There exist precisely seven rank-3 strongly regular graphs on 625 vertices. They are $H(2,25)$, $\mathrm{VO}_4^-(5)$, $\mathrm{VO}_4^+(5)$, the Van Lint–Schrijver graph on 625 vertices, the Paley graph $P_{625}$, and the two graphs below.
| Number of vertices: | $625$ |
| Diameter: | $2$ |
| Intersection array: | $\{144,100;1,30\}$ |
| Spectrum: | $144^1 19^{144} (-6)^{480}$ |
| Automorphism group: | $5^4:4.\mathrm{S}_6$ |
| Distance-transitive: | Yes |
| Primitive |
| Number of vertices: | $625$ |
| Diameter: | $2$ |
| Intersection array: | $\{240,144;1,90\}$ |
| Spectrum: | $240^1 15^{240} (-10)^{384}$ |
| Automorphism group: | $5^4:4.(2^4.\mathrm{S}_6)$ |
| Distance-transitive: | Yes |
| Primitive |