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UNIFORM PERSISTENCE AND PERIODIC
COEXISTENCE STATES IN INFINITE-DIMENSIONAL
PERIODIC SEMIFLOWS WITH APPLICATIONS

XIAO-QIANG ZHAO

ABSTRACT. This paper is devoted to the study of uni-
form persistence and periodic coexistence states in infinite-
dimensional periodic semiflows. Under a general abstract set-
ting, we prove that the uniform persistence of a periodic semi-
flow is equivalent to that of its associated Poincaré map, and
that the uniform persistence implies the existence of a pe-
riodic coexistence state, which generalizes and unifies some
related earlier results. As an application, we discuss in de-
tail the periodic Kolmogorov predator-prey reaction-diffusion
system with spatial heterogeneity and obtain some sufficient
conditions for the uniform persistence and global extinction
of the system under consideration.

1. Introduction. A central problem in population dynamics is to
study the asymptotic behaviors of the model systems. Uniform persis-
tence (permanence sometimes in the literature) characterizes a special
kind of global asymptotics, that is, the long-term coexistence of inter-
acting species. There have been extensive studies on uniform persis-
tence (see survey paper [24], review paper [19] and references therein).
Most of these discussions have centered on models governed by au-
tonomous systems of ordinary differential equations (ODEs), delay dif-
ferential equations (DDEs) and reaction-diffusion equations (RDEs).
Clearly, more realistic models should include both spatial and tempo-
ral effects in the real world, which results in general nonautonomous
systems. A natural consideration of a periodically varying environ-
ment (e.g., the seasonal fluctuations and periodic availability of foods)
leads to the study of periodic systems of differential equations. For
uniform persistence and (or) positive periodic solutions of some peri-
odic systems, we refer to (2, 3, 7, 10, 15, 16, 22, 25, 26, 28-32]
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and references therein. With appropriate conditions, solutions of an w-
periodic system (w > 0) generate an w-periodic semiflow T'(t) : X - X
(X is the initial value space) in the sense that T'(t)z is continuous in
(t,z) € [0,+00) X X, T(0) = I and T(t + w) = T(t)T(w) for all £ > 0.
The purpose of this paper is to study the uniform persistence and the
existence of periodic coexistence states of infinite-dimensional periodic
semiflow T(t) : X — X under a general abstract setting. Qur ap-
proaches are via the associated Poincaré map T'(w) (i.e., time-w-map)
and the infinite-dimensional dynamical system theory.

It is well known that the existence and stability of periodic solutions
of a periodic system of differential equations are equivalent to that of
the fixed point of its associated Poincaré map (see, e.g., [6, 15]). For
the uniform persistence problem, one naturally expects the equivalence
between a periodic semiflow and its associated Poincaré map holds
as well. This will be confirmed under a general abstract setting in
Section 2 (Theorem 2.1). Accordingly, some general approaches and
results on the uniform persistence of maps {(i.e., the discrete semi-
dynamical systems generated by iterations of maps) (see, e.g., [9, 17]
and references therein) may find their wide applications to infinite-
dimensional periodic semiflows. In particular, we can get an acyclicity
theorem on uniform persistence of maps (Theorem 2.2), which is
essentially due to Freedman, Hofbauer and So [9, 17]. It is also
clear that, under appropriate assumptions, the uniform persistence of
periodic systems of ODEs implies the existence of a periodic coexistence
solution (see [25, Theorem 4.11] and [26, Lemma 1]). In Section
2, we prove a similar conclusion for the infinite-dimensional periodic
semiflow. More precisely, we prove that the uniform persistence of a
map, which is defined on a closed subset of a Banach space, implies
the existence of a coexistence fixed point (Theorem 2.3). Clearly,
an autonomous semiflow can be viewed as an w-periodic semiflow for
any given w > 0. It follows that there is an analogous result on the
existence of a stationary coexistence state (Theorem 2.4), which also
generalizes and unifies earlier similar results given in [18] for one class
of autonomous systems of ordinary and delay differential equations and
in [5] for autonomous two-species interacting reaction-diffusion systems
(Remark 2.5).

In Section 3, as an application of general results, we consider the pe-
riodic Kolmogorov predator-prey reaction-diffusion systems with spa-
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tial heterogeneity and obtain some sufficient conditions for the uniform
persistence (Theorem 3.1) and global extinction (Theorem 3.2) of the
systems. The special case of Lotka-Volterra reaction-diffusion systems
is also discussed (see Example 1 for the case where both predatory and
prey have self-limitation and Example 2 for the case where only the
prey has self-limitation). Moreover, Example 1 generalizes the research
in [2] where only the existence of positive periodic solution is proved
by bifurcation theory (Remark 3.4).

2. Uniform persistence and coexistence states. Let X be a
complete metric space with metric d. According to [12], T(¢) : X — X,
t > 0 is an w-periodic (autonomous) semiflow on X if there isanw > 0
(for every w > 0) such that T'(t)z is continuous in (¢,z) € [0,00) X X,
T(0) = I and T(t+w) = T(t)T(w) for all t > 0. A point o corresponds
to an w-periodic orbit (equilibrium point) if T(t + w)zo = T'(t)zo for all
t > 0 (and every w > 0). For an w-periodic semiflow, these zo coincide
with the fixed points of its associated Poincaré map T'(w).

Let X and 8Xp be open and closed subsets of X, respectively, such
that XoNdXg=¢ and X = XoU8X,, T(t): X —» X, ¢t >0, be an
w-periodic semiflow with T(t) Xy C X, t > 0, ie., Xy is a positively
invariant subset of X for T(¢). Note that we don’t require 8Xp to be
positively invariant for T'(t).

