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PREFACE

. This volume grew out from the “International Conference on Reaction-
Diffusion Systems and Viscosity Solutions” held at Providence University,
Taiwan, during January 3-6, 2007. It consists mostly of selected articles rep-
resenting the recent progress of some important areas of nonlinear partial
differential equations. Some of the articles are research papers by partic-
ipants of the conference, but most are invited survey papers by leading
experts in the field, not necessarily participant of the conference. We hope
that in the form of a collected volume, the themes of the conference are
further developed, and more researchers can benefit from it. In particular,
we hope that the book is useful for researchers and postgraduate students
who want to learn about or follow some of the current research work in
nonlinear partial differential equations.

The topics included here reflect the themes of the above-mentioned con-
ference and the research interests of the editors, and therefore are naturally
biased and incomplete. Nevertheless, they cover a wide range of partial dif-
ferential equations, from regularity of viscosity solutions, to symmetry prop-
erties of positive solutions of parabolic equations, to nonlinear Schrodinger
equations, to mention but a few. A complete list can be found from the
content pages.

We thank Providence University for the financial support of the confer-
ence and of the publication of this volume; without doubt many researchers
and postgraduate students will benefit from this generous support, for many
years to come. We also thank the authors for their efforts to make this vol-
ume a valuable reference book. Finally we extend our thanks to the editors
at World Scientific Publishing for their help and patience.

Yihong Du (University of New England, Australia)
Hitoshi Ishii { Waseda University, Japan)
Wei-Yueh Lin (Providence University, Taiwan)

November 2008
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SPATIAL DYNAMICS OF SOME EVOLUTION
SYSTEMS IN BIOLOGY

Xiao-Qiang Zhao*
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St. John’s, NL A1C 557, Canada
E-mail: zzhao@math.mun.ca

We first give a brief review on traveling waves, spreading speeds, and global
stability for monotone evolution systems with monostable and bistable nonlin-
earities. Then we outline our recently developed theory and methods for general
monotone semiflows and certain non-monotone systems, and their applications -
to some biological models.
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1. Introduction

The study of traveling waves and spreading speeds for evolution equations
with spatial structure has a history which is at least 70 years long. A solu-
tion u(t, z) of an evolutionary system is said to be a traveling wave solution
if u(t, z) = U(xz—ct) for some function U. Usually, U is called the wave pro-
file, and c is called the wave speed. If, in addition, two limits U(o0) exist,
this solution is also called a traveling wavefront. Monostable and bistable
nonlinearities frequently appear in spatially homogeneous systems. In the
following, we briefly review these two typical cases.
Fisher (1937) [38] considered the following equation

U = Uz +u{l—u), z€R, t>0. (1.1)

*Supported in part by the NSERC of Canada and the MITACS of Canada.
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He showed that the wave solution u(t,z) = U (z — ct) exists if and only
if |e| > ¢min = 2, and conjectured that Cmin is the asymptotic speed of
propagation of the advantageous gene.

Kolmogoroff, Petrowsky and Piscounoff (1937) [66] established the same
result with u(1 — u) replaced by a function f(u) having the same qualita-
tive properties, and proved that the solution u(t, r) with u(0,z) = H(-z)
converges to the monotone (decreasing) traveling wave with speed Cpipn in
profile.

Aronson and Weinberger (1975, 1978) [5, 6] studied a class of reaction-
diffusion equations, and confirmed Fisher’s conjecture. More precisely, they
proved the following result.

Theorem A. Let u(t,z) be a nonzero solution of (1.1) with u(0,z) having
compact support. Then the following two statements are valid:

(i) lim  wu(t,z) =0, (o > 2;

t—00,|x|>ct

(ii) lim u(t,z) =1, Vee (0,2).

t—o0,|z|<ct

Let u(t,z) satisfy the properties (i) and (ii) above. For any given
p € (0,1), let 2% (t) and z°(t) be the most right and left points with
u(t, ¢4 (t)) = p, respectively. We can easily show that

P

t

lim 22
tmoo ¢

=2

uniformly for p in any compact interval contained in (0,1). Thus, it is
natural to call this ¢* = 2 as the asymptotic speed of spread (in short,
spreading speed). ’

Since these fundamental works there have been extensive investigations
on traveling waves, spreading speeds, convergence, uniqueness, minimal
wave speeds, and stability for various evolution equations. It is impossible
to include all the related papers in our references. The below is a partial
list for the study of monostable waves and spreading speeds.

Autonomous reaction-diffusion equations: (47}, [114, 115], [136], (107,
108], [35], (18], [65], [14], [138], [39], [139], [97), [94], [105], [129], [158], [46],
(72], [154], [141], [71], [155], [87], and references therein.

Density-dependent reaction-diffusion equations: [110-113], [89-91], and
[88].

Discrete-time systems w11 = Q[un): (142, 143), [77-80], [67], [145], [75],
[62], and [52]. .
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Integral and integrodifferential equations: (7], [19], 4], [27], [29], [117,
118}, 28], [130-132], [101-104], [133], [95], (20}, [81], and [148].

Time-delayed reaction-diffusion equations: [116], [150], [82], [2, 3], [42],
(133], [53], [109], [34], [140], [159], [44], [83], [100], {147] and references
therein.

Lattice equations: [57, 162], [149], (24, 251, [146}, [85], [23], [45], [156],
[87), and references therein.

Periodic and almost periodic evolution equations: [121], [74], and [60,
61}.

_mmaonommumwo:m environment models: [62-64, 125}, [152], [58], [15-17],
[144], [123], [45), and references therein.

Fife and Mcleod (1977, 1981) [36, 37] proved the existence, uniqueness
and asymptotic stability of monotone traveling waves of the following scalar
reaction-diffusion equation with bistable nonlinearity:

up = Uge +u(l —u)(u—a), t€R, 120, (1.2)

where a € (0,1). .
Chen (1997) [22] further extended this result to nonlocal evolution
equations, and developed a squeezing technique for the global exponential

stability.

Theorem B. Fquation (1.2) admits a unique (up to translation) monotone
traveling wave solution @(x — ct), and there ezists a positive constant p >0
such that for every bounded and uniformly continuous initial function ()
on R with the property that

limsup ¥(€) < a < liminf ¥(§),

£——00 §—o0
the corresponding solution u(z,t,1) satisfies
lu(z, t, ) — (z — ct + sy)|| < Cye ™,V eR, 120,

for some constant sy € R and Cy > 0.

