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GLOBAL ASYMPTOTIC BEHAVIOR
IN SOME COOPERATIVE SYSTEMS
OF FUNCTIONAL DIFFERENTIAL EQUATIONS

XIAO-QIANG ZHAO AND ZHU-JUN JING

ABSTRACT. This paper is devoted to the study of global
asymptotic behavior in some cooperative systems of functional
differential equations. We first prove a general global result
for both discrete-time and continuous dynamical systems on
the subset of a strongly ordered Banach space. Then we dis-
cuss cooperative systems of functional differential equations
and further obtain a threshold theorem on their global asymp-
totic behavior under the sublinearity assumption. Finally, we
give some application examples in epidemic and population
dynamics. Some related earlier results are generalized and
improved.

1. Introduction. Recently there have been extensive investigations
and developments in both continuous and discrete-time monotone dy-
namical systems (see [3, 4, 8-11, 14-21] and references therein). In
[17], Smith developed sufficient conditions for systems of functional
differential equations (FDEs) to generate monotone semiflows (in this
case, the system is called the cooperative one) and then obtained some
important results on the qualitative behavior of cooperative and ir-
reducible systems of FDEs by applying monotone dynamical system
theory. In particular, Smith made an interesting observation (see [17,
Corollary 3.2]) that the stability type of a steady state for a coopera-
tive system of FDEs is the same as that for its associated cooperative
systems of ordinary differential equations (ODEs). Motivated by the
consideration of some epidemic and population dynamical models, we
are mainly concerned with the global asymptotic behavior of the mod-
eled systems. The convergence and stability in the discrete strongly
monotone and sublinear, i.e., subhomogeneous, dynamical systems were
studied in [8, 11, 19]. In [11], the monotone and strongly sublinear,
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i.e., strongly subhomogeneous, dynamical systems were also discussed.
In [21], one of the authors studied the global attractivity and stability
for some discrete strongly monotone dynamical systems, and in par-
ticular obtained a threshold result on the global asymptotic stability
under the strict sublinearity assumption and gave some applications to
time-periodic parabolic equations and cooperative systems of ODEs.
The aim of this paper is to develop a different machinery to apply
the above mentioned ideas to the cooperative systems of FDEs. Since
the semiflow generated by our cooperative systems of FDEs is only
monotone and sublinear and the semiflow generated by its correspond-
ing systems of ODE without delays is strictly sublinear, we are unable
to use the known abstract results in [11] and [19]. Furthermore, our
abstract results on monotone maps and semiflows may also find their
applications to other cooperative systems of differential equations such
as FDEs with infinite delay and reaction-diffusion equations with or
without delays.

The organization of this paper is as follows. In Section 2 we discuss
the abstract discrete-time monotone dynamical systems {S™}3%, and
continuous ones {T'(t)}:>o on the subset V' of a strongly ordered Banach
space (E,P), and obtain two results on the global asymptotics and
existence of positive steady states (Theorems 2.1 and 2.2). Theorem 2.1
with Remark 2.1 generalizes one of Smith’s results (see [16, Theorem
2.1]) in the sense that we only assume the existence of the Fréchet
derivative of S at its fixed point u = a without any other smoothness
assumption on S (see Remark 2.4). For the completeness and latter
application, we also state three results (Propositions 2.1 and 2.2 and
Lemma 2.1), which come from [21].

In Section 3 we apply Theorem 2.2 in Section 2 to cooperative
systems of FDEs and obtain two global results (Theorems 3.1 and 3.2).
Theorem 3.1 has an interesting biological interpretation. That is, for
a multi-species cooperative system of FDEs, the system is uniformly
persistent if there exists a bounded positive solution (Remark 3.2).
Theorem 3.2, which is the main result of this paper, shows that the
global asymptotic behavior of cooperative system of FDEs is completely
determined by the local stability of zero solution of the associated
cooperative system of ODEs. Note that for a cooperative system of
ODEs, there are simple tests for the stability of its steady state (see,
e.g., (17, Corollary] and (18, Theorem 2.7]). Clearly there are simple
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versions of Theorems 3.1 and 3.2 for a cooperative system of ODEs
(Corollaries 3.1 and 3.2).

In Section 4, as an illustration, we give some application examples
of a threshold theorem in Section 3. The epidemic models with pos-
itive feedback [2, Section 4.4], the two-species competition chemostat
models with delay [5, 12], a population model with dispersal and stage
structure [20] and single-species discrete diffusion systems [13] are re-
considered and the related results are generalized and improved further
(Propositions 4.1-4.3 and Remarks 4.1-4.3).

2. Global asymptotics in monotone dynamical systems. Let
(E, P) be an ordered Banach space with positive cone P. For z,y € E,
we write

z>yifz—yeP

z>yifz —y € P\{0}.

If P has nonempty interior int (P), we also write
z>y ifz—yeint(P).

Let V be a subset of E. A continuous mapping S : V — E is said to be
monotone (nondecreasing) if S(z) > S(y) for any z,y € V with z > y,
and strongly monotone if S(z) > S(y) for any z,y € V with z > y.

Suppose that X is a complete metric space and § : X — X is
a continuous mapping; then {S™}32, is called a discrete dynamical

system on X. For any z € X, the positive orbit 4*(z) through z is
defined as y*(z) = {S*;n=0,1,2,... ,00}.

We first prove the following result.

Theorem 2.1. Let P be a normal cone with nonempty interior.
Assume that

(1) S:V =a+ P — V is a continuous and monotone mapping and
any bounded positive orbit in V is precompact, i.e., for any u € V for
which vt (u) is bounded, v+ (u) is compact in E;

(2) S(a) = a, DS(a) is compact and strongly positive, and r(DS(a)) >
1, where DS(a) is the Fréchet derivative of S at u = a and r(DS(a))
is the spectral radius of linear operator DS(a) : E — E. Then either
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(a) for any u > a, lim,_, o ||S™(u)|| = + o0, or alternatively,

(b) there exists u* = S(u*) > a such that for any a < u < u*,
limp o0 S™(u) = u*.

