Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Diameter-2 distance-regular graphs (strongly regular graphs)

No. of verticesIntersection ArrayParameters (n,k,λ,μ)Graph
5{2,1;1,1}(5,2,0,1)Paley graph P5
6{4,1;1,4}(6,4,2,4)Octahedron
9{4,2;1,2}(9,4,1,2)Paley graph P9
10{3,2;1,1}(10,3,0,1)Petersen graph
10{6,2;1,4}(10,6,3,4)J(5,2)
13{6,3;1,3}(13,6,2,3)Paley graph P13
15{8,3;1,4}(15,8,4,4)J(6,2)
15{6,4;1,3}(15,6,1,3)K(6,2)NO4(3) graph
O5(2) graph Sp4(2) graph
16{5,4;1,2}(16,5,0,2)Clebsch graph
16{6,3;1,2}(16,6,2,2)Shrikhande graph
16{9,4;1,6}(16,9,4,6)Complement of Shrikhande graph
16{6,3;1,2}(16,6,2,2)H(2,4)
16{9,4;1,6}(16,9,4,6)VO+4(2) graph Bilinear forms graph H2(2,2) Complement of H(2,4)
16{10,3;1,6}(16,10,6,6)Complement of Clebsch graph
17{8,4;1,4}(17,8,3,4)Paley graph P17
21{10,4;1,4}(21,10,5,4)J(7,2)
21{10,6;1,6}(21,10,3,6)K(7,2)
25{8,4;1,2}(25,8,3,2)H(2,5)
25{12,6;1,6}(25,12,5,6)Paley graph P25
25{12,6;1,6}(25,12,5,6)Paulus graphs on 25 vertices
26{10,6;1,4}(26,10,3,4)Paulus graphs on 26 vertices
26{15,6;1,9}(26,15,8,9)Complements of Paulus graphs on 26 vertices
27{10,8;1,5}(27,10,1,5)Complement of Schläfli graph
27{16,5;1,8}(27,16,10,8)Schläfli graph
28{12,5;1,4}(28,12,6,4)J(8,2)
28{15,8;1,10}(28,15,6,10)K(8,2)NO+6(2) graph
28{12,5;1,4}(28,12,6,4)Chang graphs
28{15,8;1,10}(28,15,6,10)Complement of Chang graphs
29{14,7;1,7}(29,14,6,7)Paley graph P29
29{14,7;1,7}(29,14,6,7)40 (non-Paley) SRG(29,14,6,7)s
35{16,9;1,8}(35,16,6,8)Folded Johnson graph J(8,4) Merged Johnson graph J(7,3)
35{18,8;1,9}(35,18,9,9)Grassmann graph J2(4,2)O+6(2) graph
36{14,9;1,6}(36,14,4,6)G2(2) graph
36{14,6;1,4}(36,14,7,4)J(9,2)
36{21,10;1,15}(36,21,10,15)K(9,2)
36{10,5;1,2}(36,10,4,2)H(2,6)
36{15,8;1,6}(36,15,6,6)NO6(2) graph NO5(3) graph
37{18,9;1,9}(37,18,8,9)Paley graph P37
40{12,9;1,4}(40,12,2,4)Point graphs of GQ(3,3)s
41{20,10;1,10}(41,20,9,10)Paley graph P41
45{12,8;1,3}(45,12,3,3)Point graph of GQ(4,2)
45{16,7;1,4}(45,16,8,4)J(10,2)
45{28,12;1,21}(45,28,15,21)K(10,2)
49{24,12;1,12}(49,24,11,12)Paley graph P49
49{24,12;1,12}(49,24,11,12)Peisert graph on 49 vertices
49{12,6;1,2}(49,12,5,2)H(2,7)
50{7,6;1,1}(50,7,0,1)Hoffman-Singleton graph
53{26,13;1,13}(53,26,12,13)Paley graph P53
55{18,8;1,4}(55,18,9,4)J(11,2)
55{36,14;1,28}(55,36,21,28)K(11,2)
56{10,9;1,2}(56,10,0,2)Gewirtz graph
61{30,15;1,15}(61,30,14,15)Paley graph P61
63{30,16;1,15}(63,30,13,15)Sp6(2) graph O7(2) graph
64{14,7;1,2}(64,14,6,2)H(2,8)
64{21,12;1,6}(64,21,8,6)Bilinear forms graph H2(2,3) Van Lint–Schrijver graph on 64 vertices
64{28,15;1,12}(64,28,12,12)Halved folded 8-cube
