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1 Introduction

It is well known that the diffusive logistic or Verhulst equation is a

scalar reaction diffusion equation with a simple hump nonlinearity

(quadratic nonlinearity in the classical case). This equation describes

the immigration of a species into a territory or the advance of an ad-

vantageous gene into a population. The equation provides the classical

example for traveling fronts in parabolic equations, and it forms the

nucleus of more complex multi-species models in ecology, pattern for-

mation and epidemiology (see, e.g., [7]). In order to consider the case

where the population individuals switch between mobile and station-

ary states during their lifetime, Lewis and Schmitz [4] presented and

analysed the following reaction-diffusion model






∂tv = D∆v − µv − γ2v + γ1w,

∂tw = rw(1 − w/K) − γ1w + γ2v,
(1.1)

where v(t, x) and w(t, x) are spatial densities of migrating and seden-

tary subpopulations, respectively, D is diffusion coefficient of migrat-

ing subpopulation, γ1 and γ2 are transition rates between two states.

In model (1.1), the migrants have a positive mortality µ while the

sedentary subpopulation reproduces (with the intrinsic growth rate r)

and is subject to a finite carrying capacity K. The authors of [4] de-

termined the minimal speed for traveling waves under the assumption

that the emigration rate is less than the intrinsic growth rate for the

sedentary class (γ1 < r). Recently, Hadeler and Lewis [3] studied,

among others, the spread rate for the system (1.1) in the general case

by using the theory developed in [11, 5, 12]. We note that the existence

and nonexistence of monotone traveling wave, and hence the existence
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of minimal wave speed, for system (1.1) need to be investigated further

(see [3, Section 5.3]).

The purpose of the present paper is to use the theory developed

in [1, 2, 8, 9, 10] for nonlinear integral equations to study the asymp-

totic speed of spread and monotone traveling waves of system (1.1).

For convenience and other possible applications, we then consider the

following general diffusive logistic equation with a sedentary compart-

ment






∂tv(t, x) = D∆v(t, x) − rv(t, x) + f(w(t, x)),

∂tw(t, x) = g(w(t, x)) + βv(t, x),
(1.2)

with initial conditions

v(0, x) = φ1(x) ≥ 0, w(0, x) = φ2(x) ≥ 0, x ∈ R
n, (1.3)

where D, r and β are positive constants, and the conditions on func-

tions f and g are to be specified in section 3.

This paper is organized as follows. In section 2, we present some

preliminary results based on the paper [10]. In section 3, we first re-

duce system (1.2)–(1.3) into an integral equation, and then obtain the

asymptotic speed of spread under appropriate assumptions. Section

4 is devoted to the existence and nonexistence of monotone traveling

wave solutions. Our results show that the asymptotic speed of spread

is exactly the minimal wave speed for monotone traveling waves.

2 Preliminaries

In this section, we present the preliminary results that will be used in

the subsequent sections.
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Consider nonlinear integral equations

u(t, x) = u0(t, x) +

∫ t

0

∫

Rn

F (u(t− s, x− y), s, y) dyds, (2.1)

where F : R
2
+ × R

n → R is continuous in u and Borel measurable

in (s, y), and u0 : R+ × R
n → R+ is Borel measurable and bounded.

Assume that

(A) There exists a function k : R+ × R
n → R+ such that

(A1) k∗ :=
∫ ∞
0

∫

Rn
k(s, x) dxds <∞.

(A2) 0 ≤ F (u, s, x) ≤ uk(s, x),∀u, s ≥ 0, x ∈ R
n.

(A3) For every compact interval I in (0,∞), there exists some

ε > 0 such that

F (u, s, x) ≥ εk(s, x), ∀u ∈ I, s ≥ 0, x ∈ R
n.

(A4) For every ε > 0, there exists some δ > 0 such that

F (u, s, x) ≥ (1 − ε)uk(s, x), ∀u ∈ [0, δ], s ≥ 0, x ∈ R
n.

(A5) For every w > 0, there exists some Λ > 0 such that

|F (u, s, x) − F (v, s, x)| ≤ Λ|u− v|k(s, x), ∀u, v ∈ [0, w], s ≥ 0, x ∈ R
n.

To obtain asymptotic properties of the solutions of equation (2.1),

we make a couple of assumptions concerning k.

(B) k : R+ × R
n → R+ is a Borel measurable function such that

(B1) k∗ :=
∫ ∞
0

∫

Rn
k(s, y) dyds ∈ (1,∞).

(B2) There exists some λ♦ > 0 such that

∫ ∞

0

∫

Rn

eλ
♦y1k(s, y) dyds <∞,

where y1 is the first coordinate of y.
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(B3) There exist numbers σ2 > σ1 > 0, ρ > 0 such that

k(s, x) > 0, ∀s ∈ (σ1, σ2), |x| ∈ [0, ρ).

(B4) k is isotropic.

