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CONVERGENCE IN ASYMPTOTICALLY PERIODIC
TRIDIAGONAL COMPETITIVE-COOPERATIVE SYSTEMS

XIAO-QIANG ZHAO

ABSTRACT. It is shown that there is no cyclic chain of
fixed points of the Poincaré map associated with periodic tridi-
agonal competitive-cooperative systems. The convergence in
asymptotically periodic tridiagonal competitive-cooperative
systems is then obtained by appealing to asymptotically pe-
riodic semi-flow theory.

1. Asymptotically periodic semi-flows. In this preliminary
section we summarize some general results on asymptotically periodic
semi-flows. For their motivations and proofs, we refer to the recent
paper [20].

"Let (X, d) be a metric space. A continuous mapping ®: Ax X — X,
A ={(t,5);0 < s <t < o0}, is called a nonautonomous semi-flow if ®
satisfies the following properties:

(i) ®(s,s,z) =z forall s >0, z € X
(ii) ®(t,s, ®(s,7,z)) = B(t,r,z) forallt > s > r > 0.
Recall that T(¢t) : X — X, t > 0, is called an w-periodic semi-

flow on X if there is an w > O such that T (t)z is continuous in
(t,z) € [0,00) x X, T(0) = [ and T(t + w) = T(t)T(w) for all £ > O,
see [5, 18]. For convenience, we also use the notation T'(t,z) = T(t)z,

reX,t>0.

Definition 1.1. A nonautonomous semi-flow & : A x X — X is
called asymptotically periodic with limit periodic semi-flow T'(t) : X —
X,t>0,if

®(t; + njw,njw,x;) — T(t)z, j— oo,
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for any three sequences t; — ¢, nj — oo, z; — z, j — oo, with
z,r; € X.

Theorem 1.1 (Reduction). Let ® : Ax X — X be an asymptotically
periodic semi-flow with limit w-periodic semi-flowT(t) : X — X, t >0,
and T,(z) = ®(w,0,z), n > 0, z € X and S(z) = T(w)z, z € X.
Assume that Ag is a compact S-invariant subset of X. If, for some
y € X, lim,, oo d(Tn(y), Ag) =0, then

lim d(&(t,0,9), T(t)4o) = 0.

By a sequence of continuous mapping S,,, : X — X, m € N, we
define a discrete dynamical process by

Tn=S 1OSn 20- IOS()IX—PX, ’l’lZl
To=1

where I : X — X is the identical mapping on X. For z € X, we let
y*t(z) = {Tu(z);n > 0} denote its orbit and w(z) = {y;y € X and
there is ny — oo such that T, (z) — y as k — oo} its w-limit set.

Definition 1.2. Let T, : X — X, n > 0, be a discrete dynamical
process and S : X — X a continuous map. T,, n > 0, is called
asymptotically autonomous with limit discrete semi-flow 8™, n > 0, if

Sm;(25) — S(z), j— 00,

for any two sequences m; — o0, r; — x, j — oo, with z,z; € X.

Let N = Nu {oo} For any given strictly increasing continuous
function ¢ : [0,00) — [0,1) with ¢(0) = 0 and ¢(c0) = 1, e.g., #(s) =
5/(1+s), we can define a metric p on N as p(my, mg) = |¢>(m1) d(ms)|,
for any m;, my € N, and then N is compactified. Let X = N x X. We
define a mapping §: X — X by

- _ Q4+ m,Sn(z)) m<oo,ze€X,
S((m, z)) = {(oo,S(m)) m=o0, € X.
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By Definition 1.2, it easily follows that S : X — X is continuous. Then
we can embed both T, : X — X, n >0,and §" : X — X, n >0, into
a discrete semi-flow S™, n > 0, on the larger metric space X with

on - (m+naSm (n=1)0 """ 00Om 1°Sm(13)) m < 00,
5n(m,a) = { (et * m < oo

In particular, let m = 0,

S5™((0,)) = (n,8p—_10 Sp_g 0 --- 81 0 So(z)) = (n, Ta(z)),
n > 0.

Then, by the compactness of ﬁ, for any precompact orbit v+ (z) of T,
n > 0, the orbit v+ ((0, z)) of S®, n > 0, is precompact and

{00} x w(z) = w((0,z))

where w((0, z)) is the w-limit set of (0,z) for S,, n > 0, in the usual
way.