Ludwig et al. (1979) [76] presented the following spruce budworm pop-
ulation model with bistable nonlinearity:

ON N BN?
M“UDZ‘TﬂmZAH'ﬁv \wwufzm.

Here rg is the linear birth rate of the budworm, and Kp is the carrying
capacity, which is related to the density of foliage available on the trees. The

g
i
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term N%%%n with A, B > 0 represents predation, generally by birds. Both
the refuge equilibrium and the outbreak equilibrium are linearly stable. The
below is a partial list for the study of bistable waves.

Monotone reaction-diffusion systems: [151], [139], [96], [106], [99], [54],
[153], [134, 135], [59].

Time-delayed reaction-diffusion equations: [116], [127], [84], and refer-
ences therein.

Integro-differential equations: [13], [22], [9], and [10].

Periodic reaction-diffusion equations: [1], [8].

Almost periodic and nonautonomous reaction-diffusion equations: [119-
121, 124], [21].

Lattice equations: [160, 161], [26], [92, 93], [11, 12], [122], [86].

There are also numerous investigations on traveling waves for other
types of evolution equations in biology. Among these models are two-species
competition type reaction-diffusion systems (see, e.g., [40], [49-51}, [70],
(43}, [73]) and predator-prey type reaction-diffusion systems (see, e.g., [41],
[30-32], [128], [55, 56)). ,

The purpose of this paper is to survey the theory and methods of spread-
ing speeds and traveling waves for general monotone semiflows and certain
non-monotone systems, and their applications to some evolution systems
in biology, which were previously presented in papers with collaborators.

2. Monotone systems

A family of mappings {®;}:>¢ is said to be a semiflow on a metric space
(M, d) provided that &g = I, ®;, o By, = Py, 4+,, and ¥;(v) is continuous
in {¢,v) € R4+ x M. In this section, we discuss spreading speeds and travel-
ing waves for order-preserving (monotone) maps and semifiows on ordered
spaces of functions.

2.1. Monostable case

Let 7 be a nonnegative real number and C be the set of all bounded and
continuous functions from [~7,0] x H to R*, where H = R or Z. Clearly,
any vector in R* and any element in the space C := C([—7, 0], R¥) can be re-
garded as a function in C. Let X be the space of all bounded and continuous
functions from H to R* equipped with the compact open topology.

For u = (u!, -+ ,uF),v = (v, ,v*) € C, we write u > v(u > v) pro-
vided u*(8,z) > v(8, )(u* (0, x) > vi(8,7)),Yi = 1,--- ,k,0 € [-7,0),x €
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H; and u > v provided u > v but u # v. For any two vectorsa,bin R* or two
functions a, b € C, we can define a > (>,>>) b similarly. For any r € C with
r > 0, we define C, :={ueC:r>u>0} and G :={ueC:r>u>0}
Define the reflection operator R by R[u](8, z) = u(f, —z). Given y € H,
define the translation operator Ty, by Ty{u](8, z) = u(f,z — y).
For given 8y € [-7,0], o0 € H and W C C, we use the following
notations:

W(-,20) = {6(~0) €C: ¢ € W}, W(bo,") = {#(00,) € X : p€ W}

‘W C C is said to be T-invariant if T,3W = W for all y € H.

Given a function ¢ € C and a bounded interval I = [a,b] C H, we define
a function ¢; € C([—7,0] x I,R¥) by ¢1(6,z) = ¢(8, ). Moreover, for any
subset D of C, we define

Dy = {¢1 € C(|-7,0] x I,R¥) : ¢ € D}.

Let 3 € C with 8> 0and Q@ = (Q1,---,Qx) : Cg — Cg. We first
introduce the following assumptions on Q:

(A1) Q[R[u]] = RIQ[u]}, Ty[Qlu]] = QTy[u]], Vu & Cs, y € H.
(A2) Q: Cs — Cgis continuous with respect to the compact open topology.
(A3) One of the following two properties holds:

(a) There is a number € [0,1) such that for any A C Cp and z € K,
o({Q](- ) : u € A}) < la({u(-,x) : u € A}), where o is the
Kuratowski measure of noncompactness on the Banach space C.

(b) The set Q[Cp)(0,) is precompact in X, and there is a positive
number ¢ < 7 such that Q[u](6, z) = u(d +¢,x) for —7 <6 < —¢,
and the operator

0,z),-T<0< —¢
m?_a,avuu AMEN, amun MQMQ,

has the property that S[D](-,0) is precompact in C for any T-
invariant set D C Cg with D(0, ) precompact in X.
(A4) Q: Cg — Cg is monotone (order-preserving) in the sense that Q[u] >
Q[v] whenever u > v in Cp.
(A5) Q: Cs — Cp admits exactly two fixed points 0 and 5, and for any
positive number e, there is o € Cg with ||la|l < € such that Q[a] > .

It is easy to see that the hypotheses (A3)(a) holds if {Q[u](-,z) : v €
Cs,z € H} is a precompact subset of C.

o i it
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Theorem 2.1. ([75, THEOREM 2.17] AND [74, REMARK 2.1]) Let
{Qt}e>0 be a semiflow on Cg with Q:[0] = 0,Q:[B] = B for all t > 0.
Suppose that Q = Q1 satisfies all hypotheses (A1)—(A5), and Q, satisfies
(A1) for any t > 0. Let ¢* be the asymptotic speed of spread of Q1. Then
the following statements are valid:

(i) Foranyc > c*, ifv € Cg with0 < v < B, and v(-,z) = 0 for z
outside a bounded interval, then  lim  Q.[v](8,z) = O uniformly
. t—o0,|x|>ct
for 6 € [-1,0].
(i) For any ¢ < c* and o € Cs with ¢ > 0, there is a positive number
T such that if v € Cg and v(-,z) > o for = on an interval of length
2r,, then  lim  Q:[v|(6,x) = B(6) uniformly for 6 € [~7,0]. If, in

t—o0,{z|<ct
addition, Qy is subhomogeneous, then r, can be chosen to be indepen-
dent of o > 0.