Here a function k : [0,∞)×R
n → R is said to be isotropic if for almost

all s > 0, k(s, x) = k(s, y) whenever |x| = |y|. For a fixed z ∈ R
n with

|z| = 1, define

K(c, λ) :=

∫ ∞

0

∫

Rn

e−λ(cs−z·y)k(s, y) dyds, ∀c ≥ 0, λ ≥ 0,

where · means the usual inner product on R
n. Assume that k is

isotropic. Since for every z ∈ R
n with |z| = 1, there exists an or-

thogonal matrix A with Az = −e1, where e1 is the first canonical

basis vector of R
n, there holds

K(c, λ) =

∫ ∞

0

∫

Rn

e−λ(cs+y1)k(s, y) dyds,

where y1 is the first coordinate of y. If (B) holds, then for every

c > 0, there exists some λ#(c) ∈ (0,∞] such that K(c, λ) < ∞ for

λ ∈ [0, λ#(c)) and K(c, λ) = ∞ for λ ∈ (λ#(c),∞) ([8, Lemma 3.7]).

Define

c∗ := inf{c ≥ 0 : K(c, λ) < 1 for some λ > 0}.

The following result is useful for the computation of c∗.

Proposition 2.1. ([10, Proposition 2.3]) Let (B) hold and assume

that

lim infλրλ#(c) K(c, λ) ≥ k∗ for every c > 0. Then there exists a unique

λ∗ ∈ (0, λ#(c∗)) such that K(c∗, λ∗) = 1 and K(c∗, λ) > 1 for λ 6= λ∗.

Moreover, c∗ and λ∗ are uniquely determined as the solutions of the
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system

K(c, λ) = 1,
d

dλ
K(c, λ) = 0.

Definition 2.1. A number c∗ > 0 is called the asymptotic speed of

spread for a function u : R+×R
n → R+ if limt→∞, |x|≥ct u(t, x) = 0 for

every c > c∗, and there exists some ū > 0 such that limt→∞, |x|≤ct u(t, x) =

ū for every c ∈ (0, c∗).

Definition 2.2. A function u0 : R+ ×R
n → R+ is said to be admis-

sible if for every c, λ > 0 with K(c, λ) < 1, there exists some γ > 0

such that u0(t, x) ≤ γeλ(ct−|x|),∀t ≥ 0, x ∈ R
n.

The following two results show that c∗ defined above is the asymp-

totic speed of spread for solutions of (2.1).

Theorem 2.1. ([10, Theorem 2.1]) Let (A) and (B) hold and let

u(t, x) be a solution of (2.1) with u0(t, x) being admissible. Then

limt→∞, |x|≥ct u(t, x) = 0 for each c > c∗.

Theorem 2.2. ([10, Theorem 2.4]) Let (A) and (B) hold and let

u0 : R+ × R
n → R+ be a bounded and Borel measurable function with

the property that u0(t, x) ≥ η > 0,∀t ∈ (t1, t2), |x| ≤ η, for appro-

priate t2 > t1 ≥ 0 and η > 0. Also, let u be a bounded solution of

(2.1) and u∞ := lim supt→∞ supx∈Rn u(t, x). Assume that F ( · , s, x)
is monotone increasing on [0, u∞] for each (s, x) ∈ R+ × R

n and

limt→∞ u0(t, x) = 0 uniformly in x ∈ R
n. Let u∗ > 0 be such that

F̃ (u) :=
∫ ∞
0

∫

Rn
F (u, s, y) dyds > u whenever u ∈ (0, u∗) and F̃ (u) <

u whenever u ∈ (u∗, u∞]. Then we have limt→∞,|x|≤ct u(t, x) = u∗,

∀c ∈ (0, c∗).

Next we consider the limiting equation of (2.1) with n = 1

u(t, x) =

∫ ∞

0

∫

R

F (u(t− s, x− y), s, y) dyds. (2.2)
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A solution u(t, x) of (2.2) is said to be a traveling wave solution if

it is of the form u(t, x) = U(x + ct). The parameter c is called the

wave speed, and the function U(·) is called the wave profile. Here, we

require the following conditions on the wave profile:

U(·) is positive and bounded on R, and lim
ξ→−∞

U(ξ) = 0. (2.3)

The following two results deal with the existence and nonexistence

of traveling wave solutions of (2.2).

Theorem 2.3. ([10, Theorem 3.3]) Let (A2) and (B) with n = 1

hold. Assume that there exists some u∗ > 0 such that F̃ (u∗) = u∗

and F̃ (u) > u for all u ∈ (0, u∗), where F̃ (u) :=
∫ ∞
0

∫

R
F (u, s, y) dyds.

Moreover, suppose that F ( · , s, x) is increasing on [0, u∗] for each (s, x) ∈
R+ ×R, and F (u, s, x) ≥ (u− buσ)k(s, x),∀u ∈ [0, δ], (s, x) ∈ R+ ×R,

for appropriate δ ∈ (0, u∗], σ > 1 and b > 0. Then for each c > c∗,

there exists a monotone traveling wave solution of (2.2) with speed c

and connecting 0 and u∗.

Theorem 2.4. ([10, Theorem 3.5]) Let (A) and (B) hold. Then for

each c ∈ (0, c∗), there exists no traveling wave solution of (2.2) and

(2.3) with speed c.

