| Graph | No. of vertices | Diameter |
| $\mathrm{NU}_3(4)$ graph | 208 | 2 |
| Unitary graph from $\mathrm{P} \Gamma \mathrm{U}(3,4)$ | 208 | 3 |
| $J(21,2)$ | 210 | 2 |
| $\mathrm{K}(21,2)$ | 210 | 2 |
| $J(10,4)$ | 210 | 4 |
| $H(3,6)$ | 216 | 3 |
| Rijeka graph | 216 | 2 |
| $J(12,3)$ | 220 | 3 |
| $H(2,15)$ | 225 | 2 |
| Cameron graph | 231 | 2 |
| $J(22,2)$ | 231 | 2 |
| $\mathrm{K}(22,2)$ | 231 | 2 |
| $H(5,3)$ | 243 | 5 |
| Berlekamp-van Lint-Seidel graph | 243 | 2 |
| Delsarte graph | 243 | 2 |
| Coset graph of shortened ternary Golay code | 243 | 4 |
| $J(10,5)$ | 252 | 5 |
| Doubled Odd graph $D(O_5)$ | 252 | 9 |
| $J(23,2)$ | 253 | 2 |
| $\mathrm{K}(23,2)$ | 253 | 2 |
| $\mathrm{M}_{23}$ graph | 253 | 2 |
| 8-cube $Q_8 \cong H(8,2)$ | 256 | 8 |
| Folded 9-cube | 256 | 4 |
| $H(2,16)$ | 256 | 2 |
| $\mathrm{H}_2(4,2)$ graph | 256 | 2 |
| Halved 9-cube | 256 | 4 |
| Halved folded 10-cube | 256 | 2 |
| $H(4,4)$ | 256 | 4 |
| $2^8.\mathrm{L}_2(17)$ graph | 256 | 2 |
| $\mathrm{VO}_4^-(4)$ graph | 256 | 2 |
| $\mathrm{VO}_4^+(4)$ graph $\cong \mathrm{H}_4(2,2)$ graph | 256 | 2 |
| $\mathrm{VO}_8^-(2)$ graph | 256 | 2 |
| $\mathrm{VO}_8^+(2)$ graph | 256 | 2 |
| Livingstone graph | 266 | 4 |
| Incidence graph of $PG(2,11)$ | 266 | 3 |
| McLaughlin graph | 275 | 2 |
| $J(24,2)$ | 276 | 2 |
| $\mathrm{K}(24,2)$ | 276 | 2 |
| Cocliques in Hall–Janko graph | 280 | 2 |
| Mathon–Rosa graph | 280 | 2 |
| Point graph of $GQ(9,3)$ | 280 | 2 |
| Unitals in $PG(2,4)$ | 280 | 4 |
| $J(13,3)$ | 286 | 3 |
| Leonard graph | 288 | 4 |
| Incidence graphs of Leonard semibiplanes | 288 | 3 |
| $H(2,17)$ | 289 | 2 |
| Paley graph $P_{289}$ | 289 | 2 |
| Point graph of $\mathrm{GQ}(8,4) \cong$ Dual polar graph $\phantom{.}^2 \mathrm{A}_4(2)$ | 297 | 2 |
| $J(25,2)$ | 300 | 2 |
| $\mathrm{K}(25,2)$ | 300 | 2 |
| $\mathrm{NO}_5^-(5)$ graph | 300 | 2 |
| $\mathrm{NO}_5^{- \perp}(5)$ graph | 300 | 2 |