To estimate the spreading speed c¢*, we can use the following linear
operators approach. Let M : C -+ C be a linear operator. Assume that

(M1) M is continuous with respect to the compact open topology.

(M2) M is a positive operator, that is, M[v] > 0 whenever v > 0.

(M3) M satisfies (A3) with Cg replaced by any uniformly bounded subset
of C.

(M4) M[R[u]] = R[M[ul], T,[M[u]] = M[Ty[u]},Vu € C,y € H.

(M5) For some A € (0,400], M can be extended to a linear operator on
the linear space € of all function v € C([-, 0] x H,R¥) having the
form

v(0,z) = v1(8, )e* T + va(0, 2)eH?™ vy, v2 € C, 1, 2 € (=4, A),

such that if v,,v € € and v,(f,2) — v(#,z) uniformly on any
bounded set, then M{v,](f,z) — M[v](f,z) uniformly on any
bounded set.

(M6) For any p € [0,A), the linear operator B,, : C — C, defined by

B,[a](8) = M|ae **}(8,0), V0 € [~7,0],

is positive, and there is ng such that Bj° is a compact and strongly
positive linear operator on C.

(MT7) The principal eigenvalue A(u) of B, satisfies that A(0) > 1.

Theorem 2.2. ({75, THEOREM 3.10]) Let @ be an operator on Cs satisfy-
ing (A1}—(Ab), and c* be its spreading speed. Assume that there is a linear
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operator M satisfying (M1)(M7) such that ®(pn) = w,._u A(p) assumes its
minimum value at some t € (0,A): Then the following. statements are
valid: Ce : IR

(1) If Q[u] < Mu] .xoﬂ all v € Cga, thén c* A Em:me A) OAE

(2) If there is some n € C with n > 0 such that ©~ | > >i u for any
u € Cy, then ¢* > inf,e(0,4) P(p).

Note that A = +00 is assumed in [7 m, Theorem 3.10}. In the case where
A € (0,+00), the proof of {75, Theorem 3.10] implies that {75, Theorem
3.10] with inf,50 ®(u) replaced by inf, e a) ®(u) is still valid, provided
that (M5) holds for all py, u2 € (— D A) and ®(u) assumes its minimum
value at p* € (0,A).

We say that S\Q T — n& is a traveling wave of A@L“VO if W [—1,0] x
R — R and Q:{W](8,z) = W (8, x — ct), and that W(8,z — ct) connects 3
to 0 if W{(-, —o0) =  and W(-,+00) = 0.

In order to obtain the existence of the traveling wave with the wave
speed ¢ > c*, we need to strengthen the hypothesis (A3) into the following
one.

(A6) One of the following two conditions holds:

(a) For any number r > 0, there exists | = I(r) € [0,1) such that
for any D C Cs and any interval I = {a,b] of the length r, we
have a((Q[D))1) < la(Dr), where a is the Kuratowski measure
of noncompactness on the Banach space C([-T,0] x I, R¥).

(b) The set Q[Cs](0,-) is precompact in X, and there is a positive
number ¢ < 7 such that Q[u}(8,z) = u(f+¢,z) for -7 < 8 < —,
and the operator

u(0,z), -7 <8< —¢

Slul(f, ) := A@?Z%,Hv. —-¢<08<0,

has the property that S[D] is precompact in Cs for any 7-
invariant set D C Cg with D(0,-) precompact in X.

It is easy to see that the hypotheses (A6)(a) holds if Q[Cg| is precompact
in Cg with respect to the compact open topology. Moreover, if H is discrete,
then the hypothesis (A3) on @ implies the hypothesis (A6).

Theorem 2.3. (|75, THEOREMS 4.1 AND 4.2] AND [74, REMARK 2.3])
Assume that for any t > 0, Q; satisfies hypotheses (A1)~(A5) and let ¢
be the asymptotic speed of spread of Q1. Then the following two statements
are valid:
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(i) For any 0 < ¢ < c*, {Q:}i>0 has no traveling wave W (0, z — ct) con-
necting 3 to 0.

(ii) If, in addition, Q; satisfies (A6) for any t > 0, then for any ¢ > c*,
{Q1}1>0 has a traveling wave W (0, x — ct) connecting 3 to 0 such that
W (0, s) is continuous and nonincreasing in s € R.

We should point out that Theorems 2.1,2.2 and 2.3 were highly moti-
vated by the earlier works of Weinberger (143}, Lui [79] and Li, Weinberger
and Lewis [72]. More precisely, the existence of spreading speeds and trav-
eling waves for a scalar discrete-time recursion model on a habitat which
may be either continuous or discrete was established in [143]. The time map
approach to continuous-time models has been prescribed explicitly in the
recent paper [72] for cooperative reaction-diffusion systems. Further, the
spreading speed results for a system of discrete-time recursions were given
in [79] in the case where the linear operators have compact supports.

Note that for a time-delayed reaction-diffusion equation or lattice sys-
tem, one can show that its solution map Q; satisfies A(6)(a) for ¢ > 7, and
A(6)(b) with ¢ = ¢ for t € (0, 7], under appropriate m.mm:Bvﬁo:m.

Remark 2.1. Theorems 2.1 and 2.3 are still valid provided that the inter-
val [—7,0] is replaced with a compact metric space and that the hypotheses
(A3) and (A6) are replaced with (A3)(a) and (A6)(a), respectively.

The theory of spreading speeds and traveling waves has been further
developed to monotone periodic semiflows in [74]. It should be interesting to
extend this theory to almost periodic and general nonautonomous systems.

Regarding the global asymptotic stability with phase shift of traveling
wave fronts of minimal speed, in short minimal fronts, there is no general
result. For the scalar reaction-diffusion equation

Ut = Uzg + f(u), (z,t) € R x (0, 00), (2.1)

this problem was addressed in [87] via the method of upper and lower
solutions and a squeezing technique under the following assumptions:

(F1) f € C1([0,1,R), £(0) = f(1) =0, (1) <0, and f(u) > 0,Vu €
0,1).

(F2) There exist two constants L > 0 and v > 0 such that |f'(u1) —
.\.\Aﬁwv_ < Ljuy —ugl¥, Y(uy, uz) € Ev H_w.