Definition 2.1. The periodic semiflow T(t) is said to be uniformly
persistent with respect to (Xg,8Xp) if there exists > 0 such that for
any T € Xo, liminf,, o d(T(t)x,8Xo) > 7.

For a discrete semi-dynamical system {S,}32, defined by S : X — X
with §Xy C Xy, we have the corresponding definition of uniform
persistence (see, e.g., [17]). In what follows, for some unexplained
terminologies we refer to [11, 13].

We are now in a position to prove the following equivalence result
between the uniform persistence of a periodic semiflow T'(t) and that
of its associated discrete semi-dynamical system {S™} defined by S =
T(w).

Theorem 2.1. Let T(t) be an w-periodic semiflow on X with
T()Xo C Xo, t > 0. Assume that S = T(w) satisfies the following
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conditions:
(1) S is point dissipative in X;

(2) S is compact; or alternatively, S is asymptotically smooth and
yH(U) is strongly bounded in Xy if U is strongly bounded in Xj.

Then the uniform persistence of S with respect to (Xo,0Xp) implies
that of T(t) : X - X, t > 0. More precisely, S admits a global
attractor Ay C Xy relative to strongly bounded sets in Xo such that the
compact set Aj = Up<i<wT(t)Ao C Xo attracts any strongly bounded
sets in Xg, i.e., for any bounded subset U of Xo with d(U,0X,) =
inf ey d(z,0X0) > 0, limyy oo d(T(t)U, A5) = 0, where d(T(t)U, A3) =
super(yyv 4z, Ag)-

Proof. By the point dissipativity and uniform persistence of S, it
follows that S is strongly point dissipative in Xp, i.e., there exists a
strongly bounded subset B of Xy such that for any z € X, there
exists an ng = ng(z, B) > 0 such that S*(z) € B for all n > ng. By a
similar argument to [11, Theorems 2.4.6 and 2.4.7], we can prove that
S admits a global attractor Ay C X which attracts strongly bounded
sets in Xj.

By the compactness of Ag and the continuity of T'(t)z for x € X
uniformly on the compact set [0, w], it easily follows that for any ¢ > 0
there is § > 0 such that, for all £ € N(Ay,d), the d-neighborhood of
Ap, and all t € [0,w], T(t)z € N(T(t)Ao,¢), i.e.,

(2.1) 1_1*12 d(T(t)z,T(t)Ao) =0 uniformly for ¢ € [0,w].

x 0
Since Ay is invariant for S (i.e., SAg = Ag) and T(t) is an w-periodic
semi-flow, Ag = S"Ag = T(nw)Ap for all n > 1.

Let U be any given strongly bounded subset of Xg; then, by the
global attractivity of Ag relative to strongly bounded sets in X,

(2.2) nango d(S™"U, Ag) = "ll}ngo d(T(nw)U, Ag) = 0.
For any ¢t > 0, let t = nw + t/, where n = [t/w] is the greatest integer
less than or equal to t/w and ¢’ € [0,w), then

d(T()U, T(t) Ao) = d(T(¢')T(nw)U, T(¢')T(nw)Ao)
= d(T(t")T(nw)U, T(t')Ao),



INFINITE-DIMENSIONAL PERIODIC SEMIFLOWS 477

and hence (2.1) and (2.2) imply that
(2.3) Jim d(T(t)U, T(t)Ao) = 0.

By the continuity of T'(t)x for (t,z) € [0,00) x X and the compactness of
[0,w] x Ag, A§ = Up<t<wT(t)Ao is compact, and hence d(Aj,8Xo) > 0
since 80X is closed and T'(t)Xo C Xo, t > 0, implies Aj C Xo. Again,
by the invariance of Ay for § = T'(w), U;>0T(t)A¢ = Up<i<uT(t) Ao =
A}. Therefore (2.3) implies lim,_, o, d(T'(t)U, A) = 0.

This completes the proof. o

Remark 2.1. By Theorem 2.1 above, we can reduce the uniform
persistence of a given periodic (autonomous) system of differential
equations to that of its associated Poincaré map (the time-w-map for
any fixed w > 0). For some illustrations, we refer to [21, Theorem 3.4]
for certain autonomous systems of ODEs and [22, Theorem 1.1] for
certain periodic ones.

As for the uniform persistence of discrete semi-dynamical systems
defined by maps, there are unified discussions and general results in
[17]. For the latter convenience of application, we give an acyclicity
theorem on uniform persistence, which is essentially due to Freedman,
Hofbauer and So [9, 17]. For analogous rsults in the case of continuous
semi-dynamical systems, we refer to [13, Theorems 4.1 and 4.2]. For
some terminology, again we refer to [9, 17].

Theorem 2.2 (Freedman, Hofbauer and So). Let S : X — X be a
continuous map with S(Xg) C Xo. Assume that

(1) §:X — X has a global attractor A, that is, A is the mazimal
compact invariant subset of X and lim,_ o d(S"z,A) = 0 for any
T € X;

(2) Let Ap be the mazimal compact invariant set of S in 8Xp.
Ay = Uzea,w(x) has an isolated and acyclic covering Uk, M; in X,
that is, As C UF_ M;, where My, Mo, ... , My are pairwise disjoint,
compact and isolated invariant sets of S in 80Xy such that each M; is
also an isolated invariant set in X, and no subset of the M]s forms a
cycle for Sg = S|a, in As.
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Then S is uniformly persistent if and only if for each M;, i =
1,2,...,k,

W (M;)N Xo = ¢

where W*(M;) = {z;z € X,w(z) # ¢ and w(x) C M;} is the stable set
Of M,'.