Finally, we consider nonlinear integral equations

u(t, x) = u0(t, x)+

∫ t

0
e−asf0(u(t−s, x))ds+

∫ t

0

∫

Rn

F0

(

u(t−s, x−y), s, y
)

dyds

(2.4)

where a > 0, f0 ∈ C(R+,R), F0 : R
2
+ × R

n → R is continuous in

u and Borel measurable in (s, y), and u0 : R+ × R
n → R+ is Borel

measurable and bounded. We assume that

(H1) f0 ∈ C1(R+,R+), f ′0(u) ≥ 0 and f0(u) ≤ f ′0(0)u for all u ≥ 0.
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(H2) F0(u, s, x) satisfies (A1)-(A5), and the associated k0(s, x) satis-

fies (B2)-(B4).

Using the measure integral for Dirac function δ(x) on R
n, we write

equation (2.4) as

u(t, x) = u0(t, x) +

∫ t

0

∫

Rn

e−asf0(u(t− s, x− y))δ(y)dyds

+

∫ t

0

∫

Rn

F0

(

u(t− s, x− y), s, y
)

dyds.

It then follows that (2.4) can be written formally as the equation (2.1)

with

F (u, s, x) := f0(u)e
−asδ(x)+F0(u, s, x), k(s, x) := f ′0(0)e

−asδ(x)+k0(s, x).

Remark 2.1 By modifying slightly the proofs of [8, Theorem 2.8 (c)],

[10, Propositions 2.2 and 2.4], and [10, Theorems 2.1, 2.4, 3.3 and

3.5], we see that Theorems 2.1–2.4 in this section remain valid for

equation (2.4) provided that assumptions (H1), (H2) and (B1) hold.

Note that in all integral computations it is understood that
∫

Rn
φ(x −

y)δ(y)dy = φ(x).

3 The spreading speed

Motivated by the biological model (1.1), we impose the following con-

ditions on equation (1.2).

(C1) f : R+ → R+ is Lipschitz continuous and nondecreasing, differ-

entiable at 0, f(0) = 0, f(u) > 0,∀u > 0, and f is sublinear on

R+ in the sense that f(θw) ≥ θf(w) for any θ ∈ (0, 1), w ∈ R+.
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(C2) g : R+ → R is continuously differentiable, g(0) = 0, strictly

sublinear on R+ in the sense that g(θw) > θg(w) for any θ ∈
(0, 1), w > 0.

(C3) βf ′(0) + rg′(0) > 0, and there exists w∗ > 0 such that rg(w∗) +

βf(w∗) = 0.

Consider the reaction system associated with (1.2)







dv
dt

= −rv + f(w),

dw
dt

= g(w) + βv.
(3.1)

Because of assumptions (C1)–(C3) on f and g, system (3.1) is cooper-

ative on R
2
+, and admits a positive equilibrium (f(w∗)

r
, w∗). Also, two

roots of the characteristic equation associated with the linearization

at zero equilibrium of (3.1) are

λ± =
g′(0) − r ±

√

[g′(0) − r]2 + 4[βf ′(0) + rg′(0)]

2
,

and hence, λ+ > 0 and λ− < 0. It is easy to see that every solution

to (3.1) with nonnegative initial value remains nonnegative. By [14,

Corollary 3.2], system (3.1) admits a unique steady state (f(w∗)
r

, w∗),

which is globally asymptotically stable in R
2
+\{0}. By the standard

comparison arguments, it follows that solutions to (3.1) are uniformly

bounded on R
2
+.

Let X := BUC(Rn,R2) be the Banach space of all bounded and

uniformly continuous functions from R
n to R

2 with the usual supreme

norm. Define

X+ = {(φ1, φ2) ∈ X : φi(x) ≥ 0, ∀x ∈ R
n, i = 1, 2}.
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Then X+ is a positive cone of X, and its induced partial ordering makes

X into a Banach lattice. By using the theory developed in [6] (see, e.g.,

[13, Lemma 3.1]), we have the following result.

Lemma 3.1. Let (C1)–(C3) hold. For any φ ∈ X+, system (1.2)

has a unique, bounded and nonnegative mild solution U(t, x, φ) =

(v(t, x, φ), w(t, x, φ)) with

U(0, ·, φ) = φ, and the solution semiflow associated with (1.2) is mono-

tone on X+.

In the rest of this section, we will find the spreading speed c∗ for

solutions of system (1.2). In order to use the theory in [10], we need

to reduce (1.2)–(1.3) into a scalar integral equation. Let Γ(t, x− y) be

the Green function associated with the parabolic equation







∂tu = D∆u,

u(0, x) = φ(x), x ∈ R
n, t > 0.

In the case where n = 1, we have

Γ(t, x− y) =
1√

4πDt
exp

(

−(x− y)2

4Dt

)

.

Then ∂tv = D∆v−rv generates a linear semigroup T (t) : BUC(Rn,R) →
BUC(Rn,R), which is defined by

(T (t)φ)(x) = e−rt

∫

Rn

Γ(t, x− y)φ(y) dy, ∀φ ∈ BUC(Rn,R). (3.2)

Integrating the first equation of system (1.2), we have the following

abstract integral form

v(t) = T (t)v(0) +

∫ t

0
T (t− s)f(w(s)) ds,
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that is,

v(t, x) = e−rt

∫

Rn

Γ(t, x− y)φ1(y) dy

+

∫ t

0
e−r(t−s)

∫

Rn

Γ(t− s, x− y)f(w(s, y)) dyds. (3.3)

Given α > 0, we define a nondecreasing function gα( · ) on R+ by

gα(w) = sup{αu+ g(u) : 0 ≤ u ≤ w}, ∀w ≥ 0.