64{18,15;1,6}(64,18,2,6)Point graph of GQ(3,5)
64{27,16;1,12}(64,27,10,12)VO6(2) graph
64{35,16;1,20}(64,35,18,20)VO+6(2) graph
65{32,16;1,16}(65,32,15,16)Gritsenko graph
66{20,9;1,4}(66,20,10,4)J(12,2)
66{45,16;1,36}(66,45,28,36)K(12,2)
73{36,18;1,18}(73,36,17,18)Paley graph P73
77{16,15;1,4}(77,16,0,4)M22 graph
78{22,10;1,4}(78,22,11,4)J(13,2)
78{55,18;1,45}(78,55,36,45)K(13,2)
81{20,18;1,6}(81,20,1,6)Brouwer–Haemers graph VO4(3) graph
81{16,8;1,2}(81,16,7,2)H(2,9)
81{40,20;1,20}(81,40,19,20)Paley graph P81
81{40,20;1,20}(81,40,19,20)Peisert graph on 81 vertices
81{30,20;1,12}(81,30,9,12)VNO4(3) graph
81{32,18;1,12}(81,32,13,12)VO+4(3) graph Bilinear forms graph H3(2,2)
85{20,16;1,5}(85,20,3,5)Point graph of GQ(4,4)
89{44,22;1,22}(89,44,21,22)Paley graph P89
91{24,11;1,4}(91,24,12,4)J(14,2)
91{66,20;1,55}(91,66,45,55)K(14,2)
97{48,24;1,24}(97,48,23,24)Paley graph P97
100{18,9;1,2}(100,18,8,2)H(2,10)
100{22,21;1,6}(100,22,0,6)Higman-Sims graph
100{36,21;1,12}(100,36,14,12)Hall-Janko graph
101{50,25;1,25}(101,50,24,25)Paley graph P101
105{32,27;1,12}(105,32,4,12)Goethals-Seidel graph
105{26,12;1,4}(105,26,13,4)J(15,2)
105{78,22;1,66}(105,78,55,66)K(15,2)
109{54,27;1,27}(109,54,26,27)Paley graph P109
112{30,27;1,10}(112,30,2,10)1st subconstituent of McLaughlin graph
113{56,28;1,28}(113,56,27,28)Paley graph P113
117{36,20;1,9}(117,36,15,9)NO+6(3) graph
119{54,32;1,27}(119,54,21,27)O8(2) graph
120{28,13;1,4}(120,28,14,4)J(16,2)
120{91,24;1,78}(120,91,66,78)K(16,2)
120{42,33;1,18}(120,42,8,18)L3(4).22 graph
120{56,27;1,24}(120,56,28,24)Merged Johnson graph J(10,3)
120{51,32;1,24}(120,51,18,24)NO5(4) graph
120{63,32;1,36}(120,63,30,36)NO+8(2) graph
120{56,27;1,24}(120,56,28,24)¯NO+8(2) graph
121{20,10;1,2}(121,20,9,2)H(2,11)
121{60,30;1,30}(121,60,29,30)Paley graph P121
121{60,30;1,30}(121,60,29,30)Peisert graph on 121 vertices
121{40,24;1,12}(121,40,15,12)Van Lint–Schrijver graph on 121 vertices
125{62,31;1,31}(125,62,30,31)Paley graph P125
126{25,16;1,4}(126,25,8,4)Folded Johnson graph J(10,5) Merged Johnson graph J(9,4)
126{50,36;1,24}(126,50,13,24)Goethals graph
126{45,32;1,18}(126,45,12,18)Zara graph on 126 vertices NO6(3) graph
130{48,27;1,16}(130,48,20,16)Grassmann graph J3(4,2)
135{64,35;1,32}(135,64,28,32)¯O+8(2) graph
135{70,32;1,35}(135,70,37,35)O+8(2) graph
136{30,14;1,4}(136,30,15,4)J(17,2)
136{105,26;1,91}(136,105,78,91)K(17,2)
136{75,32;1,40}(136,75,42,40)NO+5(4) graph
136{60,35;1,28}(136,60,24,28)¯NO+5(4) graph
136{63,32;1,28}(136,63,30,28)NO8(2) graph
137{68,34;1,34}(137,68,33,34)Paley graph P137
