
Notes on Wang and Zhao’s JDDE paper

Discontinuous linear systems:

The theory of R0 developed in Wang and Zhao’s paper [2] also applies to the

case where the periodic coefficients in a linear system have finite many discontinuous

points.

Indeed, the theory of evolution matrix, the constant variation formula, and the

Floquet theory for the linear T -periodic system x′ = A(t)x are valid provided that

A(t) is T -periodic and Lebesgue integrable. Here the equation is required to be

satisfied almost for all t ∈ [0, T ]. For the Caratheodory conditions on the existence,

uniqueness, and continuation of mild solutions, we refer to Hale’s book [1]. Clearly,

a periodic function with finite many discontinuous points is Lebesgue integrable.

Due to the same reason, [3, Lemma 2.1] is also applicable if periodic coefficients

have finite many discontinuous points.

A numerical algorithm to compute R0:

Consider the linear ω-periodic ODE system

dw

dt
=

(
−V (t) +

1

λ
F (t)

)
w, w ∈ Rm (1)

with parameter λ ∈ (0,∞). Let W (t, λ), t ≥ 0, be the standard fundamental matrix

of (1) with W (0, λ) = I.

By [2, Theorem 2.1 (ii)], we know that if R0 > 0, then λ = R0 is the unique

solution of ρ(W (ω, λ)) = 1.

For any specific value of λ, one can numerically compute all eigenvalues of the

matrix W (ω, λ), and hence, the spectral radius, ρ(W (ω, λ)), of W (ω, λ). I believe

that there exists such a software. Recall how people study the stability of a periodic

orbit numerically: first linearize the given autonomous ODE system at an ω-periodic

solution to obtain a linear periodic ODE system, and then one needs to compute the

Floquet multipliers, that is, all eigenvalues of the matrix W (ω, λ) associated with

the resultant linear system.
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Let f(λ) := ρ(W (ω, λ)). Since F (t) is nonnegative and −V (t) is coopera-

tive, it follows that f(λ) is continuous and non-increasing in λ ∈ (0,∞). Further,

limλ→∞ f(λ) = ρ(Φ−V (ω)) < 1.

(1) Choose two positive numbers a0 < b0 such that f(a0) > 1 > f(b0). If there is

no such a0, then [2, Theorem 2.1 (iii)] implies that R0 = 0.

(2) Define two sequences an and bn by induction: If f(1
2
(an + bn)) ≥ 1, define

an+1 = 1
2
(an + bn) and bn+1 = bn; Otherwise, define an+1 = an and bn+1 =

1
2
(an + bn). It follows that an ≤ bn, an+1 ≥ an, bn+1 ≤ bn, and f(an) ≥ 1 ≥

f(bn) for all n.

(3) Note that [an+1, bn+1] ⊂ [an, bn] and bn−an = 1
2n (b0−a0). Thus, limn→∞ an =

limn→∞ bn = λ0 > 0. Since f(an) ≥ 1 ≥ f(bn) for all n, we have f(λ0) ≥ 1 ≥
f(λ0), and hence, f(λ0) = 1. Consequently, we have R0 = λ0.

(4) Since an ≤ R0 ≤ bn, we see that |an − R0| ≤ bn − an = 1
2n (b0 − a0), and

|bn − R0| ≤ bn − an = 1
2n (b0 − a0). Given an error tolerance ε, we can choose

an N > 0 such that 1
2N (b0 − a0) ≤ ε. Thus, we have R0 ≈ aN or R0 ≈ bN .
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