For every M > 0, we can choose α = α(M) > 0 so large that αw+g(w)

is monotone increasing for w ∈ [0,M ], and hence, gα(w) = αw +

g(w),∀w ∈ [0,M ]. Thus, for any bounded solution of (1.2), we can

choose sufficiently large α > 0 such that the second equation in system

(1.2) takes the form

∂tw(t, x) = −αw(t, x) + gα(w(t, x)) + βv(t, x). (3.4)

It follows from (3.4) that

w(t, x) = e−αtφ2(x) +

∫ t

0
e−α(t−s)[gα(w(s, x)) + βv(s, x)] ds

= e−αtφ2(x) +

∫ t

0
e−α(t−s)

∫

Rn

δ(x− y)gα(w(s, y)) dyds

+ β

∫ t

0
e−α(t−s)v(s, x) ds, (3.5)

where δ(x) is the Dirac function. After a substitution, we have

∫ t

0
dse−α(t−s)

∫

Rn

δ(x− y)gα(w(s, y)) dy

=

∫ t

0
ds1e

−αs1

∫

Rn

δ(x− y)gα(w(t− s1, y)) dy

=

∫ t

0
ds

∫

Rn

k1(s, x− y)gα(w(t− s, y)) dy, (3.6)
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where k1(s, x) = e−αsδ(x),∀x ∈ R
n and ∀s ≥ 0. By (3.3), we obtain

∫ t

0
e−α(t−s)v(s, x) ds =

∫ t

0
dse−α(t−s)e−rs

∫

Rn

Γ(s, x− y)φ1(y) dy +G(t, x)(3.7)

with

G(t, x) :=

∫ t

0
dse−α(t−s)

∫ s

0
dτe−r(s−τ)

∫

Rn

Γ(s− τ, x− y)f(w(τ, y)) dy.

Changing the order of the integrations in the expression G(t, x), we

have

G(t, x) =

∫ t

0
dτ

∫ t

τ

dse−α(t−s)e−r(s−τ)

∫

Rn

Γ(s− τ, x− y)f(w(τ, y)) dy

=

∫ t

0
dτ

∫

Rn

dy

∫ t

τ

dse−α(t−s)e−r(s−τ)Γ(s− τ, x− y)f(w(τ, y)).

After substitutions,

G(t, x) =

∫ t

0
dτ

∫

Rn

dyf(w(τ, y))

∫ t−τ

0
ds1e

−α(t−τ−s1)e−rs1Γ(s1, x− y)

=

∫ t

0
dτ

∫

Rn

dyf(w(τ, y))e−α(t−τ)

∫ t−τ

0
e(α−r)s1Γ(s1, x− y) ds1

=

∫ t

0
dτ

∫

Rn

k2(t− τ, x− y)f(w(τ, y)) dy

=

∫ t

0
ds

∫

Rn

k2(s, x− y)f(w(t− s, y)) dy, (3.8)

where k2(s, x) = e−αs
∫ s

0 e(α−r)s1Γ(s1, x) ds1,∀x ∈ R
n and ∀s ≥ 0.

Inserting (3.6)–(3.8) into (3.5), we obtain

w(t, x) = e−αtφ2(x) +

∫ t

0
ds

∫

Rn

k1(s, x− y)gα(w(t − s, y)) dy

+ β

[

∫ t

0
dse−α(t−s)e−rs

∫

Rn

Γ(s, x− y)φ1(y) dy

+

∫ t

0
ds

∫

Rn

k2(s, x− y)f(w(t− s, y)) dy

]

= w0(t, x) +

∫ t

0

∫

Rn

Fα(w(t − s, x− y), s, y) dyds, (3.9)
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where

w0(t, x) = e−αtφ2(x) + β

∫ t

0
dse−α(t−s)e−rs

∫

Rn

Γ(s, x− y)φ1(y) dy(3.10)

and

Fα(w, s, y) = gα(w)k1(s, y) + βf(w)k2(s, y). (3.11)

Let α+ g′(0) > 0. In view of (3.11), we define

k(s, y) := g′α(0)k1(s, y) + βf ′(0)k2(s, y). (3.12)

By conditions (C1) and (C2) and [10, Lemma 4.1], it follows that

assumption (A) holds for (3.9).