144{39,32;1,12}(144,39,6,12)Faradžev–Klin–Muzychuk
graph from L3(3)
144{66,35;1,30}(144,66,30,30)Halved Leonard graph
144{22,11;1,2}(144,22,10,2)H(2,12)
149{74,37;1,37}(149,74,36,37)Paley graph P149
153{32,15;1,4}(153,32,16,4)J(18,2)
153{120,28;1,105}(153,120,91,105)K(18,2)
155{42,24;1,9}(155,42,17,9)Grassmann graph J2(5,2)
156{30,25;1,6}(156,30,4,6)Point graphs of GQ(5,5)s
157{78,39;1,39}(157,78,38,39)Paley graph P157
162{56,45;1,24}(162,56,10,24)2nd subconstituent of McLaughlin graph
162{105,32;1,60}(162,105,72,60)Complement of the 2nd sub–
constituent of McLaughlin graph
165{36,32;1,9}(165,36,3,9)Point graph of GQ(4,8)U(5,2) graph
169{24,12;1,2}(169,24,11,2)H(2,13)
169{84,42;1,42}(169,84,41,42)Paley graph P169
169{72,40;1,30}(169,72,31,30)Rank-3 SRG(169,72,31,30)
171{34,16;1,4}(171,34,17,4)J(19,2)
171{136,30;1,120}(171,136,105,120)K(19,2)
173{86,43;1,43}(173,86,42,43)Paley graph P173
175{72,51;1,36}(175,72,20,36)Distance-2 graph of line graph of Hoffman-Singleton graph
176{40,27;1,8}(176,40,12,8)¯NU5(2) graph
176{135,32;1,108}(176,135,102,108)NU5(2) graph
176{70,51;1,34}(176,70,18,34)SRG(176,70,18,34)
176{105,36;1,54}(176,105,68,54)SRG(176,105,68,54)
181{90,45;1,45}(181,90,44,45)Paley graph P181
190{36,17;1,4}(190,36,18,4)J(20,2)
190{153,32;1,136}(190,153,120,136)K(20,2)
196{26,13;1,2}(196,26,12,2)H(2,14)
208{75,44;1,25}(208,75,30,25)NU3(4) graph
210{38,18;1,4}(210,38,19,4)J(21,2)
210{171,34;1,153}(210,171,136,153)K(21,2)
216{40,35;1,8}(216,40,4,8)Rijeka graph
225{28,14;1,2}(225,28,13,2)H(2,15)
231{30,20;1,3}(231,30,9,3)Cameron graph
231{40,19;1,4}(231,40,20,4)J(22,2)
231{190,36;1,171}(231,190,153,171)K(22,2)
243{22,20;1,2}(243,22,1,2)Berlekamp-van Lint-Seidel graph
243{110,72;1,60}(243,110,37,60)Delsarte graph
253{42,20;1,4}(253,42,21,4)J(23,2)
253{210,38;1,190}(253,210,171,190)K(23,2)
253{112,75;1,60}(253,112,36,60)M23 graph
255{126,64;1,63}(255,126,61,63)Sp8(2) graph O9(2) graph
256{30,15;1,2}(256,30,14,2)H(2,16)
256{45,28;1,6}(256,45,16,6)H2(4,2) graph
256{45,28;1,6}(256,45,16,6)Halved folded 10-cube
256{102,63;1,42}(256,102,38,42)28.L2(17) graph
256{85,60;1,30}(256,85,24,30)Van Lint–Schrijver graph on 256 vertices
256{51,48;1,12}(256,51,2,12)VO4(4) graph
256{75,48;1,20}(256,75,26,20)VO+4(4) graph H4(2,2) graph
256{119,64;1,56}(256,119,54,56)VO8(2) graph
256{135,64;1,72}(256,135,70,72)VO+8(2) graph
275{112,81;1,56}(275,112,30,56)McLaughlin graph
276{44,21;1,4}(276,44,22,4)J(24,2)
276{231,40;1,210}(276,231,190,210)K(24,2)
280{36,27;1,4}(280,36,8,4)Cocliques in Hall–Janko graph (Graph with valency 36)
