The complement of this graph is the $\overline{\mathrm{NU}_6(2)}$ graph. This graph is the distance-2 graph of the Moscow–Soicher graph.
| Number of vertices: | $672$ |
| Diameter: | $2$ |
| Intersection array: | $\{495,128;1,360\}$ |
| Spectrum: | $495^1 15^{231} (-9)^{440}$ |
| Automorphism group: | $\mathrm{P} \Gamma \mathrm{L}(6,2) \cong \mathrm{U}_6(2):\mathrm{S}_3$ |
| Distance-transitive: | Yes |
| Primitive |