
Preface

Population dynamics is an important subject in mathematical biology. A cen-
tral problem is to study the long-term behavior of modeling systems. Most
of these systems are governed by various evolutionary equations such as
difference, ordinary, functional, and partial differential equations (see, e.g.,
[165, 142, 218, 119, 55]). As we know, interactive populations often live in a
fluctuating environment. For example, physical environmental conditions such
as temperature and humidity and the availability of food, water, and other
resources usually vary in time with seasonal or daily variations. Therefore,
more realistic models should be nonautonomous systems. In particular, if the
data in a model are periodic functions of time with commensurate period,
a periodic system arises; if these periodic functions have different (minimal)
periods, we get an almost periodic system. The existing reference books, from
the dynamical systems point of view, mainly focus on autonomous biological
systems. The book of Hess [106] is an excellent reference for periodic parabolic
boundary value problems with applications to population dynamics. Since the
publication of this book there have been extensive investigations on periodic,
asymptotically periodic, almost periodic, and even general nonautonomous
biological systems, which in turn have motivated further development of the
theory of dynamical systems.

In order to explain the dynamical systems approach to periodic population
problems, let us consider, as an illustration, two species periodic competitive
systems

du1

dt
= f1(t, u1, u2),

du2

dt
= f2(t, u1, u2),

(0.1)

where f1 and f2 are continuously differentiable and ω-periodic in t, and
∂fi/∂uj ≤ 0, i �= j. We assume that for each v ∈ R

2, the unique solution
u(t, v) of system (0.1) satisfying u(0) = v exists globally on [0,∞).
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Let X = R
2, and define a family of mappings T (t) : X → X, t ≥ 0, by

T (t)x = u(t, x), ∀x ∈ X. It is easy to see that T (t) satisfies the following
properties:

(1) T (0) = I, where I is the identity map on X;
(2) T (t+ ω) = T (t) ◦ T (ω), ∀t ≥ 0;
(3) T (t)x is continuous in (t, x) ∈ [0,∞) ×X.

T (t) is called the periodic semiflow generated by periodic system (0.1), and
P := T (ω) is called its associated Poincaré map (or period map). Clearly,
Pn(v) = u(nω, v), ∀n ≥ 1, v ∈ R

2. It then follows that the study of the
dynamics of (0.1) reduces to that of the discrete dynamical system {Pn} on
R

2.
If u = (u1, u2), v = (v1, v2) ∈ R

2, then we write u ≤ v whenever ui ≤ vi
holds for i = 1, 2. We write u ≤K v whenever u1 ≤ v1 and u2 ≥ v2. By
the well-known Kamke comparison theorem, it follows that the following key
properties hold for competitive system (0.1) (see, e.g., [218, Lemma 7.4.1]):

(P1) If u ≤K v, then Pu ≤K Pv;
(P2) If Pu ≤ Pv, then u ≤ v.

Then the Poincaré map P , and hence the discrete dynamical system {Pn},
is monotone with respect to the order ≤K on R

2. Consequently, system (0.1)
admits convergent dynamics (see [218, Theorem 7.4.2]).

Theorem Every bounded solution of a competitive planar periodic system
asymptotically approaches a periodic solution.

We use the proof provided in [218, Theorem 7.4.2]. Indeed, it suffices to prove
that every bounded orbit of {Pn} converges to a fixed point of P . Given two
points u, v ∈ R

2, one or more of the four relations u ≤ v, v ≤ u, u ≤K v,
v ≤K u must hold. Now, if Pn0u0 ≤K Pn0+1u0 (or the reverse inequality)
holds for some n0 ≥ 0, then (P1) implies that Pnu0 ≤K Pn+1u0 (or the
reverse inequality) holds for all n ≥ n0. Therefore, {Pnu0} converges to some
fixed point ū, since the sequence is bounded and eventually monotone. The
proof is complete in this case, so we assume that there does not exist such an
n0 as just described. In particular, it follows that u0 is not a fixed point of
P . Then it follows that for each n we must have either Pn+1u0 ≤ Pnu0 or
the reverse inequality. Suppose for definiteness that u0 ≤ Pu0, the other case
being similar. We claim that Pnu0 ≤ Pn+1u0 for all n. If not, there exists n0
such that

