The complement of this graph is the Kneser graph $\mathrm{K}(14,2)$.
Number of vertices: | $91$ |
Diameter: | $2$ |
Intersection array: | $\{24,11;1,4\}$ |
Spectrum: | $24^1 10^{13} (-2)^{77}$ |
Automorphism group: | $\mathrm{S}_{14}$ |
Distance-transitive: | Yes |
Primitive |