280{135,64;1,60}(280,135,70,60)Cocliques in Hall–Janko graph (Graph with valency 135)
280{117,72;1,52}(280,117,44,52)Mathon–Rosa graph
280{36,27;1,4}(280,36,8,4)Point graph of GQ(9,3)
289{32,16;1,2}(289,32,15,2)H(2,17)
289{144,72;1,72}(289,144,71,72)Paley graph P289
289{96,60;1,30}(289,96,35,30)Van Lint–Schrijver graph on 289 vertices
297{40,32;1,5}(297,40,7,5)Point graph of GQ(8,4) Dual polar graph .2A4(2)
300{46,22;1,4}(300,46,23,4)J(25,2)
300{253,42;1,231}(300,253,210,231)K(25,2)
300{104,75;1,40}(300,104,28,40)NO5(5) graph
300{65,54;1,15}(300,65,10,15)NO5(5) graph
324{34,17;1,2}(324,34,16,2)H(2,18)
325{48,23;1,4}(325,48,24,4)J(26,2)
325{276,44;1,253}(325,276,231,253)K(26,2)
325{144,75;1,60}(325,144,68,60)NO+5(5) graph
325{60,44;1,10}(325,60,15,10)NO+5(5) graph
325{68,64;1,17}(325,68,3,17)Point graph of GQ(4,16)O6(4) graph
330{63,38;1,9}(330,63,24,9)Merged Johnson graph J(11,4)
351{50,24;1,4}(351,50,25,4)J(27,2)
351{300,46;1,276}(351,300,253,276)K(27,2)
351{126,80;1,45}(351,126,45,45)NO7(3) graph
357{100,64;1,25}(357,100,35,25)O+6(4) graph
361{36,18;1,2}(361,36,17,2)H(2,19)
361{180,90;1,90}(361,180,89,90)Paley graph P361
361{180,90;1,90}(361,180,89,90)Peisert graph on 361 vertices
361{144,84;1,56}(361,144,59,56)Rank-3 SRG(361,144,59,56)
364{120,81;1,40}(364,120,38,40)O7(3) graph
364{120,81;1,40}(364,120,38,40)Sp6(3) graph
378{52,25;1,4}(378,52,26,4)J(28,2)
378{325,48;1,300}(378,325,276,300)K(28,2)
378{117,80;1,36}(378,117,36,36)NO+7(3) graph
400{38,19;1,2}(400,38,18,2)H(2,20)
400{56,49;1,8}(400,56,6,8)Point graphs of GQ(7,7)s
406{54,26;1,4}(406,54,27,4)J(29,2)
406{351,50;1,325}(406,351,300,325)K(29,2)
416{100,63;1,20}(416,100,36,20)G2(4) graph
435{56,27;1,4}(435,56,28,4)J(30,2)
435{378,52;1,351}(435,378,325,351)K(30,2)
441{40,20;1,2}(441,40,19,2)H(2,21)
465{58,28;1,4}(465,58,29,4)J(31,2)
465{406,54;1,378}(465,406,351,378)K(31,2)
484{42,21;1,2}(484,42,20,2)H(2,22)
495{238,128;1,119}(495,238,109,119)O10(2) graph
496{60,29;1,4}(496,60,30,4)J(32,2)
496{435,56;1,406}(496,435,378,406)K(32,2)
496{255,128;1,136}(496,255,126,136)NO+10(2) graph
496{240,119;1,112}(496,240,120,112)¯NO+10(2) graph
525{144,95;1,36}(525,144,48,36)NU3(5) graph
527{270,128;1,135}(527,270,141,135)O+10(2) graph
528{62,30;1,4}(528,62,31,4)J(33,2)
528{465,58;1,435}(528,465,406,435)K(33,2)
528{255,128;1,120}(528,255,126,120)NO10(2) graph
529{44,22;1,2}(529,44,21,2)H(2,23)
529{264,132;1,132}(529,264,131,132)Paley graph P529
529{264,132;1,132}(529,264,131,132)Peisert graph on 529 vertices
529{264,132;1,132}(529,264,131,132)Sporadic Peisert graph on 529 vertices