Proof. By the Krein-Rutman theorem, see, e.g., [1, Chapter 1.3] or
[8, Chapter L7}, r = r(DS(a)) is the principal eigenvalue of DS(a).
Let e >> 0 be the principal eigenfunction of DS(a) with |le| gz = 1, i.e.,
DS(a)e = re. For € > 0,

S(a + ee) = S(a) + DS(a)(ee) + ofe)
=a+¢fre + o(e)/e].
Since r > 1 and (r — 1)e € int (P), there exists €9 > 0 such that for
any € € (0,&0), (r — 1)e + o(g)/e € int (P), and hence
S(a+ce) — (a+ee)=¢[(r—1)e+o(e)/e] >0

i.e., for any ¢ € (0,e0], S(a + €e) > a + ce. We further have the
following claims.

Claim 1. For any u > a, S(u) > a.

Indeed, for any given v > a, let u = a + v, then v > 0. For t > 0, we

have S(a + tv) = S(a) + DS(a)(tv) + o(t)
= a + t(DS(a)v + o(t) /1)

Since v > 0 and DS(a) is strongly positive, DS(a)v € int (P)
and hence there exists tp € (0,1] such that for any t € (0,¢0],
DS(a)v + o(t)/t € int (P). Then for any ¢t € (0,to], S(a + tv) > a.
Therefore, by the monotonicity of S, for any t € (0,t0], S(u) =
S(a+v) > S(a+tv) > a.

Claim 2. For any u > a with S(u) = u, u > a + &e.

In fact, let €1 = sup{e > 0,u > a+e¢e}; by Claim 1, u > a and hence
€1 > 0. Assume that, by contradiction, €; < €y. Since u > a + €16,
u=S(u) > S{a+¢e1€) > a+ere. It follows that there exists €2 > ;1
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such that u > a+¢eq¢e, which contradicts the definition of £;. Therefore
€1 > €¢ and hence u > a+¢1e > a + gpe.

As shown above, for any € € (0,¢0], S(a + €e) > a + €e, and then by
the monotonicity of S,

a+ee < S(a+ee) <S*(atee)<- -
<S8 (at+ee)< S (atee) <.

Since, by the normality of P, we may assume || - ||z is nondecreasing,
I57(a + ee)|| < [|S™t(a + €€)||, n = 1,2,...,00. We distinguish
between two cases:

(a) for any ¢ € (0,e0], {S™(a + €€)}$2, is unbounded. Then
limpy00 ||S™(a + €€)|| = +o00. For any u > a, by Claim 1, S(u) > a.
Then there exists € € (0, o] such that S(u) > a + e and hence for all
n=12,...,00, 8" (u) > S"(a+ee) and || S (u)|| > ||S™(a+c¢)|-
Therefore, lim, o0 ||S™(u)|| = +00.

(b) There exists €1 € (0,€p] such that {S™(a + €1€)}32; is bounded.
Then there exists a sufficiently large €* > 0 such that for any n =
1,2,...,00, S"(a + €1€) € [a,a + £*€¢]. Therefore by the monotonicity
of S, for any € € (0,¢;] and all n = 1,2,... ,00, a + €e K S(a +¢€e) <
S™(a+ee) < S"(a+e1e) < a+e*e and hence ||S™(a+ce)| < |la+e*e|.
Therefore by the precompactness of y*(a + €e) and monotonicity of
{S™(a +¢ce)}32,, for any € € (0,¢&4],

nli)néo S™(a + €e) = u(e), S(u(e)) = u(e) > a,

and clearly, u(e) < u(e1). For any € € (0,¢1], by Claim 2, u(e) >
a+ egge > a + £1e, and hence u(e) > S™(a + €1€), n = 1,2,... ,00.
Therefore u(e1) = limg,— 0 S™(a+e1€) < u(e). Then for any € € (0,2],
u(e) = u(e1). Let u* = u(e;); then u* > a and lim, o, S™(a + c€) =
u*. For any ¢ < v < u*, by Claim 1, a € S(u) < v* and
hence there exists € € (0,&1] such that a + ee < S(u) < u* and
S™(a+¢ce) < "t (u) < w*, n=1,2,...,00. Then, by the normality
of P, limy 00 S™(u) = u™.

This completes the proof. a]

Recall that S : X — X is asymptotically smooth [7, Section 2.2] if
for any nonempty closed and bounded set B C X for which SB C B,
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there exists a compact set J C B such that J attracts B, i.e., for
any € > 0 there exists an ng = ng(e, J, B) such that S"B belongs
to the e-neighborhood of J for n > ng. For examples of interesting
asymptotic smooth maps, we refer to [7, Section 2.3]. It is known that
for an asymptotic smooth map, any bounded positive orbit y*(z) is
precompact (see (7, Corollary 2.2.4]). Moreover, we have the following
remark.

Remark 2.1. 1If, in addition, S : V — V is asymptotically smooth,
then in the alternative (b) of Theorem 2.1, there exists a monotone
entire orbit {u,}nez connecting a and u*, i.e., Unyy = S(uyn), Upt1 >
Un, N € Z,limp oo Un = a and lim, 00 4, = u*. Indeed, we have
shown that there exists a strict subequilibrium a + ce, € € (0,&),
as close to a as we wish. By the asymptotic smoothness of S, it
easily follows that for any v, € B = [a,u*], k = 1,2,...,00, and
ng — 00, k = +oo, {S™(vx)}32, is precompact. Therefore a
careful diagonalization argument given in Dancer-Hess connecting orbit
theorem (see [3, Proposition 1] or [8, Proposition 2.1]) proves the
existence of the monotone entire orbit connecting a and u*.

Remark 2.2. In case V = a — P, it is easily seen that there exists
€0 > 0 such that for any € € (0,¢&¢], S(a —€e) <« a—ee and hence a —~ce
is a strict superequilibrium. Then the analogous conclusion holds.

Remark 2.3. Let b > a and consider S : V = [a,b]g = V (orb< a
and V = [b,a]g). Then only the alternative (b) in Theorem 2.1 holds.
For more details and a different approach, we refer to [21].

