Rank-3 graphs on 625 vertices

There exist precisely seven rank-3 strongly regular graphs on 625 vertices. They are $H(2,25)$, $\mathrm{VO}_4^-(5)$, $\mathrm{VO}_4^+(5)$, the Van Lint–Schrijver graph on 625 vertices, the Paley graph $P_{625}$, and the two graphs below.

Graph with valency 144

Number of vertices:$625$
Diameter:$2$
Intersection array:$\{144,100;1,30\}$
Spectrum:$144^1 19^{144} (-6)^{480}$
Automorphism group:$5^4:4.\mathrm{S}_6$
Distance-transitive:Yes
Primitive

Graph with valency 240

Number of vertices:$625$
Diameter:$2$
Intersection array:$\{240,144;1,90\}$
Spectrum:$240^1 15^{240} (-10)^{384}$
Automorphism group:$5^4:4.(2^4.\mathrm{S}_6)$
Distance-transitive:Yes
Primitive




Downloads (Valency 144)

Downloads (Valency 240)

References

Back to: A-Z indexGraphs with 501-1000 verticesGraphs with diameter 2
Last updated: 23 July 2024