Theorem 2.4. ([87, THEOREM A’]) Assume that (F1) and (F2) hold. Let
(U, ¢) be a traveling wave of (2.1) such that
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)
A2+ f(0).
Then U(z + ct) is globally exponentially stable with phase shift in the sense
that for any a € (A1/A2, 1), there exists a constant v > 0 such that for any
initial data ¢ € C(R, [0, 1]) with

(P,) limg— oo % = Ay > Ay, where Ay and A; are two rootls of ch =

liminf p(z) > 0, and limsup p(z)e™*M* < 400,

T—+00 I——00
the solution u(z,t,¢) of (2.1) with u(-,0,¢) = ¢ satisfies
QAPJ t, Sv _ QA&. +ct+ mov
Ue(z+ct+ &)
for some M = M(p) > 0 and & = €o(p) € R.
Note that U(z + cmint) of (2.1) with cmin > 2+/f'(0) satisfies (P.) with
¢ = Cmin, a8nd hence, it is globally exponentially stable. Further, Theorem

A’ is a nontrivial improvement of [108, Theorem 1] since it does not assume
the condition that f’(0) > 0. ;

< Me " Vt>0,z€R,

2.2. Bistable case

For cooperative reaction-diffusion systems with positive diffusion coeffi-
cients, and scalar nonlocal evolution equations, the existence, uniqueness
and global asymptotic stability of bistable waves are well-known. However,
there is no general result on the existence of bistable waves for monotone
semiflows. The methods include the phase space analysis, shooting method,
perturbation method, etc. In general, it is more difficult to obtain the ex-
istence of bistable waves than monostable waves.

The squeezing technique can be used effectively to prove the global
asymptotic stability of bistable waves for scalar evolution equations (and
their lattice versions). Recently, Tsai [135] also applied this technique to a
class of monotone reaction-diffusion systems.

A dynamical systems approach was developed in {153, 157] to prove the
global attractivity (and hence uniqueness) of bistable waves for monotone
systems. For simplicity, we let p(z — ct) be a monotone traveling wave of
the reaction-diffusion equation

:%quv = &ﬁaaaH_S + \AQA&, mvv Aw.mv
By the moving coordinate z = z — ct, we transform (2.2) into

ug(z,t) = cu,(z,t) + duz(2,t) + f(u(z,t)). (2.3)

g ann i
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Then ¢(z) is an equilibrium solution of equation (2.3). Let u(z,t,7) be the
solution of (2.3) with u(-,0,v¢) = .

Clearly, the solution U(x,t,v) of (2.2) with initial value 1 is given by
U(z,t,v) = u(x — ct,t,v). Thus, the comparison principle holds for (2.2)
and hence for (2.3). Note that (2.3) generates a monotone semiflow {Q;};>0
on the Banach space BUC(R, R) of all bounded and uniformly continuous
functions from R to R with the usual supreme norm, that is,

@w?&v = ‘:AJ? ﬁv. t N O, Q € mQQQWLWv,

but {Q:}:>0 is not strongly monotone.
For any interval [a,b] C R, the ordered arc

L:={p(-+3): s €la,b]}

consists of equilibria of (2.3). It then suffices to study the convergence of
an orbit of (2.3) to some equilibrium in L. For this purpose, one can use
the following convergence result for monotone semiflows.

Theorem 2.5. ([157, THEOREM 2.2.4]) Let U be a closed conver subset
of an ordered Banach space X, and ®(t) : U — U be a monotone semiflow.
Assume that there ezists a monotone homeomorphism h from [0,1] onto a
subset of U such that

(1) For each s € [0,1], h(s) is a stable equilibrium for ®(t) : U — U;

(2) Each orbit of ®(t) in [h(0), h(1)]x is precompact;

(3) If h(so) <x w(@) for some so € [0,1) and ¢ € [R(0), h(1))x, then there
exists 81 € (s0,1) such that h(s1) <x w(d).

Then for any precompact orbit v*(¢o) of ®(t) in U with w(dg) N
[h(0), h(1)]x # O, there exists s* € [0,1] such that w(go) = h(s*).

This approach was used to prove the global attractivity of traveling
waves for scalar periodic reaction-diffusion equations in [157, Theorem
10.2.1} and for a class of reaction-diffusion systems in [153, Theorem 3.1].
To obtain the exponential stability of bistable waves for monotone systems,
one needs to do spectral analysis (see, e.g., [153, Theorem 4.1]). In the rest
of this subsection, we present the recent results obtained in [59].

Let D > 0. Consider a reaction-diffusion system

d

wm = Umuﬂw + F(u,v),

P , (2.4)
2= G(u,v)

ot e

Assume that
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(H1) There exist three points E_ = (0,0), Eo = (a1,b1) and Ey = (az,b2)
with 0 < a1 < a2 and 0 < by < bg such that

(1) F,G € CY(R%,R), Fy(u,v) >0, Gy(u,v) > 0 and Gy(u,v) < 0 on
R?, and G4(0,0) > 0.

(2) E-, Eo and E, are only zeros of f(u,v) := (F(u,v),G(u,v)) in
the order interval [E_, E.].

(3) All eigenvalues of the Jacobian matrices Df(E_) and Df(Ey)
have negative real parts, and D f(Fp) has an eigenvalue with pos-
itive real part and another with negative real part.

(4) Fy(u,v) > 0 for (u,v) € [0,a2] x [0, ba].

By the assumption (H1), it follows that the spatially homogeneous
system

N p,v),

mﬁ 2.5)
v

i G(u,v)

has only three equilibria E_, Eg and E4 in [E_, E4], E_ and E, arestable,
Ejy is a saddle. By a shooting method, we obtain the following result on the
existence of bistable waves of (2.4) connecting E_ and F,.

Theorem 2.6. ([59, THEOREM 2.1]) Let (H1) hold. Then system (2.4)
has a monotone increasing traveling wave solution (U(z + ct), V(z + ct))
connecting E_ to E, for some real number ¢ such that the wave speed ¢
has the same sign as the integral [* F(U,V*(U))dU, where V*(U) satisfies
GU,v*(U)) =0.

To obtain the global attractivity of bistable waves, we need the following
additional conditions on F and G.