Remark 2.4. Theorem 2.1 with Remark 2.1 is very similar to a
result due to H.L. Smith {16, Theorem 2.1]. Notice that here we only
assume the existence of the Fréchet derivative of S at u = a without
any other smoothness assumption on S. Moreover, an advantage of
Theorem 2.1 (with Remark 2.1), as noticed originally by H.L. Smith,
see, €.g., [16-18], is that we need only suppose the existence of a single
unstable steady state.
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A continuous-time semidynamical system (or semiflow) T'(t) : U C
X — X, t >0, is called monotone if for any ¢t > 0 and z,y € U with
z >y, T(t)z > T(t)y. As an application of Theorem 2.1, we have the
following result.

Theorem 2.2. Let P be a normal cone with int (P) # @. Assume
that

(W)TEt):V=a+P =2V, t2>0, is a monotone C°-semiflow and
T(t)a=a for allt > 0;

(2) there exists to > O such that for S = T(tp) : V = V, every
bounded positive orbit in V is precompact, DS(a) is compact and
strongly positive and r = r(DS(a)) > 1. Then either

(a) for any v > a, limsup,_,  ||T@#)ul = +o0o. If, in addition, for
any u > a and t > 0, T(t)u > a, then limy, |T(#)u|| = +o0, or
alternatively,

(b) there ezists u* > a with T(t)u* = u* for all t > 0 such that for
a <u<u*, lime T(t)u = u*.

Proof. Since T(t), t > 0, is a semiflow, for any u € V, S*(u) =
T(nto)u. By applying Theorem 2.1 to S = T(t) : V — V, we have
precisely two alternatives:

(a) for any u > a, limnyo0 [|S™(u)|| = limn_seo [|T(nto)ul] = +o0.
Clearly, limsup,_, o, ||T(t)u]| = +o0o. By Claim 2 in the proof of
Theorem 2.1, for any u > a, T(to)u > a and hence by our additional
assumption for any t > 0, T(t + to)u = T(t)(T(to)u) > a, i.e., for
any t > to, T(t)u > a. Then by the continuity of T(¢)u with respect
to t on the compact set [to,2to], for a given e € int (P), there exists
€ > 0 such that for any t € [tg, 2¢o], T(t)u > a + ce. For any t > t,,
let t = nty +t', where n = [(t — to)/to] is the greatest integer less
than or equal to (¢t — t9)/to and t' € [tp,2tp). Then T(t)u > a + ce
and T(t)u = T(nte)(T(t')u) > T(nto)(a + €e). By the normality of
the cone P, we may assume || - || is nondecreasing. Then ||T(t)u|| >
|T(nto)(a + c€)|| = ||S™(a + €e)|| and hence lim;—, o | T'(t)ul|| = +o0.

(b) there exists u* = T'(f)u* > a such that for any a < u < u*,
limy, 00 T(nto)u = u*. Clearly, T(t)u* is fo-periodic with respect to
t and y*(u*) = {T(t)u*;t > 0} is compact. For any a < u < u*, by
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the continuity of T'(t)u with respect to u € V uniformly for ¢ on the
compact set [0, %], it easily follows that lim; o (T'(t)u — T'(t)u*) = 0.
Therefore y*(u) = {T(t)u;t > 0} is precompact. For any given
e € (0,1), let u, = a + e(u* — a); then & € u. < u* and y*(u.)
is precompact. Since lim,_,o T(ntp)ue = u*, there exists N > 0 such
that T'(ntg)ue > u for all n > N. By the Hirsch convergence criterion
for monotone flows (see [9, Theorem 2.3] or [10, Theorem 6.4]), T'(t)u,
converges to an equilibrium as ¢ — 0o, which implies that »* is an
equilibrium, ie., T(¢t)u* = u* for all ¢ > 0. Therefore, for any
a<u<u*,

0= tl_i}rgo(T(t)u - T(tu") = tl_i)r{.lo(T(t)u - u"),

that is, limy o0 T(H)u = u™.

This completes the proof. o

Let either V = [a,b]g withb>aorV =a+Pandlet S:V =V
be a continuous and monotone mapping with S(a) = a. As claimed in
the proof of Theorem 2.1, for any u € V with u > a, S(u) > a. By
a careful examination of the proof of [21, Theorem 2.2], we then have
the following result.

Proposition 2.1. Let either V = [0,blg withb > 0 or V = P,
and let S : V — V be a continuous and monotone mapping with the
property that any bounded positive orbit in V is precompact. Assume
that

(1) S(0) = 0, DS(0) is compact and strongly positive, and r(DS(0)) <
1

(2) S(u) < DS(0)u for anyu € V and u > 0.
Then u = 0 13 globally attractive with respect to V.

Let either V = [0,b]g with & > 0 or V = P. According to [21], a
mapping S : V — FE is called strictly sublinear on V if S(au) > aS(u)
for all @ € (0,1) and u € V with u > 0. From the proof of [21, Lemma
1], we have the following result.

Lemma 2.1. Let either V = [0,b]g withb > 0 or V = P. Assume
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that S : V = V is continuous and strictly sublinear on V. If S(0) =0
and DS(0) exists, then S(u) < DS(0)u for allu € V with u > 0.

Recall that S : V C E — FE is called a strongly monotone mapping
if S(u) > S(v) for all u,v € V with u > v. For a strongly monotone
mapping with strict sublinearity, we have the following result on the
uniqueness of positive fixed points, which also comes from {21, Lemma
1].

Proposition 2.2. Let either V = [0,b]g with b > 0 or V = P.
Assume that S : V — V i3 continuous, strongly monotone and strictly
sublinear on V. Then S admits at most one positive fized point in V.

As remarked in [21, Remark 2.2], both Smith’s concavity assumption
in [15], i.e., DS(v) — DS(u) > 0 if u > v > 0, and Krasnoselskii’s
strong concavity, i.e., for every u 3> 0 and a € (0,1), there exists
n = n(u,a) > 0 such that S(au) > (1 + n)aS(u), imply our strict
sublinearity.

