The complement of this graph is the Kneser graph $\mathrm{K}(25,2)$.
Number of vertices: | $300$ |
Diameter: | $2$ |
Intersection array: | $\{46,22;1,4\}$ |
Spectrum: | $46^1 21^{24} (-2)^{275}$ |
Automorphism group: | $\mathrm{S}_{25}$ |
Distance-transitive: | Yes |
Primitive |