Next, we need to compute some Laplace-like transforms of integral

kernels. For any function φ : R+ × R
n → R, let

Kφ(c, λ) :=

∫ ∞

0

∫

Rn

e−λ(cs+y1)φ(s, y) dyds, c, λ ≥ 0,

where y1 is the first coordinate of y. By [10, Proposition 4.2], we have

Kk1
(c, λ) =

∫ ∞

0

∫

Rn

e−λ(cs+y1)e−αsδ(y) dyds =

∫ ∞

0
e−(λc+α)s ds =

1

λc+ α
,

and in the case where λ2D − λc− r < 0,

Kk2
(c, λ) =

∫ ∞

0

∫

Rn

e−λ(cs+y1)e−αs

∫ s

0
e(α−r)s1Γ(s1, y) ds1 dyds

=

∫ ∞

0
dse−(λc+α)s

∫ s

0
ds1e

(α−r)s1

∫

Rn

e−λy1Γ(s1, y) dy

=

∫ ∞

0
dse−(λc+α)s

∫ s

0
e(α−r)s1eλ2Ds1 ds1

= − 1

(λ2D − λc− r)(λc+ α)
.

It follows that

Kk(c, λ) = g′α(0)Kk1
(c, λ) + βf ′(0)Kk2

(c, λ)

=
1

λc+ α

(

g′α(0) − βf ′(0)
λ2D − λc− r

)

. (3.13)
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The expression (3.13) shows that if λ#(c) = c+
√

c2+4Dr
2D

, then

Kk(c, λ) < ∞ for all λ ∈ [0, λ#(c)) and limλրλ#(c) Kk(c, λ) = ∞ for

every c ≥ 0. In a similar way, we get

F̃α(w) :=

∫ ∞

0

∫

Rn

Fα(w, s, y) dyds =
1

α

(

gα(w) +
βf(w)

r

)

. (3.14)

Note that Kk(c, 0) = k∗ :=
∫ ∞
0

∫

Rn
k(s, y) dyds,∀c ≥ 0, and condi-

tion (B1) holds (i.e., k∗ > 1) if and only if g′(0)+ βf ′(0)
r

> 0. It is easy

to check that conditions (B2)-(B4) hold and lim infλրλ#(c) Kk(c, λ) ≥
k∗ for every c > 0.

We define

c∗ := inf{c ≥ 0 : Kk(c, λ) < 1 for some λ > 0}.

According to Proposition 2.1, c∗ can be uniquely determined as the

positive solution of the system

Kk(c, λ) = 1,
d

dλ
Kk(c, λ) = 0.

That is, (c∗, λ∗) is the unique positive solution of the system







(g′(0) − λc)(λ2D − λc− r) = βf ′(0),

c(λ2D − λc− r)2 = βf ′(0)(2λD − c).
(3.15)

Let

P (c, λ) := a3λ
3 + a2λ

2 + a1λ+ a0, (3.16)

where the coefficients ai (i = 0, · · · , 3) are given in terms of the original

parameters as

a0 = −[βf ′(0) + rg′(0)], a1 = −c[g′(0) − r], a2 = c2 +Dg′(0), a3 = −cD.
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A direct computation shows that (3.15) is equivalent to

P (c, λ) = 0 and
∂P

∂λ
(c, λ) = 0. (3.17)

For any c > 0, we have P (c, 0) < 0 and P (c,−∞) = +∞, and hence

P (c, λ) always has a real negative root. By (3.17), it follows that

P (c, λ) has two positive roots for c > c∗, one positive double root for

c = c∗, and two complex roots for 0 < c < c∗.

As in [15], we now transform (3.17) so that it is expressed in terms

of parameter c. Set

P (c, λ) = P1(c, λ)Q1(c, λ) +R1(c, λ),

P1(c, λ) = R1(c, λ)Q2(c, λ) +R2(c),

where P1(c, λ) = ∂P
∂λ

(c, λ), Q1(c, λ) and R1(c, λ) are the quotient and

remainder of P (c, λ) divided by P1(c, λ), andQ2(c, λ) andR2(c) are the

quotient and remainder of P1(c, λ) divided by R1(c, λ), respectively.

Clearly, we must have R2(c
∗) = 0. By direct calculations, we see that

R2(c) = 0 is equivalent to

18a0a1a2a3 − 4a3
2a0 + a2

2a
2
1 − 27a2

3a
2
0 − 4a3

1a3 = 0,

that is,

ψ(c2) := 18Dc2[c2 +Dg′(0)][g′(0) − r]a0 − 4[c2 +Dg′(0)]3a0

+ c2[c2 +Dg′(0)]2[g′(0) − r]2 − 27D2c2a2
0 − 4Dc4[g′(0) − r]3 = 0.

Sorting out terms with respect to c, we have

ψ(c2) = c6{[g′(0) − r]2 − 4a0} − 4D3g′3(0)a0

+ c4D{18[g′(0) − r]a0 − 12g′(0)a0 + 2g′(0)[g′(0) − r]2 − 4[g′(0) − r]3}

+ c2D2{18g′(0)[g′(0) − r]a0 − 12g′2(0)a0 + g′2(0)[g′(0) − r]2 − 27a2
0}.
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Thus, ψ(c∗2) = 0. Let ĉ2 be the largest zero of ψ(x) with ĉ > 0.

Clearly, ĉ ≥ c∗. We further claim that ĉ = c∗. Assume, by contradic-

tion, that ĉ > c∗. Since ψ(ĉ2) = 0, and hence R2(ĉ) = 0, it follows that

P (ĉ, λ) and P1(ĉ, λ) have the common factor R1(ĉ, λ). Thus, P (ĉ, λ)

has a double root, which contradicts the fact that P (ĉ, λ) has three

different real roots. Hence, c∗ is the positive square root of the largest

zero of the cubic ψ(x).