3. Applications to cooperative systems of FDEs. Accord-
ing to [17], let 7 = (r1,...,rs) € RY = {(z1,...,Zn);zi = 0,i =
1,2,...,n}, |r| = maxici<n 7y, and define C, = [];, C([-r,0], R).
For ¢ = (¢1,...,0n) € Cy, define |9 = i, ldillos Where
[$illoc = maxge(—r,,0)|#i(8)|. Then C; is a Banach space. Let C} =
{(#1,02,... ,¢n) € Cr; $:i(8) > 0,1 < i < n,8 € [-74,0]}, then C}t is
a normal cone of C, with nonempty interior in C,. Let A denote the
inclusion R® = C, by ¢ — £, £;(0) = z;, 0 € [-7,0], i = 1,2,... ,n.
Given function z;(t) € C; defined on [-7;,0),0 > 0,and 0 < t < o, de-
fine z; € C; by z; = (2},... ,z}), where zi(8) = z;(t +6), 0 € [-r;,0],
1=12,...,n.

Consider the functional differential equations

3.1) dz(t)/dt = f(z)

where f : U — R" is a continuously differentiable map on the open
subset U of C,.. We write z(t,¢) for the unique solution of (3.1)
satisfying 2o = ¢ and let [0,04) be its maximal interval of existence.
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Assume that U is order convex, that is, if ¢, € U with ¢ < 1), then
s¢+(1—spelUfor0<s<l.

Definition. f is called cooperative in U if, for any ¢ € U, L = df (¢)
satisfies

(K) For all ¢ € C;F with ¢;(0)=0,1<i<n, Li(¢) 2 0.
Let L : C, = R™ be a bounded linear map. Then L = (Ly,...,Ly)
admits the following standard representation (see [17])

n_ 00
Li()=>_ [ i(6)dni;(6)
j=17-71
where 7;; : R = R satisfies
(1) 7:;(8) = m;(0) for 8 > 0, 1;;(6) = 0 for 6 < —r;

(ii) 7;; is a bounded variation on [—r;,0] and 7;; is continuous from
the left on (—r;,0).

Define the stability modulus of L as
s(L) = max{Re \;det A()) = 0}

where A(\) = M = A(Y) and (AN = J2,, ¥dn;(6), 1 <45 <.
We will make the following assumption.

(R) For each j for which r; > 0, there exists an ¢ such that n;;(8) > 0
for all 8 € (—r;,0).

Now we are in a position to prove the following result.

Theorem 3.1. Let f : CF — R™ be a continuously differentiable co-
operative map with the property that f maps bounded sets into bounded
sets and define F : R} — R by F(z) = f(Z), = € R}. Assume that

(1) for any ¢ € CF with $;(0) =0, fi(¢) > 0 and o4 = +00 for any
¢ € Ct;

(2) f(0) = 0, DF(0) is irreducible and L = df (0) satisfies (R);
(3) s(DF(0)) = max{Re A;det (A\I — DF(0))} > 0.
Then either
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(a) for any ¢ € CH\{0}, lim;—yo0 || 2:(9)]| = +00, or alternatively,

(b)_there ezists z* > 0 (in R") with F(z*) = 0 such that for
any 0 < ¢ < 2*, limgoo z(t,¢) = z*. Moreover, for any ¢ > 0,
liminf, , z(t,¢) > z*, wherelim mft_,oo z(t, @) = (liminf,_, o, 21 (¢, 9),

., liminf, o0 zn (8, ¢))

Proof. For any ¢ € CF, by assumption (1), z(¢,4) exists globally
on [0,+00), and by [17, Proposition 1.2], z(t,¢) > 0, t > 0. Define
St)p = z(¢), ¢ € CH, t > 0. Since f is cooperative in C}, by
[17, Lemma 2.4] and comparison theorem of FDEs, see, e.g., [17,
Proposition 1.1], $(t) : CF — C} is a monotone C!-semiflow and
S(t)0 = 0 for t > 0. Moreover, S(t) — CF is conditionally
completely continuous for ¢ > |r|, see [7, Theorem 4 1.1]. We further
claim that for any ¢,9 € C} with ¥ > ¢, S(t)y > S(t)¢, t > 0.
Indeed,

1
2(t, %) — o(t, §) = /0 dga(t, 50 + (1 - 8)8) (¥ — 6) ds.

For each fixed s € [0, 1], let 8 = ¥ —¢, £ = s1p+(1—3)@, by [6, Theorem
4.1], dyz(t, £)B = y(t, B) satisfies the linear variational equation

(3.2) dy(t)/dt = df (z:(§))yey  vo=B.

Since B8 > 0, f is cooperative in C;¥ and hence L(t,-) = df(z:(£))
satisfies (K) for each ¢t > 0, by [17, Lemma 2.1], y(¢,8) > 0 for all
t > 0. Then for any s € [0,1] and t > 0, dgz(t, s¢p+(1—s)¢)(¥v—¢) >0
and hence for all ¢ > 0, z(¢,¢) — z(t,¢) > 0. Then S(t)¥ > S(t)¢,
t > 0. In particular, for any ¢ > 0, t >0, S(t)¢ > S(t)0 = 0.

Now consider the linear variational equation of (3.1) about the steady
state z = O:

(3.3) dz(t)/dt = df (0)z,.

