Number of vertices: | $486$ |

Diameter: | $4$ |

Intersection array: | $\{45,44,36,5;1,9,40,45\}$ |

Spectrum: | $45^1 9^{110} 0^{264} (-9)^{110} (-45)^1$ |

Automorphism group: | $3^5:(2 \times M_{10})$ |

Distance-transitive: | No |

Bipartite |

- Adjacency matrix
- Adjacency matrix in GAP format
- Adjacency matrix in CSV format
- Graph in GRAPE format

- A.E. Brouwer, J.H. Koolen and R.J. Riebeek, A new distance-regular graph associated to the Mathieu group $M_{10}$,
*J. Algebraic Combin.***8**(1998), 153–156. - R.F. Bailey and D.R. Hawtin, On the 486-vertex distance-regular graphs of Koolen–Riebeek and Soicher,
*Electronic J. Combin.***27**(2020), P3.13 (12pp).