There exist precisely ten rank-3 strongly regular graphs on 2401 vertices. They are $H(2,49)$, the Paley graph $P_{2401}$, the Peisert graph on 2401 vertices, the Van Lint-Schrijver graph on 2401 vertices, the $\mathrm{VO}_4^-(7)$ graph, the $\mathrm{VO}_4^+(7)$ graph, and the four graphs below.
| Number of vertices: | $2401$ |
| Diameter: | $2$ |
| Intersection array: | $\{240,180;1,20\}$ |
| Spectrum: | $240^1 44^{240} (-5)^{2160}$ |
| Automorphism group: | $7^4:6.\mathrm{O}(5,3)$ |
| Distance-transitive: | Yes |
| Primitive |
| Number of vertices: | $2401$ |
| Diameter: | $2$ |
| Intersection array: | $\{480,360;1,90\}$ |
| Spectrum: | $480^1 39^{480} (-10)^{1920}$ |
| Automorphism group: | $7^4:6.\left(2^4:\mathrm{S}_5\right)$ |
| Distance-transitive: | Yes |
| Primitive |
| Number of vertices: | $2401$ |
| Diameter: | $2$ |
| Intersection array: | $\{720,490;1,210\}$ |
| Spectrum: | $720^1 34^{720} (-15)^{1680}$ |
| Automorphism group: | $7^4:6.\mathrm{S}_7$ |
| Distance-transitive: | Yes |
| Primitive |
| Number of vertices: | $2401$ |
| Diameter: | $2$ |
| Intersection array: | $\{960,570;1,380\}$ |
| Spectrum: | $960^1 29^{960} (-20)^{1440}$ |
| Automorphism group: | $7^4:48.\mathrm{S}_5$ |
| Distance-transitive: | Yes |
| Primitive |