$``N=k"$ denotes that there are $k$ non-isomorphic examples of such graphs.
| Graph | No. of vertices | Diameter |
| Octahedron $J(4,2)$ | 6 | 2 |
| 3-Cube $Q_3 \cong K_{4,4}-I \cong H(3,2)$ | 8 | 3 |
| Paley graph $P_9 \cong H(2,3)$ | 9 | 2 |
| Petersen graph $O_3 \cong K(5,2)$ | 10 | 2 |
| $J(5,2)$ | 10 | 2 |
| $K_{5,5}-I$ | 10 | 3 |
| Icosahedron | 12 | 3 |
| $K_{6,6}-I$ | 12 | 3 |
| Paley graph $P_{13}$ | 13 | 2 |
| Heawood graph $\cong$ Incidence graph of $PG(2,2)$ | 14 | 3 |
| Distance-3 graph of Heawood graph | 14 | 3 |
| $K_{7,7}-I$ | 14 | 3 |
| Line graph of Petersen graph | 15 | 3 |
| $K(6,2) \cong \mathrm{O}_5(2)$ graph $\cong \mathrm{Sp}_4(2)$ graph $\cong \mathrm{NO}_4^-(3)$ graph | 15 | 2 |
| $J(6,2)$ | 15 | 2 |
| 4-cube $Q_4 \cong H(4,2)$ | 16 | 4 |
| $H(2,4)$ | 16 | 2 |
$\mathrm{VO}_4^+(2)$ graph $\cong$ Bilinear forms graph $\mathrm{H}_2(2,2) \cong$ Complement of $H(2,4)$ | 16 | 2 |
| Shrikhande graph | 16 | 2 |
| Complement of Shrikhande graph | 16 | 2 |
| Clebsch graph | 16 | 2 |
| Complement of Clebsch graph | 16 | 2 |
| $K_{8,8}-I$ | 16 | 2 |
| Paley graph $P_{17}$ | 17 | 2 |
| Pappus graph | 18 | 4 |
| $K_{9,9}-I$ | 18 | 3 |
| Dodecahedron | 20 | 5 |
| Desargues graph $D(O_3)$ | 20 | 5 |
| $J(6,3)$ | 20 | 3 |
| $K_{10,10}-I$ | 20 | 3 |
| Line graph of Heawood graph | 21 | 3 |
| $J(7,2)$ | 21 | 2 |
| $\mathrm{K}(7,2)$ | 21 | 2 |
| Incidence graph of biplane on 11 points | 22 | 3 |
| Incidence graph of $(11,6,3)$-design | 22 | 3 |
| $K_{11,11}-I$ | 22 | 3 |
| Klein graph | 24 | 3 |
| $K_{12,12}-I$ | 24 | 3 |
| $H(2,5)$ | 25 | 2 |
| Paley graph $P_{25}$ | 25 | 2 |
| Paulus graphs, $\mathrm{SRG}(25,12,5,6)$ (N=14, 7 pairs) | 25 | 2 |
| Complement of $H(2,5)$ | 25 | 2 |
| Paulus graphs, $\mathrm{SRG}(26,10,3,4)$ (N=10) | 26 | 2 |
| Complements of Paulus graphs, $\mathrm{SRG}(26,15,8,9)$ (N=10) | 26 | 2 |
| Incidence graph of $PG(2,3)$ | 26 | 3 |
| Incidence graph of $(13,9,3)$-design | 26 | 3 |
| $K_{13,13}-I$ | 26 | 3 |
| $H(3,3)$ | 27 | 3 |
| $GQ(2,4)$ minus spread (N=2) | 27 | 3 |
| Complement of Schläfli graph | 27 | 2 |
| Schläfli graph | 27 | 2 |
| Coxeter graph | 28 | 4 |
| $J(8,2)$ | 28 | 2 |
| Chang graphs (N=3) | 28 | 2 |
| Taylor graph from $P_{13}$ | 28 | 3 |
| $K_{14,14}-I$ | 28 | 3 |
| $K(8,2) \cong \mathrm{NO}_6^+(2)$ graph | 28 | 2 |
| Complements of Chang graphs (N=3) | 28 | 2 |
| Paley graph $P_{29}$ | 29 | 2 |
| Other $\mathrm{SRG}(29,14,6,7)$ (N=40, 20 pairs) | 29 | 2 |
| Tutte's 8-cage | 30 | 4 |
| Incidence graph of $PG(3,2)$ | 30 | 3 |
| Incidence graphs of Hadamard $(15,7,3)$-designs (N=4) | 30 | 3 |
| Incidence graph of complement of $PG(3,2)$ | 30 | 3 |
| Incidence graphs of $(15,8,4)$-designs (N=4) | 30 | 3 |
| $K_{15,15}-I$ | 30 | 3 |
| Incidence graph of $AG(2,4)$ minus a parallel class | 32 | 4 |
| 5-cube $Q_5 \cong H(5,2)$ | 32 | 5 |
| Armanios-Wells graph | 32 | 4 |
| Folded 6-cube | 32 | 3 |
| Incidence graphs of biplanes on 16 points (N=3) | 32 | 3 |
| Incidence graphs of $(16,10,6)$-designs (N=3) | 32 | 3 |
| Hadamard graph on 32 vertices | 32 | 4 |
| Taylor graph from $J(6,2) \cong$ Halved 6-cube | 32 | 3 |
| Taylor graph from $K(6,2)$ | 32 | 3 |
| $K_{16,16}-I$ | 32 | 3 |
| $K_{17,17}-I$ | 34 | 3 |
| Folded Johnson graph $J(8,4) \cong$ Merged Johnson graph $J(7,3)$ | 35 | 2 |
| Grassmann graph $J_2(4,2)$ | 35 | 2 |
| Odd graph $O_4$ | 35 | 3 |
| $J(7,3)$ | 35 | 3 |
| $\mathrm{G}_2(2)$ graph | 36 | 2 |
| Sylvester graph | 36 | 3 |
| Hexacode graph | 36 | 4 |
| $H(2,6)$ | 36 | 2 |
| $J(9,2)$ | 36 | 2 |
| $K(9,2)$ | 36 | 2 |
| $\mathrm{NO}_6^-(2)$ graph $\cong \mathrm{NO}_5^{- \perp}(3)$ graph | 36 | 2 |
| Point graphs of $GQ(3,3)$s | 40 | 2 |
| Coolsaet-Degraer 3-cover of $K_{14}$ | 42 | 3 |
| Incidence graph of $PG(2,4)$ | 42 | 3 |
| Symplectic 3-cover of $K_{14}$ | 42 | 3 |
| 2nd subconstituent of Hoffman-Singleton graph | 42 | 3 |
| Line graph of Tutte's 8-cage | 45 | 4 |
| Halved Foster graph | 45 | 4 |
| $J(10,2)$ | 45 | 2 |
| $K(10,2)$ | 45 | 2 |
| Point graph of $GQ(4,2)$ | 45 | 2 |
| Hadamard graph on 48 vertices | 48 | 4 |
| $H(2,7)$ | 49 | 2 |
| Paley graph $P_{49}$ | 49 | 2 |
| Peisert graph on 49 vertices | 49 | 2 |
| Incidence graph of $AG(2,5)$ minus a parallel class | 50 | 4 |
| Hoffman-Singleton graph | 50 | 2 |
| Complement of Hoffman-Singleton graph | 50 | 2 |