There exist precisely four rank-3 strongly regular graphs on 841 vertices. They are $H(2,29)$, the Van Lint–Schrijver graph on 841 vertices, the Paley graph $P_{841}$, and the graph below which is the unique rank-3 $\mathrm{SRG}(841,168,47,30)$.
Number of vertices: | $841$ |
Diameter: | $2$ |
Intersection array: | $\{168,120;1,30\}$ |
Spectrum: | $168^1 23^{168} (-6)^{672}$ |
Automorphism group: | $29^2:\left(7 \times \left(\mathrm{SL}_2(3):4\right)\right)$ |
Distance-transitive: | Yes |
Primitive |