Rank-3 graphs on 841 vertices

There exist precisely four rank-3 strongly regular graphs on 841 vertices. They are $H(2,29)$, the Van Lint–Schrijver graph on 841 vertices, the Paley graph $P_{841}$, and the graph below which is the unique rank-3 $\mathrm{SRG}(841,168,47,30)$.

Number of vertices:$841$
Diameter:$2$
Intersection array:$\{168,120;1,30\}$
Spectrum:$168^1 23^{168} (-6)^{672}$
Automorphism group:$29^2:\left(7 \times \left(\mathrm{SL}_2(3):4\right)\right)$
Distance-transitive:Yes
Primitive




Downloads

Back to: A-Z indexGraphs with 501-1000 verticesGraphs with diameter 2
Last updated: 23 July 2024