For any ¢ € C,, let z(t,$) be the unique solution of (3.3) satisfying
29 = ¢; then z(t, ¢) exists globally on [0, +00). Define T'(t) : C, — Cr.,
t > 0, by T(t)p = 2(¢); then T(t) is a compact linear operator for
t > |r| and r(T'(t)), the spectral radius of T(t), satisfies r(T(t)) =
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e*, s = s(df(0)), see [6]. Since df(0) satisfies (K) and (R), and
DF(0) = df(0)(é1,...,€n), where {e;,e2,...,e,} is the standard
basis in R", by [17, Proposition 2.3], T'(t)(C\{0}) C int (C?) for
t > (n+ 1)r|, ie., T(t) is strongly positive for all ¢ > (n + 1)|r|.
Again by [6, Theorem 4.1], for any ¢ € C,, dyz(t,00¢ = z(t,v),
t > 0. It easily follows that for any t > |r| and any ¥ € C;,
Dz (0)y = z(¥) = T(t)y, ie., Dzi(0) = T(t) for all t > |r|. Then
for any given ¢ > (n+ 1)|r|, S = S(to) = =z, : CF — CF is
conditionally completely continuous and hence asymptotically smooth
(see [7, Lemma 2.3.1]), DS(0) = Dz (0) = T(ts) is compact and
strongly positive, and since s(dF(0)) - s(df (0)) > 0 by [17, Corollary
3.2], r(DS(0)) = eters(# ) > 1,

By Theorem 2.2 in Section 2, it follows that either

(a) for any ¢ > 0, limyoo [|S(E)P| = liminoo ||ze(@)]| = +o0, or
alternatively,

(b) there exists z* > 0 with f(#*) = 0 such that for any 0 < ¢ < £*,
limt_,oo Tt (¢) = z*.
Clearly, in case (b), lim¢yoo z(t,¢) = z*. For any ¢ > 0, since
DS(t0)(0) is strongly positive, S(tg)¢ > 0 (see, e.g., Claim 1 in the
proof of Theorem 2.1), there exists 0 < g9 < 1 such that go2* <
S(to)¢ = x4, (4) and hence

htrgérolf:v(t + to,P) = llgg}f z(t, 1, (4))

. A%y *
> tl_lgxoz(t,eom ) =z".

That is, liminfy, o0 (¢, @) 2> z*.
This completes the proof. a

Remark 3.1. A similar conclusion was obtained in [17, Theorem 3.3]
under the stronger assumption that f is cooperative and irredpcible in
C;} and that df is Lipschitz continuous in a neighborhood of 0.

Remark 3.2. Theorem 3.1 has an interesting biological interpretation
if (3.1) describes a multi-species cooperative system. That is, the sys-
tem is uniformly persistent if there exists a bounded positive solution.
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Now we are ready to prove the main result of this paper, which
provides a threshold criterion on the global asymptotics of system (3.1)
under some appropriate assumptions.

Theorem 3.2. Let f : Cr — R™ be a continuously differentiable
cooperative map, and let F : R} — R™ be defined by F(z) = f(&),
z € RY}. Assume that

(1) for any ¢ € CF with ¢;(0) =0, fi(¢) > 0 and f maps bounded
sets into bounded sets;

(2) f : CF > R™ is sublinear, i.e., for any a € (0,1), ¢ € Cf,
fla®) > af(¢), and F : R — R is strictly sublinear, i.e., for any
a € (0,1), z € R} with x> 0, F(az) > aF(z);

(8) f(0) = 0, df(0) satisfies (R), and for any = € R?, DF(z) is
irreducible.

(a) If s(DF(0)) < 0, then 0 is globally asymptotically stable for (3.1)
with respect to C;

(b) If s(DF(0)) > 0, then either

(i) for any ¢ € C:\{0}, lim; o0 ||+ (9)|| = +00, or alternatively,

(i) (3.1) admits a unique positive steady state £* with z* >> 0 and
£* is globally asymptotically stable with respect to C;F\{0}.

Proof. We first prove that, for any ¢ € CF, 04 = [0, +00), i.e., z(¢, ¢)
exists globally on [0,00). Since f(0) = 0, the sublinearity of f implies
that for any ¢ > 0, f(¢) = limao+ af(d)/a < limg o+ (fag) ~
f(0))/a = Df(0)¢. By assumption (1), for any ¢ € C}, z(t,¢) > 0,
t € [0,04). Then

dz(t, ¢)/dt = f(z+(¢)) < Df(0)z+(8)-
Let y(¢, ¢) be the unique solution of linear FDE
{ dy(t)/dt = Df(0)y:
Yo = ¢;

then y(t,¢) exists globally on [0,+00). By comparison theorem of
FDEs, see, e.g., [17, Proposition 1.1}, z(t,¢) < y(t,¢),t € [0,04),
which implies oy = +o0c.
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We further claim that when s(DF(0)) < 0, (3.1) admits no steady
state in C;F\{0} and that when s(DF(0)) > 0, (3.1) admits at most
one positive steady state in C;F. Indeed, it suffices to prove the
corresponding claim for the associated nonlinear ODE

(3.4) dz(t)/dt = F(z(t)).

From assumptions (1), (2) and (3), it easily follows that (3.4) generates
a strongly monotone semiflow ¢(t) : R} — R% by o(t)r = ¢(t,z),
t > 0, where ¢(t, z) is the unique solution of (3.4) with ¢(0, z) = z, see,
e.g., [10] or [18]. For any given w > 0, we view (3.4) as an w-periodic
system of ODE. As shown in [21], the strict sublinearity of F(z) on
_ R} implies the strict sublinearity of w-time map S = ¢(w) : R} — R,
" which is clearly compact and strongly monotone. Notice that S(0) =0
and r(DS(0)) = e**, s = s(DF(0)). Now Lemma 2.1 and Propositions
2.1 and 2.2 imply that when s(DF(0)) < 0, S admits no fixed point
in R}\{0}, and that when s(DF(0)) > 0, S admits at most one fixed
point in R}\{0}. Clearly, every steady state of (3.4) in R} is a fixed
point of w-time map S. This then proves our claim on the steady state
of (3.4) and hence of (3.1).

Define ®(t)¢ = z¢(¢), ¢ € CF, t > 0. Then &(t) : CF - C} is
a monotone semiflow, see [17], and ®(¢)0 = 0 for t > 0. Moreover,
for any ¢t > 0, ®(¢) is sublinear on CJ, i.e., for any o € (0,1) and
any ¢ € CF, ®(t)(ap) > ad(t)(¢), and hence, since o(t)(0) = 0,
B(t)p < DP(t)(0)¢. Indeed, for any ¢ € CF and a € (0,1), let
w(t) = z(t, o) — az(t, $), then w(t) satisfies

dw(t)/dt = L(t,w;) + h(t)
where )
L(t,¢) = /0 df (sz¢(ad) + (1 — s)azi(¢))o ds

and
h(t) = f(azi(9)) — af (z:(9)).

