There exist precisely five rank-3 strongly regular graphs on 2209 vertices. They are the Van Lint–Schrijver graph on 2209 vertices, $H(2,47)$, the Paley graph $P_{2209}$, the Peisert graph on 2209 vertices, and the graph below with valency 1104.
Number of vertices: | $2209$ |
Diameter: | $2$ |
Intersection array: | $\{1104,552;1,552\}$ |
Spectrum: | $1104^1 23^{1104} (-24)^{1104}$ |
Automorphism group: | $47^2:46.\mathrm{S}_4$ |
Distance-transitive: | Yes |
Primitive |