Theorem 1.2 (Omega limit set). Let the orbit vt (z) of T : X — X,
n > 0, be precompact in X. Then its w-limit set w(z) has the following
properties:

(a) w(z) is nonempty and compact;

(b) w(z) is S-invariant, ie., S(w(z)) = w(z), and compactly S-
tnvariantly connected,

(¢) w(z) attracts vyt (z), i.e., lim,_ o0 d(Tn(z),w(z)) = 0;

(d) w(z) is chain recurrent for S.

Assertions (a), (b) and (c) of Theorem 1.2 were established in [20,
Theorem 2.1]. Assertion (d) can also be derived by applying the
above-mentioned embedding approach and the corresponding result for
mappings, see, e.g., [11].

Theorem 1.3 (Butler-McGehee type lemma). Let M be an isolated
S-invariant set in X, and let v (z) be an orbit of T,, n > 0, and
w(z) its w-limit set. Assume that v*(z) is precompact in X and that
w(z)NM +# & but w(z) € M. Then
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(a) there ezists a u € w(z)\M with its S-orbit v&(u) C w(z) and
w-S-limit set wg(u) C M, and :

(b) there ezists a w € w(z)\M with a full S-orbit ys(w) C w(z) and
its a-S-limit set ag(w) T M.

Theorem 1.4 (Attractivity). Let M be a compact S-invariant subset
of X which is locally asymptotically stable for S and W*(M) = {y €
Xiws(y) # @ and ws(y) C M} be its stable set. Then, for any
precompact T,,, n > 0-orbit v+ (z) with w(z) "W*(M) # @, w(z) C M.

Theorem 1.5 (Convergence). Assume that each fized point of S is
isolated, that there is no S-cyclic chain of fized points of S, and that
every precompact S-orbit converges to some fized point of S. Then any
precompact orbit vy¥(z) of Tn, n > 0, converges to some fized point of

S.

Theorem 1.6 (Uniform persistence/repellor). Let Xo and 8X, be
open and closed subsets of X, respectively, such that XoN 00Xy = &
and X = XoU 8Xy. Assume that S,,,(Xo) C Xo for all m > 0 and
S(Xo) € Xo, and that

(1) there is a compact S-invariant subset Ay of Xo which is globally
asymptotically stable for S in Xy;

(2) Let As be the mazimal compact invariant set of S in 8Xo.
Ay = Uzea,ws(z) has an isolated and S-acyclic covering uk_ M,
in 8Xo, that is, As C UF_ | M;, where My, Ms,... , My are pairwise
disjoint, compact and isolated invariant sets of S in 0Xy such that
each M; is also an isolated S-invariant set in X, and no subset of M, ’s
forms a cycle for Sg = S|a, in Ag;

(B Ws(M))NXo=@,i=12,...,k, where W8(M;) = {z;z € X,
the w — T, n > 0-limit set w(z) # @ and w(z) C M;}.

Then for any precompact orbit v+ (z) of T,,, n > 0, with x € X, its
w-limit set w(z) C Ap.

For an asymptotically periodic semi-flow & : A x X — X with limit
w-periodic semi-flow T(t) : X — X, t > 0, let T,,(z) = ®(rw, 0, z),
ne€ N, ze€ Xand S = T(w) : X - X. Define S, : X - X,
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n > 0, by Sp(z) = ®((n + \)w,nw,z), n > 0, z € X. Then, by
the properties of nonautonomous semi-flows, T,,(z) = Sp,_1 0 S,z 0
-+-81085y(z), n > 1, £ € X. By Definition 1.1, it then easily follows
that im(, 2)_(00,20) Sn(2) = S(zo), ie, Tn : X — X, n > 0, is
an asymptotically autonomous discrete dynamical process with limit
autonomous discrete semi-flow S™ : X — X, n > 0, in the sense of
Definition 1.2.

Theorems 1.1, 1.3, 1.4 and 1.6 were applied in [20] for the global at-
tractivity of scalar asymptotically periodic Kolmogorov parabolic equa-
tions and the uniform persistence of asymptotically periodic parabolic
predator-prey systems, and in [16] for the qualitative analysis of peri-
odically operated chemostat models via certain conservation principle.
For the global attractivity in scalar asymptotically almost periodic Kol-
mogorov equations and its applications, we refer to the recent paper
[17]. In this paper our main aim is to apply Theorems 1.1 and Theo-
rem 1.5 to discuss the convergence in asymptotically periodic tridiag-
onal competitive-cooperative systems and its application to a cascade
model of neural nets studied in [8, 14].