Since wo = zo(ag) — azo(d) = 0 € C;, by variation of constants
formula [6, Theorem 2.1],

t
w(t) =/0 U(t,s)h(s)ds, t>0,



GLOBAL ASYMPTOTIC BEHAVIOR 435

where U(¢, s) is the fundamental matrix defined by linear FDE
dw(t)/dt = L(t,w;).

Since f is cooperative, L(t,¢) satisfies that for any ¢ € C} with
#i(0) =0, L;(t,¢) > 0 for t > 0. Now it easily follows that U (t s)>0
for t > s. Therefore, for any ¢ > 0, w(t) > 0, and hence, since wy = 0,
w20, i.e., B(t)(ad) = zi(ed) > az(d) = a@(t)(4). By Remark 1 in
[17, Section 3], there exists u > 0 in R™ such that y(t) = ues(¥ Ot j5
a solution of the variational equation

dy n
%Y = df Oy
dt df (0)y:
Let @ = (1,... ,4,) be defined by
5;(0) = u;e? @8 _p<g<0, 1<i<my

then @ >> 0 in C; and y(t) = y(t,@). Let T(t)u = ye(u), t > 0, u € CF;
then, as shown before, for any t > |r|, D®(t)(0) = T'(¢).

In case s(DF(0)) < 0, since, by [17, Corollary 3.2], s(df(0)) < 0,
for any t > |r|, D®(t)(0)a = T(t)a = y(@) < @ For any 8 > 0,
given to > |r|, ®(t0)(Ba) < D®(ty)(0)(8%) < Ba. By the asymptotic
smoothness of ®(tg), (®(to))"™(Ba) = ®(nty)(Bu) — u*, n —» oo, and
u* = B(tg)u*. It easily follows that ®(t)u* is to-periodic with respect
to t > 0 and limy o || (t)(BG) — ®(t)(u*)|| = 0. Then the w-limit set
of 34 for semiflow ®(t) is a to-periodic orbit v+ (u*) = {®(t)u";t > 0},
ie., w(Bfa) = vyt (u*). Since t; > |r| is arbitrary, w(Bu) has any
to > |r| as a period, which implies that w(ﬂu) is a steady state of
®(t). By the nonexistence of steady state in C’+\{0}, w(Ba) =0, i.e.,
lime 00 () (B2) = 0. Therefore, for any u > 0, there exists 8 > 0
such that 0 < u < B4 and hence 0 < ®(t)(u) < ®(t)(Ba). Then
limy 00 2¢ (u) = limy—y 00 P(t)u =

In case s(df(0)) > 0, by Theorem 3.1, either
(i) for any ¢ € CH\{0}, lim;— o ||z+(9)|| = 400, or alternatively,

_ (ii) there exists z* > 0 in R™ with F(z*) = 0 such that for any
0< ¢ S .’i*, hmt_,oo xt(¢) = g*.
In the latter case, for any 8 > 1, given ¢y > |r|, by the sublinearity of
o(t), t >0,

2" < B(t0)(B27) < BB(t0)(27) = B2”
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By a similar argument to that in the case (a), it follows that ®(t)(8%*)
converges to a steady state u* and u* > Z* 3> 0. Then the uniqueness of
steady state in C;\{0} implies that lim;, o, ®(t)(8%*) = £*. Therefore
for any ¢ > &*, there exists 8 > 1 such that &* < ¢ < B%* and
hence z* < ®(t)¢ < ®(¢)(#2*). Then lim, ., B(t)¢ = £*. Since
for any ¢ > 0, there exist 0 < ¢; < #* and &* < ¢, such that
#1 < ¢ < ¢2 and hence B(t)(¢1) < B(t)(¢) < P(t)(¢2). It follows
that lim—00 B(t)(¢) = &*.

It remains to prove the stability of the steady states of 0 and 2* with
respect to C; in case (a) and C;F\{0} in case (ii) respectively. Here we
only prove the former and the latter can be proved similarly. For any
e > 0, let B(0,e) = {u € Cy;|u| < €}; there exists & > 0 such that

’ Lf), ] € B(0,¢). Then for any ¢t > 0, ®(t)a > 0. Since limgy 0o B(t)d =
0, there exists tg > 0 such that for all ¢ > o, ®(t)d € [0,4]. Then for
any u € Vo = [0,®(to)d]) = {u € Cr;0 < u <« ®(tp)it}, and for any
t>0,

®(t)u € [0, ®(t + to)a]] C [0,4] c B(D,¢).
Since V = [[ ‘I’(to)’u ql(to)u]] = {u € Cr;— <I>(t0)u KUK ‘I’(to)’u} is
open in C, and 0 € V, there exists § > 0 such that B(0,6) c V. Then
for any u € B(0, ) ﬂC"’ c Vo, ®(t)u € B(0,¢), t > 0. Therefore u =0
is stable with respect to Cf.

This completes the proof. 8]

For autonomous systems of ODEs,
(3.5) dz(t)/dt = f(z), z€ R"

let E = R™ and P = R7; then Theorems 3.1 and 3.2 imply the following
results respectively.

Corollary 3.1. Let f : R} — R" be a continuously differentiable
map. Assume that

(1) f is cooperative on RY, i.e., for any x € R}, 0f;/0z; > 0,
4, = 1,2,...,n, and i # j, and Df(0) = (0£i(0)/0%;)1<i j<n 3
irreducible;

(2) f(0) =0, fi(x) >0 for allz € R} withz; =0,i=1,2,...,n,
and for any x € RY, the unique solution ¢(t,z) of (3.5) with p(0,z) ==z
ezists globally on [0, +00);
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(3) s(Df(0)) = max{Re A;det (A — Df(0))} > 0.
Then either
(a) for any x € RE\{0}, lim;,oc [0(¢, x)| = +00, or alternatively,

(b) there exists * > 0 with f(z*) = 0 such that for any 0 < z < z*,
lim; 00 ¢(t, ) = z*. Moreover, for any z > 0, liminf;, o ¢(t, z) > z*.