Proof. By the compactness and global attractivity of A, it follows
that for any z € X, v*(z) is a precompact subset of X. Clearly,
Aps C AN 38X, and the closure of Ay C U 1M;. By the definition of
the isolated covering U¥_, M;, M; C Aa, i= 1 2,..., k. Therefore, [9,
Propositions 2.2 and 3.2] imply that Uf_, M; is a Morse decomposition
of Ap under Sy. Now [17, Theorem 4. 2] completes the proof. o

Remark 2.2. For fundamental results on the existence of a global
attractor for §: X — X, we refer to {11, Theorems 2.4.6 and 2.4.7].

In the rest of this section, we always assume that X is a closed
subset of a given Banach space E, and that X = X, U 8Xp with
XoNdXq = ¢, Xq convex and Xg and 80X relatively open and closed
in X, respectively.

Given a set A C E, let co(A) be the convex hull of A and €5 (A) be
the closed convex hull of A, respectively. For the latter proof of the
existence of coexistence states of uniformly persistent maps, we first
prove the following two lemmas.

Lemma 2.1. If A is a compact subset of Xo, then €6 (A) C Xg and
d(ca (A),8X,) > 0.

Proof. Since A is compact, A C Xy and dX is closed, d(4,8Xp) > 0.
For any z € X and é > 0, denote B(z,d) = {y € X;|ly — z|] < 6} and
B(z,8) = {y € X;||ly - :1:|| < 48}. Let §p = (1/2)d(A 8X,) > 0, then
for every = € A, B(:c %) C X and A C UzeaB(z,8). Again, by the
compactness of A, there exist finitely many x;,z3,... ,zx € A such
that A C uleB(z,-,do). Let A; = AN B(z;,&),i=1,2,... ,k, then
A = UX | A;. Clearly, 4; is compact and A; C B(z:,8) C Xo, and
hence €@ (A;) C B(zi,8) C Xo,4=1,2,... ,k. Therefore, since X is
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convex, co (UY_;T6(A;)) C Xg. By [20, Theorem 2.1 (v)] and a finite
induction, it follows that for any finitely many nonempty subsets C; of
Banach space E,i=1,2,...,n,

co (g&)

n n
= {Zai:v,-;ai > O,Za,- =land z; €co(C;),1<i< n}.

i=1 i=1
Therefore, since co (€6 (4;)) =T (4;),i=1,2,... ,k,

co (Cjw(A,-)) = {zk:aixi;ai > O,iai =1

i=1 =1
and z; €T0(4;),1 <i< k}

= F(Ay X T (A1) X -+ X T0(Ax))

where .
F(Q,xl,l'g,... ,.’Uk-) = Zaixh
i=1
a=(a1,...,0r) € R*, (z1,...,zx) € E* and

k
A= {(al,... ,ak)eRk;a,- >0,1<i<kand Za,-:l}.

i=1

Since the closed hull of any precompact subset of a given Banach space
is compact, e.g., by [27, Proposition 11.3],c0(A) andco(4;),1 < i < k,
are all compact. By the continuity of F : R* x E¥ — E and the
compactness of Ax X T0(41) X - -- x T (Ax) in R* x E*, it follows that
co (U¥_,T6(4;)) is compact and hence closed. Therefore,

o (4) = w(iglA,- ) ¢ c—o“(iglcT(A,')) = co (iglm(A,-)) c Xo.

Then by the compactness of €6 (A) and closedness of 8 Xy, d(co(A), 8X,)
> 0. This completes the proof. o]
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Lemma 2.2. If A i3 a conver and compact subset of Xy, then for
any € > 0 there exists an open and convex set N, C Xo such that
A C N. C N(Ae), where N(A,e) = {z € E;d(z,A) < e} is the
e-neighborhood of A.

Proof. Since A C Xp is compact, d(4,8Xo) > 0. For any ¢ > 0,
let § = min(e, (1/2)d(A,0Xp)). As in the proof of Lemma 2.1,
there exist z1,z3,...,2r € A such that A C Uf___lB(z;,J) C Xo.
Therefore, since Xp is convex, A C co(UF_;B(z;,8)) C Xo. Since
the convex of any open subset of given linear topological space is open,
N, = co(UX_, B(z;,8)) is open in X. Since each B(z;,4) is convex, as
in the proof of Lemma 2.1,

k k
N, = {Zaiy,-;a,- 20,204,- =1 and y; € B(z;,6),1 <i < k}.

i=1 i=1

Therefore, for any z € N, = = Zf;l o;y; for some y; € B(z;,6) and
@; >0,i=1,2,...,k with Y5, o; = 1. Then

k
r— E Qi T;

i=1

k
> iy — )
i=1

k k
< Za.-”yi —-xi|| < Zaié =é6<e.
i=1 i=1

Since A is convex, ZLI a;z; € A and hence d(z,A) < . Then
N, C N(A,¢). This completes the proof. D

We also need the following Hale and Lopes fixed point theorem in
Banach space, which is a consequence of [11, Lemmas 2.6.5 and 2.6.6]
or [12, Theorems 5 and 6).

Lemma 2.3 (Hale and Lopes). Suppose K C B C S are convex
subsets of a Banach space E with K compact, S closed and bounded,
and B open in S. If T : S = E is a-condensing, v*(B) C S, and K
attracts compact sets of B, then T has a fized point in B.
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Recall that T : X — X is a-condensing if T is continuous, takes
bounded sets into bounded sets and a(T'A) < a(A) for any bounded
set A C § with a(A) > 0. Here a(A) is the Kuratowski measure of
noncompactness, we refer to [11, Section 2.3] and [27, Section 11.1] for
its definition and properties.

Now we turn to the discrete semi-dynamical system {S™}32; defined
by S : X = X with S(Xo) C Xo. A point 2y € X is called a coexistence
state of {S™}32, if z¢ is a fixed point of S in Xj, i.e., 2o € Xo and
S(zo) = zo. We have the following result on the existence of coexistence
state.

