Distance-regular graphs on up to 50 vertices

$``N=k"$ denotes that there are $k$ non-isomorphic examples of such graphs.
GraphNo. of verticesDiameter
Octahedron $J(4,2)$62
3-Cube $Q_3 \cong K_{4,4}-I \cong H(3,2)$83
Paley graph $P_9 \cong H(2,3)$92
Petersen graph $O_3 \cong K(5,2)$102
$J(5,2)$102
$K_{5,5}-I$103
Icosahedron123
$K_{6,6}-I$123
Paley graph $P_{13}$132
Heawood graph $\cong$ Incidence graph of $PG(2,2)$143
Distance-3 graph of Heawood graph143
$K_{7,7}-I$143
Line graph of Petersen graph153
$K(6,2) \cong \mathrm{O}_5(2)$ graph $\cong \mathrm{Sp}_4(2)$ graph $\cong \mathrm{NO}_4^-(3)$ graph152
$J(6,2)$152
4-cube $Q_4 \cong H(4,2)$164
$H(2,4)$162
$\mathrm{VO}_4^+(2)$ graph $\cong$ Bilinear forms graph $\mathrm{H}_2(2,2) \cong$
Complement of $H(2,4)$
162
Shrikhande graph162
Complement of Shrikhande graph162
Clebsch graph162
Complement of Clebsch graph162
$K_{8,8}-I$162
Paley graph $P_{17}$172
Pappus graph184
$K_{9,9}-I$183
Dodecahedron205
Desargues graph $D(O_3)$205
$J(6,3)$203
$K_{10,10}-I$203
Line graph of Heawood graph213
$J(7,2)$212
$\mathrm{K}(7,2)$212
Incidence graph of biplane on 11 points223
Incidence graph of $(11,6,3)$-design223
$K_{11,11}-I$223
Klein graph243
$K_{12,12}-I$243
$H(2,5)$252
Paley graph $P_{25}$252
Paulus graphs, $\mathrm{SRG}(25,12,5,6)$ (N=14, 7 pairs)252
Complement of $H(2,5)$252
Paulus graphs, $\mathrm{SRG}(26,10,3,4)$ (N=10)262
Complements of Paulus graphs, $\mathrm{SRG}(26,15,8,9)$ (N=10)262
Incidence graph of $PG(2,3)$263
Incidence graph of $(13,9,3)$-design263
$K_{13,13}-I$263
$H(3,3)$273
$GQ(2,4)$ minus spread (N=2)273
Complement of Schläfli graph272
Schläfli graph272
Coxeter graph284
$J(8,2)$282
Chang graphs (N=3)282
Taylor graph from $P_{13}$283
$K_{14,14}-I$283
$K(8,2) \cong \mathrm{NO}_6^+(2)$ graph282
Complements of Chang graphs (N=3)282
Paley graph $P_{29}$292
Other $\mathrm{SRG}(29,14,6,7)$ (N=40, 20 pairs)292
Tutte's 8-cage304
Incidence graph of $PG(3,2)$303
Incidence graphs of Hadamard $(15,7,3)$-designs (N=4)303
Incidence graph of complement of $PG(3,2)$303
Incidence graphs of $(15,8,4)$-designs (N=4)303
$K_{15,15}-I$303
Incidence graph of $AG(2,4)$ minus a parallel class324
5-cube $Q_5 \cong H(5,2)$325
Armanios-Wells graph324
Folded 6-cube323
Incidence graphs of biplanes on 16 points (N=3)323
Incidence graphs of $(16,10,6)$-designs (N=3)323
Hadamard graph on 32 vertices324
Taylor graph from $J(6,2) \cong$ Halved 6-cube323
Taylor graph from $K(6,2)$323
$K_{16,16}-I$323
$K_{17,17}-I$343
Folded Johnson graph $J(8,4) \cong$ Merged Johnson graph $J(7,3)$352
Grassmann graph $J_2(4,2)$352
Odd graph $O_4$353
$J(7,3)$353
$\mathrm{G}_2(2)$ graph362
Sylvester graph363
Hexacode graph364
$H(2,6)$362
$J(9,2)$362
$K(9,2)$362
$\mathrm{NO}_6^-(2)$ graph $\cong \mathrm{NO}_5^{- \perp}(3)$ graph362
Point graphs of $GQ(3,3)$s402
Coolsaet-Degraer 3-cover of $K_{14}$423
Incidence graph of $PG(2,4)$423
Symplectic 3-cover of $K_{14}$423
2nd subconstituent of Hoffman-Singleton graph423
Line graph of Tutte's 8-cage454
Halved Foster graph454
$J(10,2)$452
$K(10,2)$452
Point graph of $GQ(4,2)$452
Hadamard graph on 48 vertices484
$H(2,7)$492
Paley graph $P_{49}$492
Peisert graph on 49 vertices492
Incidence graph of $AG(2,5)$ minus a parallel class504
Hoffman-Singleton graph502
Complement of Hoffman-Singleton graph502

Back to: Graphs by number of vertices
Last updated: 22 April 2025