2. Periodic tridiagonal competitive-cooperative systems.
Consider the nonlinear periodic tridiagonal system

dyy
W _ ey
dt fl( 7y1ay2),
2.1 ay; _ o _ '
( . ) E—fj(tay]—lvyjyy]-f—l), QSJSn_l,
dyn
% = fn(t7yn—1,yn),
where f = (fi,...,fa)T € C'(R™',R") is w-periodic in t for some

w > 0, ie, f(t +w,y) = f(t,y). We assume that there exists
d; € {—1,41}, 1 < i <n -1, such that

Ofi dfir1

2.2 6;
(22) 0Yit1 dy; -

> 0, 8;

>0, 1<i<n-1,

holds for all (t,y) € R™+!.

The requirement (2.2) implies that the Jacobian matrix 9f/8y
is tridiagonal and sign symmetric in the sense that 0f;/0y;+1 and
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8fiy1/0y; have the same sign 6;. In case §; = —1 for all ¢, (2.1) is
competitive, and in case §; = +1 for all ¢, (2.1) is cooperative. As
shown in [13], by a change of variables, we will always assume (2.1) is
cooperative.

For simplicity, we further assume that all solutions of (2.1) exist
globally for all ¢ > 0. Let S be the Poincaré map associated with
(2.1), i.e, S(v) = y(w,v), v € R™, where y(t,v) is the unique solution
of (2.1) satisfying y(0,v) = v. We denote the set of all fixed points
of S by Fix(S). In [13], it was shown that every bounded solution of
(2.1) is asymptotic to an w-periodic solution, i.e., the omega limit set
of every bounded orbit for {S™} is a fixed point of S. In what follows,
we will show that there is no cyclic chain of fixed points of S by using
an integer-valued Lyapunov function. To do this, we need a series of
lemmas.

Following [12, 13], we define a unique continuous function o : A —
{0,1,2,... ,n~1} on

A={veR":v, #0,v, #0and ifv; =0
for some 1,2 < i <n—1, then v;_;v;41 < 0}

such that forany v e Ag={ve R*: V; #0 forall 1 <i < n},

o(v) = #{i : v;vi1 < 0},
where # denotes the cardinality of the set. Clearly, A is open and dense
in R™.

Consider the periodic linear system

(2.3)
dx
d_tl = a11(t)z1 + ara(t)z2
dz; .
E]- = aj;-1()5-1 + aj; (D)5 + aj501 (2541, 2<j<n-1,
dx,
_(—it_ = ann—l(t)xn—l + ann(t)xﬂ’

where the a;;(-) are continuous and w-periodic functions defined on R
and
a‘jj+1(t)>0a t€R7 ].S]Sn—l,
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and
aj;—1(t) >0, teR, 2<j<n.

Lemma 2.1 [13, Theorem 1.3]. Let X(t) denote the fundamental
matriz solution of the linear system (2.3) satisfying X(0) = I, where
I is the identity matriz. Then (2.3) has n distinct positive Floquet
multipliers as,. .. ,ay, satisfying

a1>a2>--->aﬁ_1>an>0.

If E,, are the corresponding one-dimensional eigenspaces of X (w), then
E. \{0} C A and

o(Ea\M0}) =i—1, 1<i<n

Lemma 2.2 [13, Lemma 2.1]. Let y(t) and g(t) be distinct solutions
of (2.1) on an interval I. Then y(t) — §{t) € A except possibly at
finitely many values of t € I. o(y(t) — §(t)) is locally constant and
strictly decreases as t increases through a value s at which it is not

defined.

Lemma 2.3. Let ¢ € Fix(5), and let k — 1 > 0 be the number of
eigenvalues of S'(1) greater than one andl > 0 be the number of those
not less than one.

(a) If wi,wy € R™ with w1 # we and w(wy) = wl(ws) = {9}, then
0’(’11)1 —w2) Z k—1.

(b) If wy,wy € R™ with wy # wy and a(wr) = a(ws) = {Y}, then
o(w1 —w2) Sl— 1.