Theorem 2.3. Let S : X — X be a continuous map with S(Xp) C
Xg. Assume that

(1) S:X — X is point dissipative;

(2) S is compact; or alternatively, S is a-condensing and v*(U) is
strongly bounded in Xy if U i3 strongly bounded in Xo;

(8) S is uniformly persistent with respect to (Xo,8Xo).

Then there exists a global attractor Ag for S in Xy relative to strongly
bounded sets in Xo, and S has a coexistence state xo € Ao.

Proof. Since S : X = X is a-condensing, by [11, Lemma 2.3.5], S is
asymptotically smooth. As in the proof of Theorem 2.1, the existence
of global attractor Ag in X follows in both cases of assumption (2).

Let K = ©@(Ap). Since A9 C Xy is compact, K is compact. By
Lemma 2.1, K C X, and d(K,8Xy) > 0. Then there exists an
g0 > 0 such that N(K,ep) N X is strongly bounded in X3. By Lemma
2.2, there is an open and convex neighborhood B of K such that
B c N(K,e&0) N Xp, and hence B is strongly bounded in X,. Then
K attracts B and v+ (B) is bounded in X,. Since X, is convex and
X is closed in Banach space E, S; = @ (y*(B)) C Xo C X, and
So is bounded in X. Clearly, any continuous and compact map is
also an a-condensing one. Therefore, in both cases of assumption (2),
K C B C 8p satisfy all conditions of Lemma 2.3, and hence S has a
fixed point zg in B C X and, clearly, zo € Ag. This completes the
proof. o
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Remark 2.3. In the case where S : X — X is compact, there is
an alternative proof for the existence of the coexistence state. Indeed,
by Lemma 3.2, there is an open and convex neighborhood U of K
such that U C N(K,€0/2) N Xo. Then Uc N(K,Eo) NX C Xp.
By the attractivity of Ay for strongly bounded sets in Xj, there is an
no = no(T) > 0such that, for any n > ng, S"U C U. By an asymptotic
generalized Schauder fixed point theorem (see (27, Theorem 17.B]), S
has a fixed point ¢ in U.

Remark 2.4. By applying Theorem 2.3 above to the Poincaré map
associated with a periodic semiflow, one can obtain the existence of a
periodic orbit in Xjp, and hence that of periodic coexistence solutions
for periodic systems of differential equations. In particular, Theorem
2.3 implies [25, Theorem 4.11]. For periodic and uniformly persistent
Kolmogorov systems of ODE, Zanolin [26, Lemma 1] also proved a
similar result. For the existence and global attractivity of positive
periodic solutions of periodic Lotka-Volterra systems of ODE, we refer
to [10, 28] and references therein.

For autonomous semiflow T'(¢) : X — X, t > 0, we have the following
result.

Theorem 2.4. LetT(t): X — X, t > 0, be an autonomous semiflow
with T(t)Xo C Xo for all t > 0. Assume that

(1) T(t) : X — X is point dissipative;

(2) T(t) is compact for each t > 0; or alternatively, T(t) : X — X is
an a-contraction with its contracting function k(t) € [0,1), t > 0, and
y*(U) is strongly bounded in X if U is strongly bounded in Xg;

(3) T(t) is uniformly persistent with respect to (Xo,08Xg).

Then there exists a global attractor Ag for T(t) in Xy relative to strongly

bounded sets in Xo and T(t) has a stationary coexistence state xo in
Ay, i.e., g € Xo and T(t)xg = zq for all t > 0.

Proof. By a similar argument to [13, Proof of Theorems 3.2 and 3.3],
the existence of global attractor Ag in Xy relative to strongly bounded
sets in X follows.
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Let {w;,}2_, be any given sequence with w,, >0, m = 1,2,...,00,
and limy, oo wm = 0. By Theorem 2.3, T(w,,) has a fixed point
Tm € Xo, m = 1,2,...,00. By the global attractivity of A4y in
Xo, for each fixed z,,, limi—oo d(T(t)Zm, Ag) = 0, and hence 0 =
lim,, 00 d(T (MW )T, Ag) = d(Tm, Ag). Then the compactness of Ag
implies that z,, € Ap, m = 1,2,... ,00. Again by the compactness of
Ag, {zm}-, has a convergent subsequence to zy € Ag, and hence by
[12, Lemma 7], zo is an equilibrium point of T'(¢), i.e., T(t)zo = zo for
all £ > 0. This completes the proof. ]

Remark 2.5. For autonomous Kolmogorov systems of ODE and one
class of autonomous differential equations with finite delay, Hutson
[18] proved similar results on the existence of a positive equilibrium.
For autonomous Kolmogorov two-species interacting reaction-diffusion
systems, Cantrell, Cosner and Hutson [5, Theorem 6.2] also showed a
similar result on the existence of a stationary coexistence state under
certain assumptions.

It is well-known that many of the models of population dynamics are
naturally described by differential equations with delays or (and} diffu-
sions. In many important cases and under appropriate assumptions, a
(periodic) system of functional differential equations may generate an
a-contractive (periodic) semiflow on some suitable Banach space (see,
e.g., [11]) and a (periodic) system of parabolic differential equations
may generate a (periodic) semiflow T'(¢t) : E — FE, t > 0, which is
compact for all ¢ > 0 on some suitable Banach space E (see, e.g., [15]).
Therefore, our results in this section can be applied to wide-ranging
biological problems although sometimes the verification of these hy-
potheses involves certain technical difficulties.

