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Abstract-In this paper, we consider an n-species Lotka-Volterra periodic competition system. 
Using a comparison method and the Brouwer fixed point theorem, we obtain some sufficient conditions 
for the ultimate boundedness of solutions and the existence and global attractivity of a positive 
periodic solution. We also point out that these results constitute a generalization of K. Gopalsamy 
and J. M. Cushing’s. 

1. INTRODUCTION 

Most mathematical models for the dynamics of population growth are autonomous, which is 
to say that they attempt to describe the growth and interaction of species with constant vital 
parameters living in a constant environment. While this hypothesis of constant environment and 
vital parameters is justifiable under some circumstances, a more realistic model would certainly 
allow for the temporal variation of these parameters. Much of this temporal variation could 
naturally be assumed to be periodic due to seasonal (or other periodic) effects of food availability, 
weather conditions, temperature, mating habits, etc. 

In this paper, we consider the n-species Lotka-Volterra system 

n>l,ziLO, i= 1,2...,n, 
J=l 

(1) 

where hi(t), aii(t) (i, j = 1, . . . , n) are continuous w-periodic functions with c hi(t) dt > 0 and 

Qij (t) > 0. In Section 2, it is proved that any solution of (1) with positive initial value is ultimately 
bounded. In Section 3, some sufficient conditions for the existence and global attractivity of 
positive periodic solution of (1) are obtained. 

2. ULTIMATE BOUNDEDNESS OF SOLUTIONS 

Consider the Logistic equation 

fy = x(t)@(t) - a(t)x(t)), x E w, 

where u(t) and b(t) are continuous w-periodic functions. From the change of variable y = l/x 
and explicit solution of the resulting equation, we can prove the following 

LEMMA. If sr b(t) dt > 0, u(t) > 0, then Equation (2) has a unique globally attracting positive 
stable w-periodic solution. Moreover, let zl(t) and 22(t) be the unique positive solution of (2) 
with b(t) = bl(t), b*(t) respectively. If bl(t) > bz(t), then xl(O) > ~(0). 

If g(t) is a continuous w-periodic function, we denote Oytyw g(t) by g” and ,~?~g(t) by g’. 

Choose Iii > 0 such that Ki > by/aii (i = 1,2,. . . , n). Denote 
-_ 

The author is very grateful to Professor S.A. Levin and the referees for helpful suggestions and corrections. 

3 



4 X.-Q. ZHAO 

s= {(21,22,.. .,z,);o<II<K~,(i=1,2 ,..., ?a)}. 

THEOREM 1. Any solution (zl(t),...,zn(t)) with xi(O) > (i = 1,2,...,n) of(l) ultimately 
lies in S. 

PROOF. Let 5$(l) be the unique positive periodic solution of the Logistic equation 

8 = Zi(bi(l) - Q(t) Zi(t)), (i = 1,2,. . . ,n). 

If Zi((t) attains its maximum when t = ti, then w = 0, and hence 

(3) 

bi(ti) by 
Ti(ti) = - 

a&) S iq’ 

Then &(t) < bj’/aii ’ . Let ui(t) be the solution of (3) with ui(O) = xi(O), by Lemma, 

lim (ui(t) - Fi(t)) = 0. 
l++a, 

As 

- = xi(t)(bi(t) - kuij(t) xj(t)) I xi(t)(b,(t) - Qii(t)) dxi(t> 
dt 

j=l 

by the differential inequality theorem [l], 

0 < 4) 5 W(t), O<t~+w. 

Take ci = Ki - by/uli > 0, then there exists T = T(xl(O), . . . , ~~(0)) such that when t 2 T, 

IQ(t) - Fi(t)l < G, (i = 1,2,. . . n). 

Then 

Ui(t) = ui(t) - Fi(t) + LFi(t) < fi + $ = Ki. 
ir 

Therefore, when t 2 T, 0 < xi(t) < Ii’i (i = 1,2,. . . , n), i.e.,(xl(t),xZ(t), . . . ,x”(t)) E 5’. This 
completes our proof. 

From the process of the proof above, it follows that any solution x(t) = (xi(t), . . . ,x,,(t)) with 
Zi(O) >O(i= 1,2,..., n) of ( 1) is defined on [0, +oo). 

3. THE EXISTENCE AND GLOBAL ATTRACTIVITY 
OF THE PERIODIC SOLUTION 

THEOREM 2. Let Zi(t) be the unique positive periodic solution of (3) (i = 1,2,. . . ,n). If 

JWb,(t)dt > 2 /Uaij(t)zj(t)dt, (i= 1,2 ,... n), 
0 j#i,j=l O 

then Equation (1) has at least one positive (componentwise) periodic solution. 