529{176,112;1,56}(529,176,63,56)Van Lint–Schrijver graph on 529 vertices
540{224,135;1,96}(540,224,88,96)NU4(3) graph
540{187,128;1,68}(540,187,58,68)Trsat graphs
560{208,135;1,80}(560,208,72,80)Aut(Sz(8)) graph
561{64,31;1,4}(561,64,32,4)J(34,2)
561{496,60;1,465}(561,496,435,465)K(34,2)
576{46,23;1,2}(576,46,22,2)H(2,24)
585{72,64;1,9}(585,72,7,9)Point graph of GQ(8,8)
595{66,32;1,4}(595,66,33,4)J(35,2)
595{528,62;1,496}(595,528,465,496)K(35,2)
625{144,100;1,30}(625,144,43,30)Rank-3 graph on 625 vertices with valency 144
625{240,144;1,90}(625,240,95,90)Rank-3 graph on 625 vertices with valency 240
625{48,24;1,2}(625,48,23,2)H(2,25)
625{312,156;1,156}(625,312,155,156)Paley graph P625
625{208,144;1,72}(625,208,63,72)Van Lint–Schrijver graph on 625 vertices
625{260,154;1,110}(625,260,105,110)VNO4(5) graph
625{104,100;1,20}(625,104,3,20)VO4(5) graph
625{144,100;1,30}(625,144,43,30)VO+4(5) graph H5(2,2) graph
630{68,33;1,4}(630,68,34,4)J(36,2)
630{561,64;1,528}(630,561,496,528)K(36,2)
651{90,56;1,9}(651,90,33,9)Grassmann graph J2(6,2)
666{70,34;1,4}(666,70,35,4)J(37,2)
666{595,66;1,561}(666,595,528,561)K(37,2)
672{495,128;1,360}(672,495,366,360)NU6(2) graph
672{176,135;1,48}(672,176,40,48)¯NU6(2) graph
676{50,25;1,2}(676,50,24,2)H(2,26)
693{180,128;1,45}(693,180,51,45)U6(2) polar graph
703{72,35;1,4}(703,72,36,4)J(38,2)
703{630,68;1,595}(703,630,561,595)K(38,2)
729{112,110;1,20}(729,112,1,20)Games graph
729{52,26;1,2}(729,52,25,2)H(2,27)
729{104,72;1,12}(729,104,31,12)H3(2,3) graph
729{364,182;1,182}(729,364,181,182)Paley graph P729
729{364,182;1,182}(729,364,181,182)Peisert graph on 729 vertices
729{224,162;1,72}(729,224,61,72)VO6(3) graph
729{260,162;1,90}(729,260,97,90)VO+6(3) graph
741{74,36;1,4}(741,74,37,4)J(39,2)
741{666,70;1,630}(741,666,595,630)K(39,2)
756{130,125;1,26}(756,130,4,26)Point graph of GQ(5,25)O6(5) graph
780{76,37;1,4}(780,76,38,4)J(40,2)
780{703,72;1,666}(780,703,630,666)K(40,2)
784{54,27;1,2}(784,54,26,2)H(2,28)
806{180,125;1,36}(806,180,54,36)O+6(5) graph
820{78,38;1,4}(820,78,39,4)J(41,2)
820{741,74;1,703}(820,741,666,703)K(41,2)
820{90,81;1,10}(820,90,8,10)Point graphs of GQ(9,9)s
841{56,28;1,2}(841,56,27,2)H(2,29)
841{420,210;1,210}(841,420,209,210)Paley graph P841
841{168,120;1,30}(841,168,47,30)Rank-3 SRG(841,168,47,30)
841{280,180;1,90}(841,280,99,90)Van Lint–Schrijver graph on 841 vertices
861{80,39;1,4}(861,80,40,4)J(42,2)
861{780,76;1,741}(861,780,703,741)K(42,2)
900{58,29;1,2}(900,58,28,2)H(2,30)
903{82,40;1,4}(903,82,41,4)J(43,2)
903{820,78;1,780}(903,820,741,780)K(43,2)