Proof. Clearly, l = korl =k — 1. Let v(t) = y(t,w1) — y(t,ws),
t € R. Then u(t) satisfies the following nonautonomous equation

(2.4) %:am,vaw
where C(t) = (¢;;(t)) and
' of;
cij(t) = —_(t’ ui—l(s7t)7ui(s’t)vui+1(51t)) ds

0 53/;'
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with u;(s,t) = sy;(t,w1) + (1 — 8)y;(t,we), j =t —1,4,i+ 1.

Let Co(t) = (cf;(t)) with c;(t) = (8f:/0y;)(t, vi-1(t, %), ys(t, %),
¥i+1(t, %)), 1 <4, j < n. Then Cy(t) is an n X n w-periodic matrix.
Let X(t) be the fundamental matrix solution of the linear w-periodic
system

dz ”
(2.5) i Co(t)z, =z€ R",

satisfying Xy(0) = I. Then S'(¢) = Xy(w). By Lemma 2.1, X (w)
has n distinct positive eigenvalues ay,. .. , a,, satisfying

ap>ay>-c>op_1>12ag> 041> >an >0,

Moreover, let E,, be the corresponding one-dimensional eigenvalue of
Xy(w). Then

E, \{0} CA and o(E,\{0})=i—-1, 1<i<nm.
In case (a), since
tl}l-zloo(y(t’ wl) - y(t, 'II))) =0= t-}jgloo(y(t’ ’LU2) - y(tv 7/1)),
lime—, 40 (C(t)—Co(t)) = 0, i.e., (2.4) is asymptotic to (2.5) ast — +oo.

By [1, Corollary B.3 and Theorem B.5], it then easily follows that there
exists some 1 < i < n such that

(26) Jim_o(m) ™ = a,
and
@27) v(mw) - &

im
m—+oo |v(mw)|

with ¢; € E,, and |@;| = 1. We further claim that «; < 1 and hence
i > k. Suppose o; > 1. Choose ap € (1,c;). By (2.6), there exists
N > 0, such that, for all m > N,

|1/m

|v(mw) > ay, ie., [v(mw)| > of".
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Then, since lim,,_, 400 & = +00, {v(mw)}f2, is unbounded, which

is a contradiction to the boundedness of v(t) on [0,+00). Since
¢ € E \{0}, o(¢;) = i — 1. Then (2.7) implies that there exists
Np > 0 such that, for all m > Ny,

ootm)) = o (e ) =i =1,

[v(mw}|

and hence, by Lemma 2.2,

o(wy —wq) =0(v(0)) 2 o(v(mw))=i—-1>k—1.

In case (b), since

limg—, oo |C(t)~Co(t)| = 0, i.e., (2.4) is asymptotic to (2.5) as t — —oo.
By the counterparts of [1, Corollary B.3 and Theorem B.5] for backward
sequence, see [1, Theorem B.9], we can show that there exists some
1 < j < n such that

v(mw)

2. i Ym=a; > ()|
¢8I wom)l T =g 21 end - B )]

=¢j;

with ¢; € E,; and |¢;| = 1. Therefore, j <l and o(¢;) =57~ 1. It
follows that there exists N; > 0 such that, for all m < —Nj,

a@mwn=a(iﬁﬂl)=j—1<z—L

Jv(mw) -
and hence, by Lemma, 2.2,
o(wy —wz) =0(@(0)) Lowimw))=7-1<1-1
This completes the proof. 8]

Lemma 2.4, For any ¢1,¢¥s € Fix(S) with 1 # 1, then
Y1 — 2 € A.
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Proof. Clearly, y(t,v1) and y(t,12) are two distinct w-periodic
solutions. Let v(t) = y(t,¢1) —y(t,¥2),t € R. By Lemma 2.2, v(t) € A
except possibly at finitely many values of ¢ € R, and o(v(t)) strictly
decreases as t increases through a value s at which it is not defined.
Therefore, there exists mg > 0 such that

v(t) € A, forall [t > mow.

Since v(t) is w-periodic, o(v(—mow)) = o(v(mew)). It follows that
v(t) € A for all t € [-mowp, mow]. In particular, v(0) = ¥; — 2 € A.
This completes the proof. n]

Now we are in a position to prove the main result in this section.
Theorem 2.1. There is no cyclic chain of fized points of S.

