This graph is the unique rank-3 $\mathrm{SRG}(4060,1755,730,780)$. The first subconstituent of this graph is the distance 1-or-2-or-3 graph of the Ree–Tits generalized octagon, $\mathrm{GO}(2,4)$.
Number of vertices: | $4060$ |
Diameter: | $2$ |
Intersection array: | $\{1755,1024;1,780\}$ |
Spectrum: | $1755^1 15^{3276} (-65)^{783}$ |
Automorphism group: | $\mathrm{Ru}$ |
Distance-transitive: | Yes |
Primitive |