946{84,41;1,4}(946,84,42,4)J(44,2)
946{861,80;1,820}(946,861,780,820)K(44,2)
961{60,30;1,2}(961,60,29,2)H(2,31)
961{480,240;1,240}(961,480,239,240)Paley graph P961
961{480,240;1,240}(961,480,239,240)Peisert graph on 961 vertices
961{240,168;1,56}(961,240,71,56)Rank-3 SRG(961,240,71,56)
961{360,220;1,132}(961,360,139,132)Rank-3 SRG(961,360,139,132)
977{488,244;1,244}(977,488,243,244)Paley graph P977
990{86,42;1,4}(990,86,43,4)J(45,2)
990{903,82;1,861}(990,903,820,861)K(45,2)
997{498,249;1,249}(997,498,248,249)Paley graph P997
1009{504,252;1,252}(1009,504,251,252)Paley graph P1009
1013{506,253;1,253}(1013,506,252,253)Paley graph P1013
1021{510,255;1,255}(1021,510,254,255)Paley graph P1021
1023{510,256;1,255}(1023,510,253,255)Sp10(2) graph O11(2) graph
1024{62,31;1,2}(1024,62,30,2)H(2,32)
1024{93,60;1,6}(1024,93,32,6)H2(2,5) graph
1024{155,112;1,20}(1024,155,42,20)Rank-3 SRG(1024,155,42,20)
1024{341,220;1,110}(1024,341,120,110)Van Lint–Schrijver graph on 1024 vertices
1024{495,256;1,240}(1024,495,238,240)VO10(2) graph
1024{527,256;1,272}(1024,527,270,272)VO+10(2) graph
1024{496,255;1,240}(1024,496,240,240)¯VO+10(2) graph
1066{336,243;1,112}(1066,336,92,112)O8(3) graph
1080{351,224;1,108}(1080,351,126,108)NO+8(3) graph
1089{64,32;1,2}(1089,64,31,2)H(2,33)
1107{378,260;1,135}(1107,378,117,135)NO8(3) graph
1120{390,243;1,130}(1120,390,146,130)O+8(3) graph
1156{66,33;1,2}(1156,66,32,2)H(2,34)
1176{300,245;1,84}(1176,300,54,84)NO5(7) graph
1210{156,108;1,16}(1210,156,47,16)Grassmann graph J3(5,2)
1225{68,34;1,2}(1225,68,33,2)H(2,35)
1225{384,245;1,112}(1225,384,138,112)NO+5(7) graph
1288{495,288;1,180}(1288,495,206,180)Complement of the Dodecad graph
1288{792,315;1,504}(1288,792,476,504)Dodecad graph
1296{70,35;1,2}(1296,70,34,2)H(2,36)
1369{72,36;1,2}(1369,72,35,2)H(2,37)
1408{567,320;1,216}(1408,567,246,216)Conway graph on 1408 vertices
1444{74,37;1,2}(1444,74,36,2)H(2,38)
1521{76,38;1,2}(1521,76,37,2)H(2,39)
1600{78,39;1,2}(1600,78,38,2)H(2,40)
1600{351,256;1,72}(1600,351,94,72)SRG(1600,351,94,72) from Tits group .2F4(2)
1681{80,40;1,2}(1681,80,39,2)H(2,41)
1716{882,425;1,450}(1716,882,456,450)Merged Johnson graph J(13,6)
1764{82,41;1,2}(1764,82,40,2)H(2,42)
1782{416,315;1,96}(1782,416,100,96)Suzuki graph
1849{84,42;1,2}(1849,84,41,2)H(2,43)
1936{86,43;1,2}(1936,86,42,2)H(2,44)
2016{455,384;1,112}(2016,455,70,112)NO5(8) graph
2016{975,512;1,480}(2016,975,462,480)NO7(4) graph
2016{1023,512;1,528}(2016,1023,510,528)NO+12(2) graph
2025{88,44;1,2}(2025,88,43,2)H(2,45)
2048{276,231;1,36}(2048,276,44,36)211.M24 graph on 2048 vertices with valency 276