3. Application to periodic predator-prey reaction-diffusion
systems with spatial heterogeneity. In this section we apply
the general results of Section 2 to the following two-species periodic
Kolmogorov reaction-diffusion systems with spatial heterogeneity

(3.1) Ou; /0t + Ai(t)ui = uiFi(z,t,u1,ug) in Q x (0, 00)
' Bu; =0 on 99 x (0, 00)

where 2 ¢ RN, N > 1, is a bounded domain with boundary 9 of
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class 0?9 0<0<1,

N
Ai(tyv=—- Z a(')(x t)a 6 + Ea(')(:c t)a +a(‘)(z,t)v,

Jik=1

1 = 1,2, are linear uniformly elliptic differential expressions of second
order for each t € [0,T], T > 0, and A;(t) and F(:z: t,uy,uz) are T-
periodic in ¢, and Byv = v or Byy = 0v/dn + bf )(z)v, where 8/0n
denotes the differentiation in the direction of the outward normal n to
89Q. We assume that a;k) = a,(cJ), a() and a () e co 9/2(Qr), ag () >,
1<j,k<N,1<i<2Qr= Q x [0,T], and b}’ € C'*+9(3Q, R),
b¥) > 0, i = 1,2, and that F, € C(Qr x R% R), OF;/u; exists
and OF;/0u; € C(Qr % R?, R) with Fi(-,-,u) and (8F;/0u;)(:,",u) €
C%%/2(Q1, R) uniformly for 4 = (u1,uz) in bounded subsets of R?,
i,j=1,2

Let X = LP(), N < p < 0o, and for B € (1/2 + N/(2p),1], let
E;, =X {(;), i = 1,2, be the fractional power space of X with respect
to (Ai(0), B;) (see, e.g., Henry [14]), then E; is an ordered Banach
space with the order cone P; consisting of all nonnegative functions
in E;, and P; has nonempty interior int (F;). Let E = E; x Es,
then by an easy extension of some results in [15, Section III.20] to
the systems, it follows that for every up = (u,u3) € E, there exists
a unique regular solution ¢(t,up) of (3.1) satisfying ©(0,up) = wuo
with its maximal existence interval I*(up) C [0,00) and (¢, uo) is
globally defined provided there is an L*-bound on I*(ug). Moreover,
by an invariant principle argument (see, e.g., [1, 23]), it follows that
any solution (¢, up) of (3.1) with nonnegative initial values remains
nonnegative.

For any m € C%%/2(Q ), according to [15], there exists a unique
principal eigenvalue of the periodic-parabolic eigenvalue problem

/ot + Aty =m(z,t)v+pv in QxR
(3.2) Biv=0 on 0 x R
v T-periodic in ¢,

which we denote by u()(m), i = 1,2.

Now we turn to the periodic predator-prey models with diffusion.
Assume that prey u; and predator u; live in a bounded habitat 2. For
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the global existence and dissipativity on C(©2) x C(f) of solutions of
(3.1), we first make the following assumptions.

(A1) For any (z,t,u;1,us) € QTXR?H Fi(z,t,u1,u2) < Fi(z,t,u1,0),
and there exist a; > 0 and M; > 0 such that Fi(z,t,4;,0) < —a; <0
for all (z,t) € Qr and uy > My;

(A2) For any given (z,t,u2) € Qp X Ry, Fa(z,t,u1,uz) is increasing
for u; > 0, and for any M > 0, there exist az(M) > 0 and M;(M) >0
such that Fp(x,t, M, u2) < —az < 0 for all (z,t) € Qr and uz > M.

By a standard comparison argument (see, e.g., [31, Lemma 4.1]), we
can readily prove the following result.

Lemma 3.1. Let (A1) and (A2) hold. Then there exists an M > 0
such that for any u € P, X Py, ¢(t,u) = (¢1(t,u), v2(t,u)) ezists
globally on [0,+00) and there is a to = to(u) > O such that

0 < pi(t,u)(z) < M, t>to, z€Q, i=1,2

In the case where the predator may have no self-limitation (see, e.g.,
[3, 8] for some examples), we can make the following assumption.

(A3) For any p > 0 there exists K(p) > such that for all
(z,t,u1,u2) € Qp x [0,p] X Ry, Fy(z,t,u;,u2) < K(p), and there
exist positive constants o, # and v and a continuous function F3(¢,u1),
T-periodic in ¢, such that for all (z,t,u1,u2) € Qp X R%,

auy [F1(z,t,u1, uz) + 9] + Buz[Fa(z, t,u1,u2) + 4] < F3(t, u1).

By a similar argument to [5, Lemma 4.5] and [31, Lemma 4.2], we
can also easily prove the following result.

Lemma 3.2. Let A; = —ki(t)A, ki(t) € C°/2([0,T)) and ki(t) > 0,
i = 1,2, and assume that (A1) and (A3) hold. Then the conclusions of
Lemma 3.1 are valid.

Remark 3.1. The conclusions of Lemmas 3.1 and 3.2 also hold if we
replace assumptions (A1) and (A2) respectively by the following ones:
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(A1) There exists a Lipschitz function Fy(t,u;), T-periodic in ¢,
such that

sup{Fi(z,t,u1,uz);z € Q,u; >0} < Fy(t,u1), te[0,T],u; >0

and solutions of du; /dt = uy F{ (¢, u;) are ultimately bounded in Ry;

(A2) For any M > 0 there exists a Lipschitz function Fj (¢, M, uz),
T-periodic in ¢, such that

sup{F,(z,t,u1,u2);z € 0,0 < uy < M} < F5(t, M, up),
te [O,T],UQ >0

and solutions of dug/dt = uaF5 (t, M, us) are ultimately bonded in R,.

In the absence of predator us, the prey u; often has self-limitation and
cannot increase infinitely. Therefore, we further impose the following
condition.

(C1) For any given (z,t) € Qr, Fi(z,t,u1,0) is decreasing in u; €
Ry, for at least one (zo,t0) € Q, Fi(zo, to, u1,0) is strictly decreasing
in u; € Ry, and there exists M > 0 such that Fi(z,t,M,0) <0 for all
(.’D, t) € QT‘

Then by [30, Theorem 3.3], we have the following result on the global
dynamics of single species u; in the absence of predator u,.

