016$\{455,384;1,112\}$$(2016,455,70,112)$$\mathrm{NO}_5^-(8)$ graph
2016$\{975,512;1,480\}$$(2016,975,462,480)$$\mathrm{NO}_7^-(4)$ graph
2016$\{1023,512;1,528\}$$(2016,1023,510,528)$$\mathrm{NO}_{12}^+(2)$ graph
2025$\{88,44;1,2\}$$(2025,88,43,2)$$H(2,45)$
2048$\{276,231;1,36\}$$(2048,276,44,36)$$2^{11}.\mathrm{M}_{24}$ graph on 2048 vertices with valency 276
2048$\{759,448;1,264\}$$(2048,759,310,264)$$2^{11}.\mathrm{M}_{24}$ graph on 2048 vertices with valency 759
2048$\{1288,495;1,840\}$$(2048,1288,759,840)$$2^{11}.\mathrm{M}_{24}$ graph on 2048 vertices with valency 1288
2079$\{1054,512;1,527\}$$(2079,1054,541,527)$$\mathrm{O}_{12}^+(2)$ graph
2080$\{567,384;1,144\}$$(2080,567,182,144)$$\mathrm{NO}_5^+(8)$ graph
2080$\{1071,512;1,544\}$$(2080,1071,558,544)$$\mathrm{NO}_7^+(4)$ graph
2080$\{1023,512;1,496\}$$(2080,1023,510,496)$$\mathrm{NO}_{12}^-(2)$ graph
2107$\{384,287;1,64\}$$(2107,384,96,64)$$\mathrm{NU}_3(7)$ graph
2116$\{90,45;1,2\}$$(2116,90,44,2)$$H(2,46)$
2197$\{1098,549;1,549\}$$(2197,1098,548,549)$Paley graph $P_{2197}$
2209$\{92,46;1,2\}$$(2209,92,45,2)$$H(2,47)$
2209$\{1104,552;1,552\}$$(2209,1104,551,552)$Paley graph $P_{2209}$
2209$\{1104,552;1,552\}$$(2209,1104,551,552)$Peisert graph on 2209 vertices
2209$\{1104,552;1,552\}$$(2209,1104,551,552)$Rank-3 $\mathrm{SRG}(2209,1104,551,552)$
2209$\{736,480;1,240\}$$(2209,736,255,240)$Van Lint–Schrijver graph on 2209 vertices
2295$\{310,224;1,35\}$$(2295,310,85,35)$Half dual polar graph $\mathrm{D}_{5,5}(2)$
2300$\{891,512;1,324\}$$(2300,891,378,324)$Conway graph on 2300 vertices
2304$\{94,47;1,2\}$$(2304,94,46,2)$$H(2,48)$
2401$\{96,48;1,2\}$$(2401,96,47,2)$$H(2,49)$
2401$\{1200,600;1,600\}$$(2401,1200,599,600)$Paley graph $P_{2401}$
2401$\{1200,600;1,600\}$$(2401,1200,599,600)$Peisert graph on 2401 vertices
2401$\{240,180;1,20\}$$(2401,240,59,20)$Rank-3 $\mathrm{SRG}(2401,240,59,20)$
2401$\{480,360;1,90\}$$(2401,480,119,90)$Rank-3 $\mathrm{SRG}(2401,480,119,90)$
2401$\{720,490;1,210\}$$(2401,720,229,210)$Rank-3 $\mathrm{SRG}(2401,720,229,210)$
2401$\{960,570;1,380\}$$(2401,960,389,380)$Rank-3 $\mathrm{SRG}(2401,960,389,380)$
2401$\{480,360;1,90\}$$(2401,480,119,90)$Van Lint–Schrijver graph on 2401 vertices
2401$\{300,294;1,42\}$$(2401,300,5,42)$$\mathrm{VO}_4^-(7)$ graph
2401$\{384,294;1,56\}$$(2401,384,89,56)$$\mathrm{VO}_4^+(7)$ graph $\cong \mathrm{H}_7(2,2)$ graph
2440$\{252,243;1,28\}$$(2440,252,8,28)$Point graph of $\mathrm{GQ}(9,27)$
2500$\{98,49;1,2\}$$(2500,98,48,2)$$H(2,50)$
2667$\{186,120;1,9\}$$(2667,186,65,9)$Grassmann graph $\mathrm{J}_2(7,2)$
2752$\{350,343;1,50\}$$(2752,350,6,50)$Dual polar graph $\phantom{.}^2 \mathrm{A}_3(7)$
2752$\{2079,512;1,1584\}$$(2752,2079,1566,1584)$$\mathrm{NU}_7(2)$ graph
3240$\{656,567;1,144\}$$(3240,656,88,144)$$\mathrm{NO}_5^-(9)$ graph
3240$\{2132,729;1,1404\}$$(3240,2132,1402,1404)$$\mathrm{NO}_9^-(3)$ graph
3264$\{975,704;1,300\}$$(3264,975,270,300)$$\mathrm{NU}_4(4)$ graph
3280$\{1092,729;1,364\}$$(3280,1092,362,364)$$\mathrm{O}_9(3)$ graph
3280$\{1092,729;1,364\}$$(3280,1092,362,364)$$\mathrm{Sp}_8(3)$ graph
3321$\{800,567;1,180\}$$(3321,800,232,180)$$\mathrm{NO}_5^+(9)$ graph
3321$\{2240,729;1,1512\}$$(3321,2240,1510,1512)$$\mathrm{NO}_9^+(3)$ graph
3510$\{693,512;1,126\}$$(3510,693,180,126)$$\mathrm{Fi}_{22}$ graph
3648$\{567,440;1,81\}$$(3648,567,126,81)$$\mathrm{NU}_3(8)$ graph
3906$\{780,625;1,156\}$$(3906,780,154,156)$$\mathrm{O}_7(5)$ graph
3906$\{780,625;1,156\}$$(3906,780,154,156)$$\mathrm{Sp}_6(5)$ graph
4060$\{1755,1024;1,780\}$$(4060,1755,730,780)$Rudvalis graph

Back to: Graphs by diameter
Last updated: 13 August 2024