PROOF. Let 

Bi(t) = hi(t)- 2 Qj(t)zj(t), (i= 1,2 )...) n), 
j#i, j=l 

then &(t +w) = &(t) and J’: &(t) dt > 0. Let Zi(t) be the unique positive periodic solution of 
the Logistic equation 

dx. 
- = x@(t) - C&(t) Xi), 
dt 

(i= 1,2 )...) 4. (4 
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As hi(t) > &(t), by Lemma, then ~ii(O) > &(O). Therefore the set 

makes sense. Define PoincarG mapping A : R” - R” as follows 

A(x”) = x(u,x’), x0 E R”, 

where z(t, z”) is the solution with t(O,z’) = x0 of (1). B ecause (1) is w-periodic system, it 

follows that if X* = A(x*), then z(t,x*) is the w-periodic solution of (1). For every x0 = 

(x:,x;,.. . ,xE) E D, let xi(t) = ri(t, x0)(; = 1,2,. . . , n), then 

- = Xi(t)(bi(t) - c(lij(t) Xj(t)) 5 Xi(t)(bi(t) - Q(t) Xi(t)). 
dxi (t) 

dt 
j=l 

As xi(O) = xp 5 Fi(O), by differential inequality theorem 

Xi(t) 5 Fi(t)j 0 5 t < +oO. 

Therefore 

!y 1 xi(t)@(t) - 2 aij(t)Fj(t) - &i(t) Xi(t)) = Xi(t)(Bj(t) - &j(t) Xi(t))- 

j#i,j=l 

As xi(O) = xp 2 Ei(O), then 
xi(t) 3 iqt), 0 5 t < +co. 

Therefore 
qt> 5 x:i(t) 5 z’i(t), 0 5 t < +oo, (i= 1,2 ,..., n). 

Then 
Zi(O) = Z?i(W) < Xi(W) 5 Z:i(W) = Zi(O), (i= 1,2,... n), 

therefore A(x”) E D, i.e., AD c D. By Brouwer’s fixed point theorem, there exists z* E D such 
that Ax’ = x*. Therefore, x(t, x*) is the positive w-periodic solution of (1). This completes our 
proof, 

COROLLARY 1. Suppose that Jr IQ(~) dt > 0, aij are positive constants and 

/- hi(t) dt > f: zlw bj(t)dt, (i= 1,2 ,..,, n), 
0 j#i,j=l 

then Equation (1) has at least one positive periodic solution. 

PROOF. Because Ti(t) > 0, 

y = Ti(t)(bi(t) - Ujj(t)Ti(t))j 

then 
1 dzio = bj(t) - aiiTj(t)e 
zj(t) dt 

Integrate both sides of this equality over [O,w], we have 

I 
w 

J 
w 

hi(t) dt = aji &i(t) dt. 
0 0 
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Then 

I 
w 

qt) & _ sow uw i ? (i = 1,2,. . . , n). 

0 Qii 

Therefore 

lw6j(t)dt > 2 %Jwb(t)dt= 2 Jw ajjFj((t)dt. 
j#i,j=l ajj O j#i,j=l 0 

By Theorem 2, Corollary 1 holds. 

COROLLARY 2. (K. Gopalsamy [2]). Suppose that hi(t) > 0, aij(t) > 0 and 

@“I bi > 2 4jkI (i= 1,2 )..., n), 
j#i,j=l 

then (I) has at least one positive periodic soiution. 

PROOF. As hi(t) > 0, then s: hi(t) dt > 0. From the proof of Theorem 1, it follows that 

?iYj(t) < T, 
ajj 

(i= 1,2 ,..., n). 

Then 

bj(t) 2 bf > 2 
j#i,j=l 

aij(t)TFj(t). 

Therefore 

/W hi(t) dt > 2 Jw aij(t)TFj(t) dt, (i = 1,2,. . . ,n). 
0 j#i,j=l O 

By Theorem 2, Corollary 2 holds. 

