DistanceRegular.org
Kneser graph $K(6,2) \cong \mathrm{NO}_4^-(3)$ graph $\cong \mathrm{O}_5(2)$ graph $\cong \mathrm{Sp}_4(2)$ graph
This graph is the complement of the
Johnson graph $\mathrm{J}(6,2)$
.
Number of vertices:
$15$
Diameter:
$2$
Intersection array:
$\{6,4;1,3\}$
Spectrum:
$6^1 1^9 (-3)^5$
Automorphism group:
$\mathrm{S}_6$
Distance-transitive:
Yes
Primitive
Downloads
Adjacency matrix
Adjacency matrix in GAP format
Adjacency matrix in CSV format
Graph in GRAPE format
Links
Andries Brouwer
Wikipedia
Wolfram
Back to:
A-Z index
•
Graphs with up to 50 vertices
•
Graphs with diameter 2
•
Graphs with valency 6
•
Kneser graphs
•
Finite orthogonal graphs
•
Nonisotropic orthogonal graphs
Last updated: 13 August 2024