Corollary 3.2. Let f : R} — R" be a continuously differentiable
map. Assume that

(1) f is cooperative on R} and Df(x) = (0fi/0x;)1<i,j<n 18 irre-
ducible for every x € RY;

(2) f(0) =0 and fi(z) > 0 for allxz € R} withz; =0,i=1,2,...,n;

(8) f is strictly sublinear on R}, i.e., for any o € (0,1) and any
z >0, f(az) > af(z).

(a) If s(Df(0)) <0, then x = 0 is globally asymptotically stable with
respect to R%;

(b) If s(Df(0)) > 0, then either

(i) for any z € RE\{0}, lim; o0 |0(¢, )| = +00, or alternatively,

(ii) (3.5) admits a unique positive steady state * >> 0 and ¢ = z* is
globally asymptotically stable with respect to R} \{0}.

Remark 3.3. Corollary 3.2 generalizes a similar result of Smith’s (see
[15, Theorem 3.1 and Corollary 3.2]) in the sense that the concavity
assumption is weakened into strict sublinearity but the conclusion of
the global attractivity of equilibrium is strengthened into its global
asymptotic stability.

4. Some examples. In this section we will apply our main
results of Section 3 to some epidemic models with a positive feedback,
competition models in chemostat with time delay and population
models with dispersal and stage structure. Some known results are
not only rediscovered but also improved further.

Example 1. Consider the epidemic models with positive feedback
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(see [2, Section 4.4]):
(4.1) { dz1/dt = —a1121 + a1222
) de/dt = g(zl) — Q2222

where a;; > 0, a12 > 0 and a2 > 0,and g : Ry — Ry is a continuously
differentiable function. We have the following result.

Proposition 4.1. Let 8 = (a129'(0))/(a11a22) and assume that

(i) g(0) =0 and ¢’(z) > 0 for z > 0;

(ii) g(z) is strictly sublinear on Ry, i.e., for any z > 0 and any
a € (0,1), g(az) > ag(z).

(a) If 0 < 6 < 1, then 0 is globally asymptotically stable for system
(4.1) in R%;

(b) If 6 > 1 and for all z; > 0, g(21)/z1 > ainiazz/ai2, then for
any z € R2\{0}, limy |@(t, z)| = +00, where ¢(t,2) is the unique
solution of (4.1) with ©(0,z2) = z;

(c) If 8 > 1 and there exists z; > 0 such that g(Z1)/% < an1a22/a12,
then (4.1) admits a unique positive equilibrium 2* >> 0 and z* is globally
asymptotically stable in R3\{0}.

Proof. Let

9(21) — Q2222

1t easily follows that # < 1 implies s(Df(0)) < 0 and that 8 > 1 implies
s(Df(0)) > 0. Clearly, if g(z1)/z1 > ai1a22/ay2 for all 2; > 0, (4.1)
admits no positive equilibrium. If 8 > 1, i.e., ¢'(0) = lim,_,o+ g(2)/z >
a11a22/a12, and there exists Z; > 0 such that g(%1)/z1 < a11a22/a39,
then there exists z; > 0 such that g(z})/2f = aj1a22/a12 and hence
(4.1) admits a positive equilibrium z* > 0. Now Corollary (3.2)
completes the proof. a

f(z) = (—a1121 + 01222) '

Remark 4.1. A conclusion similar to that of (a) and (c) in Propo-
sition 4.1 is claimed in [2, Theorem 4.1] under the assumption that
g"(2) > 0 for all z > 0 and limsup,_, ., 9(2)/z < a11022/a12, which
implies clearly the strict sublinearity and the additional assumption in
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(c). Moreover, Proposition 4.1 also gives a trichotomy on the global
asymptotic behavior of system (4.1).

Remark 4.2. By using Corollary 3.2 one can also reconsider a model
for gonorrhea transmission [2, Section 4.6.1] and Macdonald’s model for
the transmission of schistosomiasis [2, Section 4.6.2] and rediscover (2,
Theorems 4.8 and 4.9 and Theorems 4.12 and 4.13]. We also point out
that, by an argument similar to that in Theorem 3.1 and 3.2, one can
deduce the threshold theorem on the cooperative periodic systems of
differential equations and autonomous and periodic reaction-diffusion
systems with strict sublinearity, and hence improve {2, Theorem 4.5],
(2, Theorems 5.1 and 5.5] and [2, Theorems 5.6 and 5.11], respectively.
For some related results, we refer to [21].

Example 2. Consider the two-species competition chemostat model
with delays (see [5] and [12]):

S 4 :
= = ("= S()D - EH(S(t))wf(t)

(42) % = —Dz1(t) + e PP (St - 11))z1(t - 71)
% = —Daz(t) + e P Py(S(t — 7a))2a(t — 72)

where D > 0, S >0, 7; > 0,7=1,2, and P, : [0, +00) — [0, +00) are
continuously differentiable functions satisfying P,(0) = 0 and P/(s) > 0
for all s > 0. Let 2,(t) = eP™zy(t + 71), 23(t) = eP™2x5(t + 72). Then
it follows that

S(t) + z1(t) + 22(t) = 8 + O(e~P*), ast — oo,

and, hence, by asymptotically autonomous semiflow theory, some
asymptotic behavior of systems (4.2) can be determined by the fol-
lowing limit system

le

(43) &
% = —D2(t) + P2(S©) - z1(t) — 22(t))e P 25(t — m).

= —Dz(t) + Pi(S© — 2 () — 2(t))e" Pz (t — 1)
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As usual, the first important discussion is on the scalar equation when
one or other of the species is absent, that is, the case of just one
species being grown alone in the chemostat. Here we then consider
the following equation

dz(t)/dt = P(S© — z(t))e~PTz(t — 1) — D2(t), t>0
(4.4) { 2z =¢ € C([-7,0},R) and 0< ¢(6) < SO
for 6 € [-,0]

where P € C([0, 00), [0, 00)) satisfies
(4.5) P(0)=0 and P'(s)>0 foralls>0.