The subsequent result shows that c∗ is the asymptotic speed of

spread for solutions of (1.2) with initial functions having compact sup-

ports. In order to obtain the convergence for 0 < c < c∗, we need the

following additional condition:

(C4) βf(w) + rg(w) > 0, ∀w ∈ (0, w∗), and βf(w) + rg(w) <

0, ∀w > w∗.

We are now in a position to prove our main result in this section.

Theorem 3.1. Let (C1)–(C3) hold and c∗ be the positive square root

of the largest zero of the cubic ψ(x). Assume that φ = (φ1, φ2) ∈ X+

has the property that φ1(·) + φ2(·) 6≡ 0, and that for every κ1 > 0,

there exists κ2 > 0 such that φ1(y)+φ2(y) ≤ κ2e
−κ1|y|,∀y ∈ R

n. Then

the unique solution u(t, x) = (v(t, x), w(t, x)) of system (1.2)-(1.3)

satisfies

(i) limt→∞, |x|≥ct u(t, x) = (0, 0), ∀c > c∗.

(ii) If, in addition, (C4) holds, then limt→∞,|x|≤ct u(t, x) = (v∗, w∗),

∀c ∈ (0, c∗), where w∗ is the unique positive solution of rg(w) +

βf(w) = 0, and v∗ = f(w∗)
r

.
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Proof. By Lemma 3.1, there exists a unique, bounded and non-

negative solution u(t, x) = (v(t, x), w(t, x)) to system (1.2)-(1.3). Let

M > 0 be a bound for w(t, x), then we can choose α > max{g′(0), r} so

large that gα(w) = αw + g(w),∀w ∈ [0,M ], and hence, gα(w(t, x)) =

αw(t, x) + g(w(t, x)),∀t ≥ 0, x ∈ R
n. Then w(t, x) is a solution of

(3.9).

Note that Γ(t, ·) > 0,∀t > 0, it follows from (3.10) and the as-

sumption on φ = (φ1, φ2) that w0(t, ·) > 0 for t > 0. Since
∫

Rn
Γ(t, x−

y)dy = 1,∀t ≥ 0, x ∈ R
n, we have

w0(t, x) = e−αtφ2(x) + β

∫ t

0
dse−α(t−s)e−rs

∫

Rn

Γ(s, x− y)φ1(y) dy

≤ e−αtφ2(x) + βM1

∫ t

0
e−αt+(α−r)sds,

where M1 = sup
y∈Rn

φ1(y). Therefore, lim
t→∞

w0(t, x) = 0 uniformly in x ∈
R

n. Note that v(t, x) is determined from (3.3) by w(t, x). In the case

where (C4) holds, it follows from (3.14) that F̃α(w) > w,∀w ∈ (0, w∗)

and F̃α(w) < w,∀w ∈ (w∗, w̄], where w̄ = min{w∗ + 1,M}.

We spend the rest of this proof on checking that w0(t, x) is admis-

sible. Indeed, given c, λ > 0 with Kk(c, λ) < 1, Kk1
(c, λ) and Kk2

(c, λ)

are finite numbers. Therefore, λ2D − λc− r < 0. Note that for every

w ∈ R
n with |w| = 1, −|y| ≤ w ·y ≤ |y|,∀y ∈ R

n, where · is the inner

product on R
n. By the assumption on φ1 and φ2, there exists γ > 0

such that φi(y) ≤ γe−λ|y| ≤ γeλw·y,∀y ∈ R
n, i = 1, 2. Note that

∫

Rn

Γ(t, y)e−λw·ydy =

∫

Rn

Γ(t, y)e−λy1dy = eλ
2Dt.
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We then have

w0(t, x) ≤ e−αtγe−λ|x| + β

∫ t

0
dse−α(t−s)e−rs

∫

Rn

Γ(s, x− y)γeλw·y dy

= γe−αt−λ|x| + βγ

∫ t

0
dse−α(t−s)e−rs

∫

Rn

Γ(s, y)eλw·(x−y) dy

= γe−αt−λ|x| + βγe−αt+λw·x
∫ t

0
dse(α−r)s

∫

Rn

Γ(s, y)e−λw·y dy

= γe−αt−λ|x| + βγe−αt+λw·x
∫ t

0
e[λ2D+(α−r)]s ds

= γe−αt−λ|x| +
βγe−αt+λw·x

λ2D + (α − r)

[

e[λ2D+(α−r)]t − 1
]

≤ γe−αt−λ|x| +
βγ

λ2D + (α − r)
e(λ

2D−r)t+λw·x.

Letting w = − x
|x| , and using the inequality λ2D−r < λc, we obtain

w0(t, x) ≤ γeλ(ct−|x|) +
βγ

λ2D + (α− r)
eλ(ct−|x|), ∀t ≥ 0, x ∈ R

n.

Therefore, w0(t, x) is admissible. Consequently, the results for w(t, x)

follow from Remark 2.1 and Theorems 2.1 and 2.2. By (3.3), it then

follows that the corresponding results hold for v(t, x). The proof is

complete.