Proof. We first claim that there is no homoclinic orbit for S. Assume
that there exists w ¢ Fix (S) such that w(w) = {¢} and a(w) = {¥},
1 € Fix(S). Let k — 1 > 0 be the number of eigenvalues of S’(v)
greater than one. For every integer m, let w; = S™w and wy = S™+1w.
Clearly, w(w;) = w(ws) = {} and a(w) = a(wz) = {¢}. Applying
Lemma 2.3 to the pair w; and ws, we obtain that

o(S™w — S™w) > k -1,

and
o(S™w — Sm+lw) <l-1<k-1.

Therefore, for any integer m,
a(S™w — 8™ w) = o(y(mw,w) - y((m + w,w)) = k — 1.

Since w ¢ Fix (S), y(t + w, w)|t=0 = y(w,w) # w = y(t, w)|t=0, and
hence y(t + w,w) and y(t,w) are two distinct solutions of (2.1) on R.
By Lemma 2.2, .
y(t+w,w) —y(t,w) € A,

and
oyt +w,w) —y(t,w))=k—-1, forallteR.
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Let P: R™ — R be defined by P(z1,... ,z,) = ;. By the definition of
A, P(y{t + w,w)) # P(y(t,w)) for any t € R. Therefore, the sequence
P(S™w) = P(y(mw,w)), ~0o < m < 00, is strictly monotone. It then
follows that limpy oo P(S™w) # limm—_oo P(S™w). On the other
hand, since limy, o S™w = ¥ = limy,— oo S™w, lim,, 0 P(S™w) =
P(¢) = limy,_, o P(S™w). This leads to a contradiction.

Assume that there exists a cyclic chain of fixed points of 5, i.e., there
exist wy,ws,... ,wg ¢ Fix(9) and ¢1,v9, ..., ¥, € Fix(S) such that

a(w;) = 9, w(w;) =Yip1, 1<i<k,

with ¥rr1 = ;. In what follows, we make the convention that
Yrti = Yi, Wrkyi = w;. By our claim above, & > 2 and all ¥;’s
are distinct. Clearly, S™(w;) = y(mw,w;) — ¥i+1 and S ™(w;) =
y{—mw,w;) — ¥; as m — oo. By Lemma 2.4, ¥; — ;41 € A for all
1< i<k Letv(t) =y(t,w;)—y(t,wit+1), t € R. Then, by Lemma 2.2,
v;(t) € A except possibly at finitely many values of ¢t in R, and for any
fixed t € R with v;(t) € A,

(2.9) (Vi — Yiy1) 2 0(vi(t)) > 0(Pig1 — Yige), 1<i<k

Therefore
(2.10) o —2) Z o2 —h3) 2 -
2 o(Yr41 — Yr42) = o(P1 — ¥2),
and hence
(2.11) o(Yi —Yir1) =0 — ), 1<i<k

By (2.9), (2.11) and Lemma 2.2,

vi(t) € A and o(v(t)) = o(vr — ¥2),

2.12
( ) forallte Rand 1 <i<k,

and hence,

(2.13) P(v;(t)) #0, teR, 1<i<k.
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Since P — ¢i+1 €A 1<i<k, P(’ll),,) 7/: P(’(/Ji+1), 1 < i < k. Without
loss of generality, we assume that P(¢y) > P(¢2). Since

"}imoo P(S™™w; — ST Mwg) = "}imoo P(S™Mwq) — limoo P(57™uws)
= P(1) — P(i2) > 0,

there exists N > 0 such that, for any m > N, P(v;(—mw)) =
P(S7™w; — §~™wy) > 0. Combined with (2.13), we see P(v1(t)) > 0
for any t € R and, in particular, P(S™w; — S™ws) > 0 for all m > 0.
Therefore, let m — oo, since P(yq) # P(v3), we have P(12) > P(v3).
In the same argument as above, it follows that P(v3) > P(i4).
Repeating this argument, we get

P(¢1) > P(¢2) > P(y3) > -+ > P(¢h) > P(¢r+41) = P(¥),

which leads to a contradiction. This completes the proof. ]

Remark 2.1. The arguments following [13, Theorem 2.2] imply that
our Theorem 2.1 holds under the assumption that every w-periodic
solution p(t) is nondegenerate, i.e., one is not a Floquet multiplier.
Clearly, this implies that p(t) is hyperbolic by Lemma 2.1. As above,
we have shown that Theorem 2.1 holds without any additional condition
by a different approach.