(H2) F and G can be extended to the domain (—1,00)? for some I > 0 such
that

(1) F,G € C*((~1,00)%,R), Fy(u,v) <0, Fy(u,v) > 0, Gyu(u,v) 20
and Gy (u,v) < 0 for (u,v) € (=1,00)2.

(2) There exists L > 0 such that for any lz > L, there exists L >0
such that F(l1,12) < 0.

Let X = BUC(R,R?) be the Banach space of all bounded and uni-
formly continuous functions from R to R? with the usual supreme norm.
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Let Xy = {(¥1,%2) € X : ¢:(z) > 0,Vz € R,i = 1,2}. By the afore-
mentioned dynamical systems approach as applied to system (2.4), we have
the following result.

Theorem 2.7. ({59, THEOREM 3.1}) Assume that (H1) and (H2) hold.
Let ¢(z — ct) be a monotone traveling wave solution of system (2.4) and
U(t, z,9) = (ult,z,¥), v(t, x,v)) be the solution of (2.4) with U(0,-,¢) =
¥ € Xy. Then for any ¢ € X, with

lim sup ¥(§) < Eo < liminf (&), (2.6)

£——o00 §{—o00

there erists sy € R such that lim [|U(t,z,¢) — d(z — ct + sy)||gz = 0

t—4o00 -
uniformly for x € R. Moreover, any traveling wave solution of system (2.4)
connection E_ and E, is a translate of ¢.

We remark that by the spectrum analysis as in [153, Section 4], one can
obtain the local exponential stability with phase shift of the bistable wave
¢(z — ct) with ¢ # 0. This, together with Theorem 2.7, implies the global
exponential stability with phase shift of the bistable wave ¢(z — ct) with
¢ # 0 of (2.4). _

3. A class of non-monotone systems

Many discrete- and continuous-time population models with spatial struc-
ture are not monotone. For example, scalar discrete-time integrodiffer-
ence equations with non-monotone growth functions (see, e.g., [67]), and
predator-prey type reaction-diffusion systems are among such models. The
spreading speeds were obtained for some non-monotone continuous-time
integral equations and time-delayed reaction-diffusion models in {131, 133],
and a general result on the nonexistence of traveling waves was also given in
[133, Theorem 3.5]. The existence of monostable traveling waves were estab-
lished for several classes of non-monotone time-delayed reaction-diffusion
equations in [34, 83, 100, 150]. As an illustration, below we present the
main results obtained recently in {52].

Let C be the space of all bounded and continuous functions from R to
R equipped with the compact open topology. For a given number r > 0, let
Cri={peC:0< ¢(z) <r VzeR}

Let k(z) be a nonnegative Lebesgue measurable function on R. We
assume that the kernel k(z) has the following property:

(K) rk()dy =1, k(-y) = k(y), Vy € R, and [g e™*Vk(y)dy < o0, Va €



[0,A), where A > 0 is the abscissa of convergence and it may be
infinity.

Consider a discrete-time integrodifference equation

Upg1(z) = \w:?:@vvia —y)dy, z€R,n>0 (3.1)
with ug € C. Assume that there exists 3 > 0 such that

(B1) h e C([0,8],[0,8]), h(0) = 0, K’(0) > 1, h(B) = 3, and there is Lo > 0
such that |h(u;) — h(uz)| € Lojur — ug|, Yuy,uz € [0, 8].

(B2) u < h(u) < K(0)u, Yu € (0,5), and h(u) is nondecreasing in u €
[0, 8.

Let U(z) be a continuous function on R. We say U(z+cn) isa ﬁmﬁ_ﬁm
wave solution of (3.1) with the wave speed ¢ if u,(z) = U(x + cn), ¥n > 0,
satisfies (3.1), and U(z+cn) connects 0 to 8 if U(—o00) = 0 and U(+00) = B.

Define

In (R'(0) fg e *Vk(y)dy)

¢ = inf . (3.2)
LT I

The following result is essentially due to Weinberger [143], and shows that
c; is not only the spreading speed but also the minimal wave speed of
monotone traveling waves for system (3.1).

Theorem 3.1. ([52, THEOREM 2.1]) Let (B1) and (B2) hold. Then the
following statements are valid:

(i) For any uo € Cg with compact support, the solution of (3.1) satisfies

lim  u,(z)=0,Ve>cj.
n—o0,|z|Zcn

(ii) For anyuo € Cg\{0}, the solution of (3.1) satisfies ~ lim un(z) =

n—oo,|lzi<cn
B, Ve € (0,¢).
(iii) For any ¢ > c},, (3.1) has a traveling wave U(z + cn) connecting 0 to
B such that U(z) is nondecreasing in z, and for any c € (0,¢}), (3.1)
has no traveling wave U(z + cn) connecting 0 to B.

Now we consider the discrete-time integrodifference equation

Un(2) = \w fun@)k(@—y)dy, s€RN20  (33)

with ug € C. Assume that there exists b > 0 such that
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(D1) f e C(l0,8],[0,b]), f(0) =0, f'(0) > 1, and there is L > 0 such that
[f(u1) — flu2)} < Liug ~ ua|, Yuy, ug € 0, ).

(D2) f(u) < f'(O)u, Yu € [0,b], and there is u* € (0,b] such that f(u*) =
u*, f(u) > u, Vu € (0,u*), and 0 < f(u) < u, Vu € (u*,b)].

Three types of growth functions are commonly used in population bi-
ology: logistic type function f(u) = ru ﬁ —#), r >0, K > 0; the Ricker
type function f(u) = que™%, q > 1, p > 0; and the generalized Beverton-
Holt type function f(u) = ﬂ%, m>0,and p>q>0.

Define

fH(uw) = max f(v), f~(u)= min f(v), Vue[0,b].

0<v<u uLv<h

It then follows that
f~(@) < f(u) < fH(u), Yu € [0,8],

that both f* and f~ are nondecreasing and Lipschitz continuous, with
the Lipschitz constant L, on {0,b], and that there exists d € (0,b] such
that f*(u) = f(u), Yu € [0,60]. Let u} be such that f*(u}) = u}. Then
0<ur <u*<uf <b ,

To obtain the upward convergence as stated in Theorem 3.1(ii), we need
to impose one of the following two additional conditions on f.