Then we have the following threshold result. For a similar result, except
for the stability of equilibria and a different approach, we refer to the
main result [5, Theorem 3.4].

Proposition 4.2. Let [0,5@] = {¢ € C([-7,0],R);0 < ¢(f) <
SO —7 < 6 < 0} and assume that (4.5) holds.

(a) If P(S®) < DeDT’, then z = 0 is globally asymptotically stable
for (4.4) with respect to [0, S(0];

(b) If P(S©®) > DeP™, then (4.4) admits a positive equilibrium 2*
and z = £* is globally asymptotically stable with respect to [0, S(®]\{0}.

Proof. Let P(s), s € R be any continuously differentiable extension

of P(s) on [0, 00) to R satisfying P (s) > 0 for all s € R. Consider then
the following equation

(4.6) de(t)/dt = f()
where f: C([~7,0],R) = R is defined by

£(¢) = P(S© - ¢(0))e™P" - ¢(—7) — D(0).
Then f € C'([~7,0], R) and for any v, ¢ € C([-7,0], R),

df ()¢ = —P (S — 4(0))$(0)e™PTp(—r)
+ P(S© — 4(0))e~C7¢(~T) — D(0)
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and hence for any 9 € [0, 5] and any ¢ € C*([-7,0], R) with ¢(0) =

0, df (¥)¢ = P(S© — 'gb(O))e‘D"qS(—r) >0, thatis, f:[0,3@] 2 R
is cooperative on [0,3(]. Since for any ¢ € [0, 5] with ¢(0) = 0
(#(0) = 59), 1(9) = PSO)eP76(—7) > 0 (7(8) = -Dé(0) < 0),
by [14, Proposition 1.3], [0, 5] is positively invariant, that is, for
any ¢ € [0,50)], the unique solution z(t,$) of (4.6) with 2z = ¢
satisfies 0 < 2(t, ) < S© on its maximal interval of existence [0,04).
Moreover, for any ¢ € V = [0,5©)] with ¢ > 0, and any o € (0,1),
since ﬁ’(s) > 0 for all 5 > 0, f(a¢) — af(¢) = ae~PT¢(—1)[P(S©@ —
a¢(0)) — P(S© — $(0))] > 0, that is, f : V = C([-7,0], R) is strictly
sublinear. Since f(0) = 0 and for any ¢ € C([-, 01 R), df(0)¢ =
P(SO)e=D7h(—7) — D$(0), it is easy to see that df(0) satisfies (R).
Notice that F(z) = f(&) = P(S©®) — z)e~P"z — Dz = z[P(S© -
z)e~PT — D] and DF(0) = P(5®)e~P™ — D, now Theorem 3.2 with
Remark 2.3 completes the proof. a

Example 3. Consider the following systems of delay differential
equations, which are deduced from a population model with dispersal
and stage structure (see [20]).

dM;(t
Q) M) (M) + (M), Ma(0)
(4.7) n
+Zb,‘jaij(t—’T), t>0, i=12,...,n,
j=1
where 7 > 0, a; > 0, bij; 20, g; € CI(R'_;'_,R), F; € CI(R",R) and
F;(0)=0,4,5 =1,2,... ,n. By a careful verification of all assumptions

in Theorem 3.2, we have the following threshold result.

Proposition 4.3. Assume that

(1) F = (F, F,... ,F,)T : R = R™ is cooperative and irreducible,
ic, for any M € R%, OF;/0M; > 0, i # j, and DF(M) =
(OF;/0M;)1<i j<n is irreducible;

(2) for any M € RL with M; =0, F;(M)>0,¢=1,2,...,n, and
for any 1 < j < n, Bj = (byj, b2j,... bpj)T > 0 in R™

(3) H = (Hy,Ha,... ,H,)T : Rt — R" is strictly sublinear, i.e.,
for any M > 0 and any a € (0,1), H(aM) > aH(M), where
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Hi(M) = —M;g;(M;) + Fi(M), i = 1,2,... ,n. Let A = (Ajj)1<ij<n
be defined by A;; = —g;(0) + 8F;(0)/0M; + bijaj, 1 <4, j < n.

(a) If s(A) = max{Re\;det (A — A) = 0} < 0, then 0 is globally
asymptotically stable for (4.7) with respect to C* = C*([-,0], R™);

(b) If s(A) > 0, then either

(i) for any ¢ € C*T\{0}, lim;y o0 | My(@)|| = +o0, where M(t,) is
the unique solution of (4.7) with My = ¢; or alternatively,

(i) (4.7) admits a unique positive equilibrium M* with M* > 0in
R"™ and M* is globally asymptotically stable with respect to C+\{0}.

By [20, Lemma 3.1] it follows that if lim inf, o gi(z) > 307, bijaj,
1 <i<nand for each 1 < ¢ < n, F;(M) < 0 for any M € R}
with M; > M;, 1 < j < n, then system (4.7) is point dissipative, i.e.,
solutions of (4.7) are ultimately bounded. It also easily follows that if
9i(0) < Yo7, bija; then s(A) > 0. Therefore, the alternative (b) in
Proposition 4.3 implies [20, Theorem 2.1].

Remark 4.3. In [13], Z. Lu and Y. Takeuchi discussed the single-
species discrete diffusion systems

dz; i
L =mifizi)+ Y, Dij(zj - aijzi) = Fi(z),
(4.8) dt PRew ¥
1<i<n,

where D;; > 0, aj; > 0,1 < 4,5 <m,and f;: Ry — R. It is easy
to see that our Corollaries 3.1 and 3.2 imply their main results (see
[13, Theorems 1 and 2]). In particular, we point out that the key
assumption in [18, Theorem 2], i.e.,

(H) fi(0) > 0, fl(zi) <0forz; >0,i=1,2,...,n

is just a sufficient condition for the strict sublinearity of F = (Fy,...,
F.)T: R — R™.
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