This graph is the unique rank-4 $\mathrm{SRG}(300,65,10,15)$. The first subconstituent of this graph is the Hall graph from $\mathrm{P} \Sigma \mathrm{L}(2,25)$.
| Number of vertices: | $300$ |
| Diameter: | $2$ |
| Intersection array: | $\{65,54;1,15\}$ |
| Spectrum: | $65^1 5^{195} (-10)^{104}$ |
| Automorphism group: | $\mathrm{PGO}(5,5) \cong \mathrm{PSp}(4,5).2$ |
| Distance-transitive: | No |
| Primitive |