(C1) u* = band f(u) is nondecreasing in u € [b— €, b] for some €q € (0, b).

(C2) NR:E is strictly decreasing for u € (0,b], and f(u) has the property
(P) that for any v,w € (0,b] satisfying v < u* < w, v > f(w) and
w < f(v), we have v = w.

It follows from {52, Lemma 2.1] that either of the following two condi-
tions is sufficient for the property (P) in condition (C2) to hold:

(P1) uf(u) is strictly increasing for u € (0, b}.
2
(P2) f(u) is nonincreasing for u € [u*,b], and hn:@. is strictly decreasing
for u € (0,u*].

The following two results were proved in [52] via the comparison meth-
ods, the Schauder fixed point theorem, and the limiting arguments.

Theorem 3.2. ([52, THEOREM 2.2]) Let (D1) and (D2) hold and c} be
defined as in (3.2) with h = f. Then the following statements are valid:

(i) For any uo € Cyy with compact support, the solution of (3.3) satisfies
lim  up(z) =0, Vc > c}.

n—oo,jz{>en
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(ii) For any uo € Cys \ {0}, the solution of (3.3) satisfies

w* < liminf u,(z) < limsup uq(z) <u}, Ve € (0,c%).
n—oo,|z|<en n—oo,|z|<cn
(i) If, in addition, either (C1) or (C2) holds, then for any ug € Cuz \ {0},
the solution of (3.3) satisfies ~ lim  wun(z) = u*, Ve € (0,c}).
n-—o0,jz|<en
We should point out that Theorem 3.2 (iii) in the case of (C2) and its
proof were highly motivated by {131, Lemma 3.10] and {133, Theorem 2.5]
on continuous-time integral equations.

Remark 3.1. Theorem 3.2 with [} replaced by [g. is still valid under the
assumption that [o. k(y)dy = 1, k(z) = k(y), Vz,y € R™ with |z| = |y|.

Note that if f(0) exists, then f(u) > f'(0)u — au?, Vu € [0,6], for
appropriate a > 0 and é > 0. To obtain the existence of traveling waves,
we impose the following weaker condition on f.

(D3) There exist real numbers §* € (0,8), ¢ > 1 and a > 0 such that
flu) > f'(0)u — au?, Vu € [0,6*].

Theorem 3.3. ([52, THEOREMS 3.1 AND 3.2]) Let (D1)~(D3) hold. Then
the following statements are valid:

(i) m.S. any ¢ € (0,c}), Aw.wv has no traveling wave U(z + cn) with U €
s \ {0} and U(- 00) =
(it) 33. any ¢ > c}, (3.3) \Sm a traveling wave U(z + cn) such that U €
Cus \ {0}, U(- oo) =0 and |
u* < liminfU(€) < limsup U(§) < u}.
§otoo £—+oo
If, in addition, either (C1) or (C2) holds, then U(+00) = u®.
(iii) (3.3) has a traveling wave U(x + cjn) such that U € Cyy \ {0,u*} and

u* < :E:;.QA@ <limsup U(§) < §+.
£—+o0 £—r+00

If, in addition, either (C1) or (C2) holds, then U(+o00) = u™.

In view of Theorems 3.2 and 3.3, we see that the spreading speed is
linearly determinate and coincides with the minimal wave speed of trav-
eling waves for this class of non-monotone discrete-time integrodifference
equation population models.
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4. Applications to biological systems

The invasion speed is a fundamental characteristic of biological invasions,
since it describes the speed at which the geographic range of the population
expands, see, e.g., (48, 68, 69, 98, 126, 137] and references therein. In this
section, we choose five biological models to illustrate the applicability of
the theory and methods mentioned in the previous sections.

4.1. A model with a quiescent stage
Hadeler and Lewis (2002) [46] Uammmuamm and discussed briefly the following

model

Oyur = DAuy + f(u1) — mwr + y2ug,

Byug = 1yuy — YaUz, AA.:
which describes a population where the individuals move between mobile
and nonmobile states, and only the migrants reproduce. Such behavior is

typical for invertebrates living in small ponds in arid climates which dry
up and reappear subject to rainfall. Assume that

!
(E1) f € CY(R4,R), f(0) =0, £'(0) >0, AEV <0 for v > 0, and there
exists H > 0 such that f(v) <0 forallv > H.

Then (4.1) has a unique positive constant solution u*.
Define

Mp) = 5 (DK + 7(0) = 7 — ]

+ 5V DT O — 72 + 4D T ).

Note that the solution maps associated with {4.1) are not compact with
respect to the compact open topology, but they satisfy assumption (A6)(a).
By the theory of spreading speeds and monostable traveling waves for mono-
tone systems, we then have the following result.

Theorem 4.1. ([155, THEOREMS 2.1 AND 2.2]) Assume that (E1) holds,

and let ¢* = :ww Imb Let u(t, z, ¢) be the solution of (4.1) with u(0,-, @) =
m

¢ € Xy» = C(R, [0,w*]). Then the following statements are valid:

(i) Foranyc > c*, if ¢ € Xyo with0 < ¢ € u”, and ¢(z) = 0 for z

outside a bounded interval, then  hm  wu(t,z,9) =0;
: t—oo,|z]>ct
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(ii) For anyc€ (0,¢*), if p € Xys and ¢ £ 0, then lim  u(t,z,¢) =
t—o0,jz|<ct
u*.

(ili) c* is the minimal wave speed for monotone traveling waves of (4.1)
connecting 0 and u*.

By Theorems 2.6 and 2.7, it is easy to see the following result on the
bistable wave is valid.

Theorem 4.2. ([59, EXAMPLE 3}) Assume that

(E2) There exists | > 0 such that f € C*(—1,00) and f'(u1) — 71 <O for
u; € (—1,00), and f(uy) has only three zeros 0 < ay < az on the
interval [0, ag] with f'(0) < 0, f'(a1) > 0 and f'(az) < 0.

Then system (4.1) admits a bistable traveling wave, which is globally attrac-
tive with phase shift and unique up to translation.

4.2. A nonlocal lattice differential system

Weng, Huang and Wu (2003) [146] derived a mature population growth
model

dw;(t)

e Dlw;1(t) + wj-1(t) — 2w;(t)] — dw;(?)