Lemma 3.3. Let (C1) hold. If u¥(Fy(x,t,0,0)) < 0, then the scalar
equation

(3.3) {Bul/at + A1 (Huy = w1 Fi(z,t,u1,0) in Q x (0,00)
) Biu; =0 on 89 x (0, 00)

admits a unique positive T-periodic solution ui(t,z) and ui(t,z) is
globally asymptotically stable with respect to the initial values in P,\{0}.

In the absence of prey u;, we expect that the predator up will die
out. According to two possible cases of predator uz: one with self-
limitation and the other without self-limitation, we distinguish between
the following two conditions.

(C2) For any (z,t) € Qr and uz > 0, F3(x,t,0,u) < F3(,t,0,0),
and for at least one (zg,t9) € Qr and all up > 0, Fp(zg,t0,0,uz) <
F;(z0,t0,0,0);
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(C3) For any (z,t) € Qp and ug > 0, Fy(z,t,0,u;) < Fy(x,t,0,0).

Therefore, by [30, Theorem 3.2] and the proof of [30, Theorem 2.2},
we have the following result.

Lemma 3.4. Assume either (C2) and p'?(Fy(z,t,0,0)) > 0, or
alternatively, (C3) and u®(F;(z,t,0,0)) > 0 hold. Then for the scalar
equation

(3 4) 6u2/6t + Az(t)Ug = uy Fy(z,t,0, U2) in Q x (0, OO)
) Bouy, =0 on 85 x (0,00)

ug = 0 is globally asymptotically stable with respect to the initial values
n Pz.

We are now in a position to prove the main result of this section.

Theorem 3.1. Assme that (Al), (A2) (or alternatively, (A3)
with A; = —ki(t)4A, i = 1,2), (Cl) with pV(F(z,t,0,0)) < 0,
and (C2) with p®(Fy(z,t,0,0)) > 0 (or alternatively, (C3) with
p®(Fy(z,t,0,0)) > 0) hold. If u®(Fy(x,t,ul(t,z),0) < 0, then
system (3.1) is uniformly persistent and admits at least one periodic
coexistence solution. More precisely, there exists a B > 0 such that for
any u = (u1,u2) € Py x P2 with uy(z) Z 0 and ua(z) £ 0, there exists
to = to(u) > 0 such that o(t,u) = (p1(t,u), 2(t,u)) satisfies

wi(t,u)(z) > Bei(z) fort>ty, c€Qandi=1,2,

where u}(t,z) is the unique positive T-periodic solution of eguation
(3.3) and
e(z) ifBv=v
ei(z) = { ) . _ ()
if Biv =0v/0n + b
e € C*(Q) is given such that for x € Q, e(z) > 0 and for z € 09,
e(z) =0 and Be/On < —y < 0.

Proof. By Lemmas 3.1 and 3.2, we can define a T-periodic semiflow
@(t)ZX=P1XP2—}be

B(t)u = o(t,u), ue X, t>0.



488 X.-Q. ZHAO

Let Xg = {(u1,u2) € X;ui(z) # 0,5 = 1,2} and Xy = {(u1,u2) €
X;ui(z) = 0or uz(z) = 0}, then X = Xy U dXo, Xo and 80X, are
relatively open and closed in X, respectively, and X is convex. Clearly,
®(t)Xo C Xo and ®(t)(0Xo) C 8Xp, t > 0. By a similar argument to
the proof of [15, Proposition 21.2], it follows that ®(¢) : X — X
is continuous and compact for any ¢ > 0. With the properties of
the fractional power space E; = X @) and by a standard argument
(see, e.g., [7, Theorem 23.3]), Lemmas 3.1 and 3.2 imply that &(¢),
t > 0, is point dissipative in E; X Ej, i.e., there exists a B > 0
such that for any u € P, x P,, there exists t; = to(u) > 0 such that
B(t)u = (p1(t, u), p2(t, u)) satisfies

|2(@)ullesxes = [le1(t,u)l|e: + |le2(t u)l|es < B, for t 2 to.

We first prove the uniform persistence of the Poincaré map S: X —
X defined by S(u) = ®(T)u = ¢(T,u), u € X. Clearly, S : X - X
is a continuous, point dissipative and compact map with S(Xo) C Xo
and S(0X,) C 0Xy. By [11, Theorem 2.4.7], S : X — X has a global
attractor A. By Lemmas 3.3 and 3.4, U,eax,w(u) = {(0,0), (u}(0),0)}.
Let M; = (0,0), M2 = (u3(0),0) and Ay be the maximal compact
invariant set of S in 8Xp, then Ay = Uzeap,w(z) = {Mi, M2} and M,
and M; are disjoint, compact and isolated invariant sets for Sy = S|4,
in As.

__Claim. For each M;, i = 1,2, there exists §; > 0 such that
limy, 00 d(S™(u), M) > 6; for all u € Xp.

It suffices to prove that there exists §; > 0, ¢ = 1,2, such that for
any u € N(M;,8;) N Xy, where N(M;, ;) is the é;-neighborhood of M;,
there exists n; = n;(u) > 1 such that S™(u) ¢ N(M;,d;). We first
prove this for M,. Let u® = u®(Fy(z,t,u}(t,),0)), then by our
assumption, u® < 0. For any given gy € (0, —u(®), by the uniform
continuity of F(x,t,u;,u2) on the compact set Qr x ([0,5])?, where
b= max, 5, v (t,z) + 1, there exists & € (0,1) such that for any
(u1,u2) and (v1,v2) € ([0,8])? with |u; — v1| < b0, |uz — v2| < &, and
all (.’L‘,t) € aTa

|F2($, t,’U1,U2) - FQ(?I), t1 vlv”?)l < &p.
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Since limy, a1, o(t, u) = (¢, M2) = (u}(t),0) in Ey x By = Xl(,l) X Xl(,z)
uniformly for ¢ € [0, 7] and E; x Ez <+ C(Q) x C(Q), there exists & > 0
such that for any u € N(My,42) C E; x E,,

[le1(2, u)_ui(t)”c(ﬁ) < o, la(t, U)”c(ﬁ) < dp, foralltel0,T].