2048{759,448;1,264}(2048,759,310,264)211.M24 graph on 2048 vertices with valency 759
2048{1288,495;1,840}(2048,1288,759,840)211.M24 graph on 2048 vertices with valency 1288
2079{1054,512;1,527}(2079,1054,541,527)O+12(2) graph
2080{567,384;1,144}(2080,567,182,144)NO+5(8) graph
2080{1071,512;1,544}(2080,1071,558,544)NO+7(4) graph
2080{1023,512;1,496}(2080,1023,510,496)NO12(2) graph
2107{384,287;1,64}(2107,384,96,64)NU3(7) graph
2116{90,45;1,2}(2116,90,44,2)H(2,46)
2197{1098,549;1,549}(2197,1098,548,549)Paley graph P2197
2209{92,46;1,2}(2209,92,45,2)H(2,47)
2209{1104,552;1,552}(2209,1104,551,552)Paley graph P2209
2209{1104,552;1,552}(2209,1104,551,552)Peisert graph on 2209 vertices
2209{1104,552;1,552}(2209,1104,551,552)Rank-3 SRG(2209,1104,551,552)
2209{736,480;1,240}(2209,736,255,240)Van Lint–Schrijver graph on 2209 vertices
2295{310,224;1,35}(2295,310,85,35)Half dual polar graph D5,5(2)
2300{891,512;1,324}(2300,891,378,324)Conway graph on 2300 vertices
2304{94,47;1,2}(2304,94,46,2)H(2,48)
2401{96,48;1,2}(2401,96,47,2)H(2,49)
2401{1200,600;1,600}(2401,1200,599,600)Paley graph P2401
2401{1200,600;1,600}(2401,1200,599,600)Peisert graph on 2401 vertices
2401{240,180;1,20}(2401,240,59,20)Rank-3 SRG(2401,240,59,20)
2401{480,360;1,90}(2401,480,119,90)Rank-3 SRG(2401,480,119,90)
2401{720,490;1,210}(2401,720,229,210)Rank-3 SRG(2401,720,229,210)
2401{960,570;1,380}(2401,960,389,380)Rank-3 SRG(2401,960,389,380)
2401{480,360;1,90}(2401,480,119,90)Van Lint–Schrijver graph on 2401 vertices
2401{300,294;1,42}(2401,300,5,42)VO4(7) graph
2401{384,294;1,56}(2401,384,89,56)VO+4(7) graph H7(2,2) graph
2440{252,243;1,28}(2440,252,8,28)Point graph of GQ(9,27)
2500{98,49;1,2}(2500,98,48,2)H(2,50)
2667{186,120;1,9}(2667,186,65,9)Grassmann graph J2(7,2)
2752{350,343;1,50}(2752,350,6,50)Dual polar graph .2A3(7)
2752{2079,512;1,1584}(2752,2079,1566,1584)NU7(2) graph
3240{656,567;1,144}(3240,656,88,144)NO5(9) graph
3240{2132,729;1,1404}(3240,2132,1402,1404)NO9(3) graph
3264{975,704;1,300}(3264,975,270,300)NU4(4) graph
3280{1092,729;1,364}(3280,1092,362,364)O9(3) graph
3280{1092,729;1,364}(3280,1092,362,364)Sp8(3) graph
3321{800,567;1,180}(3321,800,232,180)NO+5(9) graph
3321{2240,729;1,1512}(3321,2240,1510,1512)NO+9(3) graph
3510{693,512;1,126}(3510,693,180,126)Fi22 graph
3648{567,440;1,81}(3648,567,126,81)NU3(8) graph
3906{780,625;1,156}(3906,780,154,156)O7(5) graph
3906{780,625;1,156}(3906,780,154,156)Sp6(5) graph
4060{1755,1024;1,780}(4060,1755,730,780)Rudvalis graph

Back to: Graphs by diameter
Last updated: 13 August 2024