As an application, let us consider system (1.1), where D,µ, γ1, γ2, r

and K are positive constants. It is easy to verify that system (1.1)
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satisfies conditions (C1)–(C4) provided r > µγ1

µ+γ2
. Setting

ψ0(x) := x3[(r − γ1 − µ− γ2)
2 + 4(µr + rγ2 − µγ1)]

+ 4D3(r − γ1)
3(µr + rγ2 − µγ1)

+ x2D[−18(r − γ1 − µ− γ2)(µr + rγ2 − µγ1)

+ 12(r − γ1)(µr + rγ2 − µγ1)

+ 2(r − γ1)(r − γ1 − µ− γ2)
2 − 4(r − γ1 − µ− γ2)

3]

+ xD2[−18(r − γ1)(r − γ1 − µ− γ2)(µr + rγ2 − µγ1)

+ 12(r − γ1)
2(µr + rγ2 − µγ1)

+ (r − γ1)
2(r − γ1 − µ− γ2)

2 − 27(µr + rγ2 − µγ1)
2],

we then have the following result.

Proposition 3.1. Let r > µγ1

µ+γ2
hold, and c∗ be the positive square

root of the largest zero of the cubic ψ0(x). Assume that φ = (φ1, φ2) ∈
X+ has the property that φ1(·) + φ2(·) 6≡ 0, and that for every κ1 > 0,

there exists κ2 > 0 such that φ1(y) + φ2(y) ≤ κ2e
−κ1|y|,∀y ∈ R

n.

Then the unique solution u(t, x) = (v(t, x), w(t, x)) of system (1.1)

with (1.3) satisfies

(i) limt→∞, |x|≥ct u(t, x) = (0, 0), ∀c > c∗.

(ii) limt→∞,|x|≤ct u(t, x) = (v∗, w∗), ∀c ∈ (0, c∗), where w∗ = K
(

1 − µγ1

r(µ+γ2)

)

and v∗ = γ1K
µ+γ2

(

1 − µγ1

r(µ+γ2)

)

.

Remark 3.1. (3.17) implies that the spreading speed c∗ of (1.2) can

be obtained as the largest value c such that the polynomial P (c, λ)

defined by (3.16) has a real positive double root. For system (1.1), c∗

defined in Proposition 3.1 coincides with the spreading rate c̄ in [3,

Theorem 1].
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4 Traveling wave solutions

In this section, we consider the existence and nonexistence of traveling

wave solutions of system (1.2) with n = 1. We will show that there is

a minimal wave speed for monotone traveling waves and it coincides

with the spreading speed c∗ obtained in section 3.

Recall that a solution (v(t, x), w(t, x)) of (1.2) is said to be a trav-

eling wave solution if it is of the form (v(t, x), w(t, x)) = (U1(x +

ct), U2(x + ct)). The parameter c is called the wave speed, and the

function (U1(·), U2(·)) is called the wave profile. We will impose the

following conditions on the wave profile:

Ui(·) is positive and bounded on R, and lim
ξ→−∞

Ui(ξ) = 0, i = 1, 2.

(4.1)

Theorem 4.1. Let (C1)–(C3) hold, and let c∗, v∗, w∗ be defined as

in Theorem 3.1. Then the following statements are valid:

(i) System (1.2) with n = 1 subject to (4.1) admits no traveling

wave solution with wave speed c ∈ (0, c∗).

(ii) Assume in addition that (C4) holds, f ′′(0) exists, and there exist

δ, b, θ > 0 such that g′(u) − g′(0) ≥ −buθ,∀u ∈ [0, δ]. Then for

every c ≥ c∗, system (1.2) with n = 1 has a monotone traveling

wave connecting (0, 0) and (v∗, w∗) with speed c.

Proof. (i) Assume that (v(t, x), w(t, x)) = (U1(x+ ct), U2(x+ ct)) is

a traveling wave solution of (1.2) with n = 1 subject to (4.1). Then

(v(t, x), w(t, x)) is bounded, and we can choose α > 0 so large that

gα(w(t, x)) = αw(t, x) + g(w(t, x)),∀t ≥ 0, x ∈ R
n. A similar argu-

ment as in Section 3 shows that (v(t, ·), w(t, ·)) satisfies the integral
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equations

v(t) = T (t− r)v(r) +

∫ t

r

T (t− s)f(w(s)) ds, (4.2)

w(t) = e−α(t−r)w(r) +

∫ t

r

e−α(t−s)[gα(w(s)) + βv(s)] ds, ∀t ≥ r, r ∈ R,

(4.3)

where T (t) is defined as in (3.2). By [10, Proposition 4.3], we have

v(t, x) =

∫ ∞

0
dse−rs

∫

Rn

Γ(s, y)f(w(t− s, x− y)) dy = U1(x+ ct)(4.4)

and

w(t, x) =

∫ ∞

0
e−αs[gα(w(t − s, x)) + βv(t− s, x)] ds

=

∫ ∞

0
e−αs

[

gα(w(t− s, x))