Assume that, by contradiction, there exists ug € N(Mz, §2) N X, such
that for all n > 1, S™(ug) = ¢(nT,up) € N(My,62). For any ¢ > 0, let
t =nT +1t', where t’ € [0,T) and n = [t/T)] is the greatest integer less
than or equal to t/T, then

st u0) = w; Dl = ller (¢ #(nT, u0)) — ui ()l < o

and
lle2(t,ullog, = lle2(t', o(nT, w))llog < do-

Let (u1(t, ), u2(t, x)) = (¢1(¢, wo)(x), p2(t, uo)(z)), by the T-periodicity
of Fy(x,t,u1,u2) with respect to ¢,

F2(x, t, ul(t’ x)’“&(t’ IL‘)) > Fg((l),t,’ui(t, :L‘),O) —€o
forallz e, t>0.

According to [15], let 2(¢, ) be a positive eigenfunction corresponding
to the principal eigenvalue u(?, that is, o (t, z) satisfies

6<P2/6t + A2(t)‘p2 = Fg(.’L‘, t, ’U,: (tv .’L’), 0)<P2 + “(2)902

(3.5) in Q x (0, 00)
Baypa =0 on 99 x (0,00)
w2 T-periodic in t.
Then ¢2(0,z) > 0 in E; = 1(32), i.e., p2(0,z) € int(P,). Since

(u1(0,z),u2(0,2)) = ug € Xp, by applying the parabolic maximum
principle (see, e.g., [15]) to each component of systems (3.1), it follows
that uy(¢,z) > 0 in E; and u2(¢,z) > 0 in E; for all t > 0. Therefore,
without loss of generality, we can assume that ug € int (Py) x int (P;).
Then there exists k > 0 such that u2(0,z) > k¢2(0,z), z € €.
Therefore, us(t,z) satisfies

Ouy /8t + Ax(tyua > ua(Fa(z,t, ui(t, x),0) — &g)
(3.6) in © x (0, 00)
u2(0,) > kp2(0,z) on Q.
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By (3.5), it easily follows that v(t, ) = ke(~#” —20)tpy (¢, z) satisfies
(3 7) av/at + A‘Z(t)v = ’U(Fg(.’l,', t)u; (t7 :L‘),O) - 50) in (E_x (07 00)
' v(0,z) = kp2(0, z) on

By (3.6), (3.7) and standard comparison principle of scalar parabolic
equations,

ua(t, ) > ke V0 (t,2), 20, z€Q.

Then, since ,(t,z) is a positive T-periodic function on [0,00) X
Q, lm; oo uz(t,z) = +oo for any z € €, which implies that
lim¢—yo0 ||u2(t, -)||E, = +oo since B, = X5 — C(Q). This contra-
dicts our assumption that S™(uo) = (u1(nT),u2(nT)) € N(My,d2) for
all n > 1. Therefore, for all u € Xo, limy,— 00 d(S™(u), M3) > 52. In a
similar way, by using the uniform continuity of Fi(x,t,u1,u2) on the
compact set Qr x ([0,1])? and the assumption u()(Fi(z,t,0,0)) < 0,
we can prove that there exists a §; > 0 such that for all u € X,
m,,_,oo d(S"(u), Ml) Z 61.

The claim above implies that M;, i = 1,2, is isolated for S in
X since M; is isolated for S| in 8Xp and S : Xy — Xp and
S : 0Xo — 0Xo. Therefore, by Lemmas 3.3 and 3.4, M; U M, is
an isolated and acyclic covering of As in 8Xy. Since the claim above
also implies W*(M;) N Xo = ¢, ¢ = 1,2, the uniform persistence of
S with respect to (X,0Xy) follows from Theorem 2.2. Therefore, by
Theorem 2.3, S has a global attractor Ag C Xy relative to strongly
bounded sets in X and admits a fixed point uy € Ag. Then (3.1) has
a periodic coexistence solution ¢(t, up).

By Theorem 2.1, ®(¢) is uniformly persistent with respect to (Xg, 9 Xp).
More precisely, the compact set Aj = Uyejo,71®(t) Ao = ([0, T] x Ap)
attracts any strongly bounded sets in Xp. Since 4y = ®(T)Ao,
Aj = Ue(0,11@(t) Ao = ¢((0, T] x Ao) and hence for any u € Aj, there
exist a v € Ag C A§ and a t € (0, 7] such that u = ®(t)v = p(¢,v). By
using the compactness of Aj and the fact that Ey x Ey = [(,1) x X [(,2) —
C'(Q) x C*(0), and by a similar argument to [5, Lemma 3.6, Corollary
3.7 and Remark 3.8], we can prove the required uniform persistence of
system (3.1) in the theorem. This completes the proof. o

Remark 3.2. For the various estimates of the principal eigenvalue
of a periodic-parabolic eigenvalue problem, we refer to [15, Lemma
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15.6 and Section IL.17]. As an illustration, let Bv = 8v/dn and
A = —k(t)A, where k € C®/%(R, R) is T-periodic and positive. For
any m € C%%/2(Qy), let u(m(z,t)) be the principal eigenvalue of the
problem (3.2) with A; and B; replaced by A and B, respectively. By
the results of [15, Example 17.2], it follows that

M w(m(z,t)) < 0 if either [f, m(z,t)ydzdt > 0 or ff,
m(z,t)dz dt > 0 with m(z,t) depending nontrivially on x;

(I1) p(m(z,t))>0 if [, m(z,t)dzdt<0 and f(;r max_ g m(z, t) dt
<0.

