Rank-3 graphs on 961 vertices

There exist precisely five rank-3 strongly regular graphs on 961 vertices. They are $H(2,31)$, the Paley graph $P_{961}$, the Peisert graph on 961 vertices, and the two graphs below.

Graph with valency 240

Number of vertices:$961$
Diameter:$2$
Intersection array:$\{240,168;1,56\}$
Spectrum:$240^1 23^{240} (-8)^{720}$
Automorphism group:$31^2:\left(15 \times \left(\mathrm{SL}(2,3).2\right)\right)$
Distance-transitive:Yes
Primitive

Graph with valency 360

Number of vertices:$961$
Diameter:$2$
Intersection array:$\{360,220;1,132\}$
Spectrum:$360^1 19^{360} (-12)^{600}$
Automorphism group:$31^2:\left(15 \times 2.\mathrm{A}_5\right)$
Distance-transitive:Yes
Primitive




Downloads (Valency 240)

Downloads (Valency 360)

Back to: A-Z indexGraphs with 501-1000 verticesGraphs with diameter 2
Last updated: 23 July 2024