NOTE 1. For Equation (l), with n = 2, J.M. Cushing ([3], Theorem l), using bifurcation theory, 
proved that a branch of positive periodic solution exists for a finite interval of values of bifurcation 
parameter [bs] = 6 sr bs(t)dt, with pl = [azl&(t)] as one of its endpoints. However, another 
endpoint and the bifurcation direction are not determined. As the conditions of Theorem 2 for 
n = 2 become 

J 

w 
bl(l) dt > 

0 J 

W 

an(t) S(t) dt, (Cl) 
0 

J 

w 

bz(t) dt > 
0 J 

w 

azl(t)fl(t)dt. (W 
0 

Therefore (C2) means p > ~1. Clearly, another endpoint relates to (Cl). For example, if 
aij(i = 1,2) are positive constants, then ~1 = (a2l/ail)[bl], and (Cl) means (from Corollary 1) 

and hence 

In the following, we say that a periodic solution, say u(t) = (w(t), . . . , I), of (1) is globally 
attractive if every other solution z(t) = (q(t). . . , z,,(t)), with xi(t) > 0 (i = 1,2,. . . , n) of (1) is 
defined for all t 1 0 and satisfies 

lim ]ei(t) - ui(t)] = 0, 
t++Wl 

(i= 1,2 )..., n). 
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THEOREM 3. Suppose that the conditions in Theorem 2 hold, and if, in addition, 

Ujj(4 > 2 Uij@>, t E [O,wl, (j= 1,2 )..., n), 
i#j,i=l 

then Equation (1) has a unique positive periodic solution which is globally attractive. 

PROOF. By Theorem 2, (1) has a positive periodic solution u(t) = (ul(t), . . . ,21,(t)). Let z(t) = 

(Xl@), zz(t>, . . . , z,,(t)) be any other solution with q(0) > O(i = 1,2.. . ,n) of (1). By the 
additional condition given, since aij (t) are continuous and w-periodic functions, we can choose 
CY > 0 such that 

9jCt) - 2 %j@) 2 a~ t E [O,+m), (j=1,2 ,...) n). 

i#j,i=l 

Let xi(t) = log xi(t), vi(t) = log ui(t). Consider continuous function 

v(t) = g Ixj(t) - vi(t)!. 
i=l 

As u(t) and z(t) are two solutions of (l), then 

$(X,(t) - vi(t)) = -Uii(t)(zi(t) - ui(t)> - 2 aij(t)(zj(t) - uj(t))l (i=1,2 ,..., n). 

j#i,j=l 

If y(t) is any continuously differentiable scalar function defined on [o, $-co), we define a function 

* by 
if y(t) > 0 or y(t) = 0 and y > 0 

if y(t) = 0 and q = 0 

if y(t) < 0 or y(t) = 0 and q < 0. 

One can verify that 

Iv(t)1 = Y(t)qy,(t)1 

and 

D+ Idt>l = q,)(t) y, 

where D+ denotes the upper right derivative. It follows from the above that 

D+V(t) ==e D+,Xi(t) - vi(t)1 
i=l 

i=l j=l 

Ixj(t) - Uj(t)l 

j=l 
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Then V(t) is decreasing on [O, +oo). Therefore, 0 < V(t) 5 V(0) and limt_+ooV(t) = V’ 2 0. 
Since u(t) is a positive periodic function, then there exist two positive real numbers oi and ~2, 
such that 

0 < ‘yl 5 w(t) I a2, (i = 1,2,. . . ) n). 

Then Vi(t) = log pi is bounded. As 

lxi(t)l I Ixi(l) - uiCt)l + lui(t)l I V(t) + lui(t)I~ 

then Xi(t) is also bounded. So we can assume that for 

IX&)] I MO and IW)l I MO, 

As 

then 

]zj(t) - ui(t)] = ]exn(t) - eui(t)( = 

some Me > 0, 

(i = 1,2,. . . , n). 

&i(t)lXj(t) - Uj(t)I, 

mlXiCt) - vi(t)1 I Izi(t) - W(t)1 L MIXi - ui(t)la (i= 1,2 )..., n), 

where m = esMO, A4 = e”o. Then 

D+V(t) 5 -ame [Xi(t) - Uj(t)l = -amV(t). 
i=l 

We claim that V’ = 0. Suppose V’ > 0, then V(t) 2 V’ > 0, for t E [O,+oo). Therefore, 
@V(t) 5 --QmV*. Then 

V(t) 5 V(0) - crmV*t t E [O, +m>. 

If t 2 V(O)/amV*, then V(t) < 0. This leads to a contradiction. Since 

]+i(t) - ui(i)] I MIXi - vi(t)! L MV(t) 

then 

,&I& Izi(t) - ui(t)] = 0 (; = 1,2,. . . ,n). 

This completes our proof. 

NOTE 2. It follows from the proof of Theorem 3 that the condition 

e&) > 2 %j (t), (j = 1,2,...,n) 

i=l, i#j 

is actually a sufficient one for the global attractivity of any positive periodic solution of (1). SO, 

the local asymptotic stability of positive periodic solution in Theorem 4 of [3] is actually the 
global one. 
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