3. Asymptotically periodic tridiagonal competitive-cooperative
systems. Consider the nonautonomous system

d
(3.1) Z=F(ty), yeR

where F € C(R* x R", R") satisfies the condition on the uniqueness
of solutions. We assume that

(C1) f(t,y) = (f1,.--,fa)T is w-periodic tridiagonal competitive-
cooperative;

(C2) limy—oo |F(t,y) — f(t,y)| = 0 uniformly for y in any bounded
subset of R™.

Furthermore, we assume that the solutions of (2.1) and (3.1) exist
globally for all ¢ > 0. Then we have the following result.
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Theorem 3.1. Let (C1) and (C2) hold. Assume that each w-periodic
solution of (2.1) is isolated. Then every bounded solution of (3.1) is
asymptotic to some w-periodic solution of (2.1).

Proof. Let ¢(t,s,y) and ¢o(t,s,y), t = s = 0, be the unique
solutions of (3.1) and (2.1) satisfying ¢(s, s,y) =y and ¢o(s, s,y) = v,
respectively. Let T(¢)y = ¢o(¢,0,%), t > 0. Then T(t) : R* — R",
t > 0, is a periodic semi-flow. By an argument similar to that in the
proof of [10, Proposition 1.1(A)], it easily follows that ¢ : Ax R* — R™
is an asymptotic periodic semi-flow with limit T(¢) in the sense of
Definition 1.1. Let T,(y) = ¢(nw,0,y), n > 0, y € R"™, and let
S = T(w). Then, by our assumption, each fixed point of S is
isolated. By [18, Theorem 2.2], every precompact S-orbit converges
to some fixed point of S. Moreover, by Theorem 2.1, there is no
cyclic chain of fixed points of S. By Theorem 1.5, it follows that any
precompact orbit 4yt (y) of T,, n > 0, converges to some fixed point
y* of S, ie., lim, 0o d(Tn(y),y*) = 0, and hence, by Theorem 1.1,
lims o0 d(4(t,0,9), T(t)y*) = 0. Clearly, T(t)y* = ¢o(¢,0,y*) is an
w-periodic solution. This completes the proof. o

Now we consider a cascade model of neural sets [8, 14]
d

{_ = g(fL‘), T € R™,

(3.2) d;
E:‘f(may)’ y € R,

where g and f are C! functions on R™ x R*. We assume that for
any fixed z, f(z,y), as a function of y, is tridiagonal competitive-
cooperative, see (2.2). We further assume that every solution of (3.2)
exists globally for ¢ > 0. Then we have the following result.

Theorem 3.2. Let (z(t),y(t)), t > 0, be a bounded solution of
(3.2). Suppose that the solution z(t) of dz/dt = g(x) is asymptotic to
an w-periodic solution z*(t). Assume that every w-periodic solution of
the reduced system dy/dt = f(x*(t),y) is isolated. Then (z(t),y(t)) is
asymptotic to an w-periodic solution of (3.2).

Proof. Let (z(t),y(t)), t > 0, be a given bounded solution of (3.2).
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Then y(t), t > 0, is a bounded solution of the nonautonomous system

dy

(33) d_ = f(l‘(t),y), S R™.

Since lim;_, oo (z(t) — z*(t)) = 0, lim;—oo | F(z(t),y) — f(z*(t),y)| = O
uniformly for y in any bounded subset of R™. Then (3.3) is an asymp-
totically periodic tridiagonal competitive-cooperative system. By our

assumption, every w-periodic solution of the w-periodic tridiagonal
competitive-cooperative system

d
(3.4) G =f@®), yer
is isolated. By Theorem 3.1, it follows that y(t) is asymptotic to
an w-periodic solution y*(t) of (3.4), i.e., lim; . (y(t) — y*(t)) = 0.
Clearly, (z*(¢), y*(t)) is an w-periodic solution of (3.2) and (z(t), y(t))
is asymptotic to (z*(t),y*(t)). This completes the proof. o

Remark 3.1. The same conclusion as in Theorem 3.2 was proved in
(14] under the assumption that every w-periodic solution of (3.4) is
nondegenerate (and hence hyperbolic). Since the hyperbolicity implies
the isolatedness, Theorem 3.2 is a generalization of [14, Theorem
1]. Clearly, we may have the corresponding result for the convergent
dynamics in the case where (z*(t),y*(t)) is an equilibrium of (3.2).
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