+ 2= D" Bali — R)blwk(t ~ 7)), (4.2)

k=-00

wheret > 0, j € Z,
"
Ba(l) = mml:\ cos(lw)e” *“*“dw,
0

r >0, D,d, s and v = 2c are all positive real numbers. Assume that

(E3) be C(R4,Ry), b(0) =0, ¥'(0) > d/u, b(w) < V' (0)w for w € Ry.
(E4) b(-) is strictly increasing on [0, K] for some K > 0, and ub(w) = dw
has a unique solution w* € (0, K].

The authors of [146] also proved the existence of spreading speed c* and
the existence of traveling waves with wave speed ¢ > ¢* in the case where
the time delay 7 is small. The following result gives a complete description
of spatial dynamics of (4.2).

Define

fe,x) = cx — [D(e7 + €X) — (d + 2D)] — b/ (0)lcoh X~ D¥exT,

i -
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Let (c*,x") be the positive solution to the following system’

of
.\.AOJ Xv - O, ..@IMAO, Xv = 0.

Theorem 4.3. ([75, THEOREMS 5.3 AND 5.4]) Assume that (E3) and
(E4) hold. Let w(t) be a solution of (4.2) with 0 < w;(t) < wt for any

t € [-7,0],i € Z. Then the following statements are valid:

() If wi(t) = 0 for t € [-r,0] and i outside a bounded interval, then

lim  w;(t) =0 for any c > c*.
t—o0,|i{2ct

(i) If w(t) £0 fort € [—r,0}, then . E_a.__Aa wi(t) = wt for any c < c*.
—00,]1| <

(iii) For any ¢ > c*, (4.2) has a traveling wave solution w;(t) = U(i —

ct) such that U(s) is continuous and nonincreasing in s € R, and

U(—o00) = wt and U(+00) = 0. Moreover, for any ¢ < c*, (4.2) has

no traveling wave U(i — ct) connecting wt to 0.

4.3. A multi-type SIS epidemic model

Rass and Radcliffe (2003) [104] presented the following spatial epidemic
model

mm%mw = (1-yi(z,1)) uMuUHS.y:. \wSAa —u,t)

- pij(w)du — piyi(z,t), 1 <i < (4.3)

Here y:(z, t) is the proportion of individuals for the ith population at posi-
tion z who were infectious at time ¢, y; > 0 is the combined death, emigra-
tion and recovery rate for infectious individuals, o; > 0 is the population
size of the ith population, A;; > 0 is the infection rate of a type i susceptible
by a type j infectious individual, and pi; (u) is the corresponding contact
distribution.

Let A := (0jAij)nxn, and I = (diag(p))~'A in the case where p =

(g1, s tin) > 0. Define
p(T") := max{|A| : det (M —T) =0}
Assume that

(E5) Either p; = 0 for some i, or 4 >> 0 and p(TYy > 1.
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It was proved in [104] that the spatially homogeneous system associated
with (4.3)

%.MM& =(1-w() ) oidjy;(t) — mw(t), 1<i<m,

Jj=1

admits a unique equilibrium y* >> 0, which is globally asymptotically stable
in [0,1]™\ {0}.

The open problem on the asymptotic speed of propagation of infection
and traveling waves for model (4.3) was solved by Weng and Zhao (2006)
[148].

Define a matrix A(a) = (Ai;(@))nxn, Where

Q..u.y.& A.\—n mQﬂﬁ&Aﬁv&ﬁv - Hi, i= .w.‘

o5 A \ macui:vgv TS
R
Theorem 4.4. ({148, THEOREMS 3.1-3.2 AND 4.1-4.2]) Assume that

(E5) holds. Let M) be the principal eigenvalue of A(a), and define c* =

Emo WMWN Then ¢* is the spreading speed for solutions of (4.3) with initial
a>

functions having compact supports. Moreover, c* is also the minimal wave
speed for monotone traveling waves of (4.3).

Aij(a) =

By using the general theory of spreading speeds and traveling waves,
Zhang and Zhao (2008) [156] studied the spatially discrete version of (4.3):

&3%&8_ 3 = C. — @SAH, mvv m OnAmn .\%Q:AH - U, SES:AQV%: - tﬁ@BAH. wv‘

o0
where j € Z, 1 <m <7, Y Pmnlk) =1, and pmn(k) = Pmn(—Fk) =
k=00

O,vke Z,1<m,n<r.

4.4. A vector disease model with spatial spread
Ruan and Xiao (2004) [109] presented & diffusive and time-delayed integro-
differential equation

du

Mm? z) = dAu(t, ) — au(t, z) + b1 — u(t, x)]

.\“ \GWQL.H,S:?,S&@&? (4.4)
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Here u(t, z) is normalized spatial density of infectious host at time ¢ and at
point z,  is in a spatial habitat 2 C R™(n < 3), d is the diffusion constant,
A is the Laplacian operator, a is the cure/recovery rate of the infected
host, b is the host-vector contact rate, and F(t,s,z,y) is the convolution
kernel, which is positive, continuous in its variables t € R, s € R, and Borel
measurable in its variables z,y € . ;

In the case where (2 = R and F(t,s,x,y) = §(z — y)G(t — s) with §(z)
being the Dirac é-function and G(t) = Le~t/", it was showed in [109] that
for any cp > 2v/b — a, there exists a small number 79 = ro(cg) > 0 such that
for any r € [0,70], the model system admits a traveling wave connecting
two equilibria 0 and 1 — a/b with the wave speed ¢ = ¢(r) close to c.

By the theory of spreading speeds and traveling waves, the finite delay
approximations method, and the limiting arguments, Zhao and Xiao (2006)
[159] established the existence of the spreading speed of the disease and the
minimal wave speed of monotone traveling waves for the model (4.4) with
F(t,s,z,y) = F(t — s,z — y), that is,

W@m?av = dAu(t, r) — au(t, z) + bl — u(t, 7))

t ’ 0o
. \ \, F(t— s,z — y)u(s,y)dyds. (4.5)
-0 -0
We assume that

(E6) b>a >0, F(s,z) = F(s,—zx), and \ooo hvooo F(s,y)dyds = 1.
E7) [ [ F(s,9)e*¥=9dyds < oo for all ¢ > 0 and X > 0.

