Distance-regular graphs from 301 to 500 vertices

GraphNo. of verticesDiameter
Doubled Grassmann graph $\mathrm{DJ}_2(5,2)$3105
Hall–Janko/Cohen–Tits near octagon3154
Soicher's 3rd graph3154
$H(2,18)$3242
$J(26,2)$3252
$\mathrm{K}(26,2)$3252
$\mathrm{NO}_5^+(5)$ graph3252
$\mathrm{NO}_5^{+ \perp}(5)$ graph3252
Point graph of $\mathrm{GQ}(4,16) \cong \mathrm{O}_6^-(4)$ graph3252
Merged Johnson graph $J(11,4)$3302
Doubly truncated Witt graph3304
$J(11,4)$3304
Incidence graph of $AG(2,13)$ minus a parallel class3384
$H(3,7)$3433
$J(27,2)$3512
$\mathrm{K}(27,2)$3512
$\mathrm{NO}_7^{- \perp}(3)$ graph3512
Incidence graph of Higman's symmetric design3523
Taylor graphs from Higman–Sims group (2 graphs)3523
$\mathrm{O}_6^+(4)$ graph3572
$H(2,19)$3612
Paley graph $P_{361}$3612
Peisert graph on 361 vertices3612
Rank-3 $\mathrm{SRG}(361,144,59,56)$3612
$J(14,3)$3643
$\mathrm{O}_7(3)$ graph3642
Point graph of $GH(3,3)$3643
$\mathrm{Sp}_6(3)$ graph3642
Antipodal 3-cover of Zara graph3784
$J(28,2)$3782
$\mathrm{K}(28,2)$3782
$\mathrm{NO}_7^{+ \perp}(3)$ graph3782
$H(2,20)$4002
Point graphs of $\mathrm{GQ}(7,7)$s4002
$J(29,2)$4062
$\mathrm{K}(29,2)$4062
$\mathrm{G}_2(4)$ graph4162
Flag graph of $GQ(4,4)$4254
$J(30,2)$4352
$\mathrm{K}(30,2)$4352
$H(2,21)$4412
$J(15,3)$4553
Folded Johnson graph $J(12,6)$4623
$J(11,5)$4625
Odd graph $O_6$4625
$J(31,2)$4652
$\mathrm{K}(31,2)$4652
$H(2,22)$4842
Koolen–Riebeek graph4864
Soicher's 2nd graph4864
$J(12,4)$4954
$\mathrm{O}_{10}^-(2)$ graph4952
$J(32,2)$4962
$\mathrm{K}(32,2)$4962
$\mathrm{NO}_{10}^+(2)$ graph4962
$\overline{\mathrm{NO}_{10}^+(2)}$ graph4962

Back to: Graphs by number of vertices
Last updated: 7 August 2024