Remark 3.3. By a similar approach to that of Theorem 3.1, we can
discuss the uniform persistence and existence of a periodic coexistence
solution for periodic two-species Kolmogorov competition reaction-
diffusion systems with spatial heterogeneity. For more complete results
on periodic two-species Lotka-Volterra competition reaction-diffusion
systems and a different approach (i.e., using monotone dynamical
system theory), we refer to [15, Section IV.33] or [16]. For general
periodic N-species competition reaction-diffusion systems and another
approach, we refer to [29].

Example 3.1. For periodic Lotka-Volterra predator-prey systems
with diffusion,

Ou1 /0t + Ai1(Dur = ur[bi(z, t) — ani(z, t)ur — ar2(z, t)uz)
(3.8) { BUQ/at + Az(t)Ug = ’u,z[bz(.'l:, t) + 0.21(.’1,‘, t)u1 — ag2 (.’L‘, t)U2]

Biu; =0, i=1,2
assume that a;; > 0, a2 > 0, a2 > 0 and az; > 0 on @T,
and that p®M(b(z,t)) < 0, u@(by(z,t)) > 0 and p®(by(z,t) +
a21(z,t)ui(t,z)) < 0, where u}(¢,z) is the unique positive T-periodic
solution of the logistic equation du;/0t + A;(t)u1 = ui[bi(z,t) —
a11(z,t)u1] with Byuy = 0. Then conditions (A1), (A2), (C1) and
(C2) in Theorem 3.1 are all satisfied and hence system (3.8) is uniformly
persistent and admits at least one T-periodic coexistence solution.

Remark 3.4. By using bifurcation theory, Brown and Hess [2, The-
orem 4.3] or [15, Theorem 37.1]) proved the existence of a T-periodic
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coexistence solution of (3.8) under the same conditions as in Example
3.1 above. For autonomous Lotka-Volterra predator-prey systems with
Dirichlet boundary conditions, Dancer [6, Theorem 1] also obtained a
similar condition on the stationary coexistence solution by degree ar-
guments in cones. However, they didn’t give any information on the
uniform persistence of system (3.8).

Example 3.2. For periodic Lotka-Volterra predator-prey systems
with diffusion,

(3.9) |
6u1/6t =k (t)Aul + U [b1 (:IJ, t) - au(a:,t)ul - 0,12(1,', t)’u,g]
6u2/6t = kg(t)AUz + U2 [bz(.’l}, t) + a2 ($, t)ul]

Biu; =0, i=1,2,

assume that a;;7 > 0, aj2 > 0, a1 > 0 and b < 0 on Qp
and that pM(bi(z,t)) < 0, u@(ba(z,t)) > 0 and u@(by(z,t) +
az(z,t)ui(t,z)) < 0, where uj(t,z) is the unique positive T-periodic
solution of the logistic equation Ou,/0t = ki(t)Auy + uy[bi(z,t) —
ay1(z, t)u;] with Byu; = 0. Then conditions (A1), (A3), (C1) and (C3)
in Theorem 3.1 are all satisfied, and, hence, system (3.9) is uniformly
persistent and admits at least one T-periodic coexistence solution.

Remark 3.5. In general, the unique positive T-periodic solution
u}(t, ) of the logistic equation

Bu1 /Ot + A1 (H)uy = w1 [bi(z, t) — a11(z, thu]
(3.10) { in Q x (0, %)

Blul = 0, on 00 x (O, OO)

is not known explicitly. If, however, A,(t) = —k1(t)A, Biv = 8v/dn
and by is positive on Qr, we have u}(t,z) > ming_(b1(z,t)/an(z,t)) =
(b1/an1 ), see, e.g., [2]. Therefore, in the case where Aa(t) = —ka2(t)A
and Byv = 8v/0n, by Remark 3.2, u® (by(z,t) + ag; (z, t)ul(t,z)) <0
if foT (bz + azl(bl/au)[) drdt > 0.

Finally, as a complement to Theorem 3.1, we discuss global extinction
in system (3.1). The following conditions will be imposed on (3.1).
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(H1) For any given (z,t,u3) € Q@ x Ry, Fi(x,t,u;,up) is strictly
decreasing in u; > 0;

(H2) For any given (z,t,u1) € Qr x Ry, Fa(x,t,u1,us2) is strictly
decreasing in uy > 0;

(H3) For any (z,t,u1,u2) € Qrx R, Fa(z,t,u1,u2) < Fa(x,t,u1,0).

By a similar argument to [15, Proposition 37.3], we can easily prove
the following result.

Theorem 3.2. Assume that (A1), (A2) (or alternatively, (A3) with
Ai(t) = —ki(t)A, i = 1,2) (H1) and (H2) with p? (Fy(z,t,0,0)) > 0
(or alternatively, (H3) with u(®(Fy(z,t,0,0)) > 0) hold.

(1) If U™ (Fy(z,t,0,0)) > 0, then the trivial solution (0,0) is globally
attractive with respect to initial values in P; X Py;

(2) If u(Fi(2,t,0,0)) < 0 but p®(Fa(z,t,uj(t, z),0)) > 0, where
ui(t, x) is the unique positive T-periodic solution of the logistic equation
(3.3), then the semitrivial solution (ui(t, x),0) is globally attractive with
respect to initial values in X,.

Clearly, by Theorem 3.2, one can give sufficient conditions for the
global extinction of the periodic Lotka-Volterra predator-prey reaction-
diffusion systems in Examples 3.1 and 3.2.
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