Let 7 > 0 be a parameter. Consider the following reaction-diffusion
equation with finite time delay 7:
Ou

= (t,2) = dAu(t,z) ~ au(t, ) + b1 ~ u(t, z)]

T 00
. \. \ F(s,z — y)u(t — s,y)dyds. (4.6)

0 J-o0
By the theory in Section 3, we can shown that system (4.6) admits a
spreading speed ¢}, which is also the minimal wave speed for monotone

traveling waves of (4.6).
For ¢ > 0 and A > 0, define

Pc,N) =d\? —ch—a+ @\ \ F(s,y)e?v=) dyds.
0 —00
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1t follows that there exists a unique positive solution (¢*, A*) to the system
| P
P = = =0.
Aﬂg yv Oq my AO« YV O

By the comparison method and the results for integral equations in [133],
we can further prove that m..mwo c=c".

Theorem 4.5. ([159, THEOREMS 2.1 AND 3.1}) Assume that (E6) and
(E7) hold and let ¢* be defined as above. Then c* is the spreading speed for
solutions of (4.5) with initial functions having compact supports. Moreover,
c* is also the minimal wave speed for monotone traveling waves of (4.5).

The finite delay approximations approach was also used in [33] to study
the spreading speed and traveling waves for a nonlocal and time-delayed
reaction-diffusion population model with age structure. ‘

4.5. A nonlocal and periodic model with dispersal
Consider a periodic integro-differential equation

m:Mw z) _ F(t,u(t,z)) + a(t) \w k(z — y)u(t, y)dy, (4.7)

where u(t,z) is the spatial density of a population at the point z € R at
time t > 0, F(t,u(t,z)) is the reaction function which governs the popu-
lation dynamics such as birth and death, and other removal terms such as
emigration of individuals at the point z € R at time ¢ > 0, a(t) > 0 is
the rate at which an individual leaves its current location at time ¢t > 0,
k(z,y) is the dispersal kernel that describes the probability that an indi-
vidual moves from point y to point z. Moreover, two continuous functions
F and a are w-periodic in t for some w > 0, and a(t) Z 0.

For simplicity, we neglect the birth and death of the population during
the dispersal process and assume that k(z,y) depends only on the distance
between r and y, and then write it as k(z — y). Assume that

(E8) F(t,u) = ug(t,u) with g € C(R%,R) and gy(t,u) <0, V(t,u) € R?,
%%@:, 0) + a(t))dt > 0, and there exist 4 > 0 and L > 0 such that
g(t, 1) +a(t) <0,Vt >0, and |F(t,us) — F(t,u2)| < Lluy — uz|, ¥t >
0,uj,ug € W= 3,3.

(E9) k(y) >0, k(—y) = k(y), [ k(y)dy = 1, and the integral [; k(y)e*¥dy
converges for all & € [0, A), where A > 0 is the abscissa of convergence
and it may be infinity.
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It is easy to show that the spatially homogeneous system
du(t
&M ) _ Bt u(t) + a()u(t) (4.8)

has a positive w-periodic solution u*(t), which is globally asymptotically
stable in [0,4] \ {0}.

Define
Ala, t) = g(t,0) + a(t) \w k(y)e¥dy
and
®(a) = E, Ya € (0,A).
Theorem 4.6. ({60, THEOREM 3.1]) Assume that (E8) and (E9) hold and
let ¢* = %. Let u(t,z,p) be the solution of (4.7) with u(0,.,¢) =

@ € Cye0) = C(R, [0,u*(0)]). Then the following statements are valid:

(i) For any c > c*, if p € Cy- () with ¢(x) = 0 for x outside a bounded

interval, then  lim  u(t,z,p) =0.
t—oo,jz{>et -

(ii) For any 0 < ¢ < c*, there is a positive number r such that if
@ € Cys(0) with p(z) > 0 for x on an interval of length 27, then
hm  (u(t,z,p) —u*(t)) =0.

t—oo,jz{<et
(iii) In the case where a(t) > 0, Vt € R, for any c € (0,¢*), if ¢ € Cyr ()
with ¢ #0, then  lim  (u{t,z;¢) —u*(t)) =0.
t—o0,|z|<ct
Recall that u(t,z) = U(t, z + ct) is an w-periodic traveling wave of (4.7)
connecting 0 to u*(t) if it is a solution of (4.7), U(t,£) is w-periodic in £,
and U(t, —o0) = 0 and U(t, 00) = u*(t) uniformly for ¢ € [0,w].

Theorem 4.7. ([60, THEOREM 4.1}) Assume that (E8) and (E9) hold.
Let ¢* be as defined in Theorem 4.6. Then for any ¢ € (0,c*), system (4.7)

admits no w-periodic traveling wave solution ¢(t,x + ct) connecting 0 and
u*(t).

It is reasonable to expect that (4.7) has periodic traveling waves with
the wave speed ¢ > c¢*, that is, the above ¢* is also the minimal wave speed
for the monotone periodic traveling waves. Note that we can not use the
afore-mentioned general theory to obtain the existence of periodic traveling
waves since the solution maps associated with (4.7) are not compact with
respect to the compact open topology. However, we have an affirmative
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answer to this problem in the autonomous case of (4.7) by the method of
upper and lower solutions.

(E8Y F(0) = 0, F"(0) exists, F'(0) + a > 0 and there is u* > 0 such that
u* is the unique positive zero of the function F (u) + au in [0,u*], F
is Lipschitz continuous on W := [0, u*] with the Lipschitz constant
L > 0, and that F(u) < F'(0)u for all u € [0,u"].

Theorem 4.8. ({60, THEOREM 4.2}) Let F(t,u) = F(u), a(t) = a, and
assume that (E8)’ and (E9) Hold. Let c* be defined in Theorem 4.6. Then
for any ¢ > c*, system (4.7) has a traveling wave ¢(z + ct) connecting 0 to
u* such that ¢(s) is continuous and nondecreasing ins€R.

The theory of spreading speeds and traveling waves for monotone peri-
odic semiflows was also used in [61] to analyse a non-local periodic reaction-
diffusion model with stage-structure.
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