+ β

∫

R

dy

∫ ∞

0
e−rs1Γ(s1, y)f(w(t− s− s1, x− y)) ds1

]

ds

=

∫ ∞

0
gα(w(t− s, x))e−αs ds

+ β

∫ ∞

0
ds

∫

R

dy

∫ ∞

0
e(α−r)s1Γ(s1, y)f(w(t− s− s1, x− y))e−α(s+s1) ds1

=

∫ ∞

0
gα(w(t− s, x))e−αs ds

+ β

∫

R

dy

∫ ∞

0
ds1

∫ ∞

s1

e(α−r)s1Γ(s1, y)f(w(t− s, x− y))e−αs ds

=

∫ ∞

0

∫

R

gα(w(t− s, x− y))e−αsδ(y) dyds

+ β

∫ ∞

0

∫

R

f(w(t− s, x− y))e−αs

∫ s

0
e(α−r)s1Γ(s1, y) ds1 dyds

=

∫ ∞

0

∫

R

Fα(w(t− s, x− y), s, y) dyds, (4.5)

where Fα(w, s, y) is defined as in (3.11). It then follows that w(t, x) =

U2(x+ct) is a traveling wave solution of system (4.5). However, (C1)–

(C3) imply that conditions (A) and (B) hold for (4.5). Then the
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assumptions of Remark 2.1 and Theorem 2.4 are satisfied and such a

solution does not exist.

(ii) We choose α > 0 so large that gα(w) = αw+g(w),∀w ∈ [0, w∗].

Since gα and f are nondecreasing, so is Fα( · , s, y) in (3.11). Assume

that

(v(t, x), w(t, x)) = (U1(x + ct), U2(x + ct)) is a monotone traveling

wave connecting (0, 0) and (v∗, w∗) with speed c ≥ c∗ of

v(t, x) =

∫ ∞

0
dse−rs

∫

R

Γ(s, y)f(w(t− s, x− y)) dy, (4.6)

w(t, x) =

∫ ∞

0

∫

R

Fα(w(t− s, x− y), s, y) dyds, (4.7)

where Fα(w, s, y) is given in (3.11). Since the process in (4.5) is in-

vertible, by [10, Proposition 4.3] we see that (v(t, x), w(t, x)) satisfies

(4.2)-(4.3). It then follows that (v(t, x), w(t, x)) solves (1.2). Thus,

(v(t, x), w(t, x)) = (U1(x + ct), U2(x + ct)) is a monotone traveling

wave connecting (0, 0) and (v∗, w∗) with speed c of system (1.2) with

n = 1 subject to (4.1). Therefore, it suffices to prove the existence of

monotone traveling solution of (4.6)-(4.7).

Since f ′′(0) exists, we can find two numbers δ0 > 0 and a > 0 such

that f(u) ≥ f ′(0)w−aw2,∀w ∈ [0, δ0]. Furthermore, if δ > 0 is chosen

small enough, we have

gα(w) = αw + g(w) = w

(

α+

∫ 1

0
g′(ξw) dξ

)

= w

(

α+ g′(0) +

∫ 1

0
[g′(ξw) − g′(0)] dξ

)

≥ w

(

g′α(0) −
∫ 1

0
b(ξw)θ dξ

)

= w

(

g′α(0) − b

θ + 1
wθ

)

, ∀u ∈ [0, δ].
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Without loss of generality, we can assume that θ ∈ (0, 1]. Then there

exist δ1 > 0 and b1 > 0 such that

Fα(w, s, y) ≥
(

w − b1w
1+θ

)

k(s, y), ∀w ∈ [0, δ1], (s, y) ∈ R+ × R.

Applying Remark 2.1 and Theorem 2.3 to (4.7), it follows that for each

c > c∗, (4.7) admits a monotone traveling wave w(t, x) = U2(x + ct)

connecting 0 and w∗. Define v(t, x) as in (4.6), we then have

v(t, x) =

∫ ∞

0
dse−rs

∫

R

Γ(s, y)f(U2(x− y + c(t− s))) dy = U1(x+ ct),

where U1(ξ) =
∫ ∞
0 dse−rs

∫

R
Γ(s, y)f(U2(ξ − y − cs)) dy. Obviously,

U ′
1(ξ) > 0. By the dominant convergence theorem, lim

ξ→−∞
U1(ξ) = 0,

and lim
ξ→∞

U1(ξ) = f(w∗)
r

= v∗. Therefore, (v(t, x), w(t, x)) is a monotone

traveling wave connecting (0, 0) and (v∗, w∗) with speed c > c∗ of (4.6)-

(4.7).

By the limiting arguments (see, e.g., [15]), as applied to the ordi-

nary differential system of the wave profile resulting from (1.2), we can

prove the existence of monotone traveling wave of (1.2) with speed c∗.

The proof is complete.

Returning to system (1.1), we have the following result.

Proposition 4.1. Let r > µγ1

µ+γ2
hold, and let c∗, v∗, w∗ be defined as

in Proposition 3.1. Then the following statements are valid:

(i) System (1.1) with n = 1 subject to (4.1) admits no traveling

wave solution with wave speed c ∈ (0, c∗).

(ii) For every c ≥ c∗, system (1.1) with n = 1 has a monotone

traveling wave connecting (0, 0) and (v∗, w∗) with speed c.
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