u0 ≤ Pu0 ≤ P 2u0 ≤ · · · ≤ Pn0−1u0 ≤ Pn0u0

but Pn0u0 ≥ Pn0+1u0. Clearly, n0 ≥ 1 since u0 ≤ Pu0. Applying (P2) to
the displayed inequality yields Pn0−1u0 ≥ Pn0u0 and therefore Pn0−1u0 =
Pn0u0. Since P is one-to-one, u0 must be a fixed point, in contradiction to
our assumption. This proves the claim and implies that the sequence {Pnu0}
converges to some fixed point ū.
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It is hoped that the reader will appreciate the elegance and simplicity of
the arguments supporting the above theorem, which are motivated by a now
classical paper of deMottoni and Schiaffino [68] for the special case of periodic
Lotka–Volterra systems. This example also illustrates the roles that Poincaré
maps and monotone discrete dynamical systems may play in the study of pe-
riodic systems. For certain nonautonomous perturbations of a periodic system
(e.g., an asymptotically periodic system), one may expect that the Poincaré
map associated with the unperturbed periodic system (e.g., the limiting pe-
riodic system) should be very helpful in understanding the dynamics of the
original system. For an nonperiodic nonautonomous system (e.g., almost peri-
odic system), we are not able to define a continuous or discrete-time dynamical
system on its state space. The skew-product semiflow approach has proved to
be very powerful in obtaining dynamics for certain types of nonautonomous
systems (see, e.g., [193, 190, 200]).

The main purpose of this book is to provide an introduction to the the-
ory of periodic semiflows on metric spaces and its applications to population
dynamics. Naturally, the selection of the material is highly subjective and
largely influenced by my personal interests. In fact, the contents of this book
are predominantly from my own and my collaborators’ recent works. Also, the
list of references is by no means exhaustive, and I apologize for the exclusion
of many other related works.

Chapter 1 is devoted to abstract discrete dynamical systems on metric
spaces. We study chain transitivity, strong repellers, and perturbations. In
particular, we will show that a dissipative, uniformly persistent, and asymp-
totically compact system must admit a coexistence state. This result is very
useful in proving the existence of (all or partial componentwise) positive pe-
riodic solutions of periodic evolutionary systems.

The focus of Chapter 2 is on global dynamics in certain types of monotone
discrete dynamical systems on ordered Banach spaces. Here we are interested
in the abstract results on attracting order intervals, global attractivity, and
global convergence, which may be easily applied to various population models.

In Chapter 3 we introduce the concept of periodic semiflows and prove
a theorem on the reduction of uniform persistence to that of the associated
Poincaré map. The asymptotically periodic semiflows, nonautonomous semi-
flows, skew-product semiflows, and continuous processes are also discussed.

In Chapter 4, as a first application of the previous abstract results, we
analyze in detail a discrete-time, size-structured chemostat model that is de-
scribed by a system of difference equations, although in this book our main
concern is with global dynamics in periodic and almost periodic systems. The
reason for this choice is that we want to show how the theory of discrete dy-
namical systems can be applied to discrete-time models governed by difference
equations (or maps).

In the rest of the book we apply the results of Chapters 1–3 to continuous-
time periodic population models: In Chapter 5 to the N -species competition
in a periodic chemostat; in Chapter 6 to almost periodic competitive systems;
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in Chapter 7 to competitor–competitor–mutualist parabolic systems; and in
Chapter 8 to a periodically pulsed bioreactor model. Of course, for each chap-
ter we need to use different qualitative methods and even to develop certain
ad hoc techniques.

Chapter 9 is devoted to the global dynamics in an autonomous, nonlocal,
and delayed predator–prey model. Clearly, the continuous-time analogues of
the results in Chapters 1 and 2 can find applications in autonomous models.
Note that an autonomous semiflow can be viewed as a periodic one with the
period being any fixed positive real number, and hence it is possible to get
some global results by using the theory of periodic semiflows. However, we
should point out that there do exist some special theory and methods that
are applicable only to autonomous systems. The fluctuation method in this
chapter provides such an example.

The existence, attractivity, uniqueness, and exponential stability of pe-
riodic traveling waves in periodic reaction–diffusion equations with bistable
nonlinearities are discussed in Chapter 10, which is essentially independent of
the previous chapters. We appeal only to a convergence theorem from Chap-
ter 2 to prove the attractivity and uniqueness of periodic waves. Here the
Poincaré-type map associated with the system plays an important role once
again.

Over the years I have benefited greatly from the communications, discus-
sions, and collaborations with many colleagues and friends in the fields of
differential equations, dynamical systems, and mathematical biology, and I
would like to take this opportunity to express my gratitude to all of them. I
am particularly indebted to Herb Freedman, Morris Hirsch, Hal Smith, Horst
Thieme, Gail Wolkowicz and Jianhong Wu, with whom I wrote research arti-
cles that are incorporated in the present book.

Finally, I gratefully appreciate financial support for my research from the
National Science Foundation of China, the Royal Society of London, and the
Natural Sciences and Engineering Research Council of Canada.




