Notes on periodic linear FDEs

Xiao-Qiang Zhao
Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John's, NL A1C 5S7, Canada
E-mail: zhao@mun.ca

November 18, 2018

Lemma A. $\left([2\right.$, Lemma 2.6] $)$ Assume that $\left(E, E^{+}\right)$is an ordered Banach space with E^{+}being normal and $\operatorname{Int}\left(E^{+}\right) \neq \emptyset$. Let \mathcal{L} be a positive and bounded linear operator. If λ is an eigenvalue of \mathcal{L} with a strongly positive eigenvector, then $\lambda=r(\mathcal{L})$.
Lemma B. ([1, Lemma 3.1]) Let \mathcal{L} be a positive and bounded linear operator on an ordered Banach space $\left(E, E^{+}\right)$with $\operatorname{Int}\left(E^{+}\right) \neq \emptyset$. If there is a positive integer n_{0} such that $\mathcal{L}^{n_{0}}$ is compact and strongly positive on E, then $r(\mathcal{L})$ is a simple eigenvalue of \mathcal{L} having a strongly positive eigenvector.

Assume that for each $1 \leq i \leq n,\left(X_{i}, X_{i}^{+}\right)$is an ordered Banach space with X_{i}^{+}being normal and $\operatorname{Int}\left(X_{i}^{+}\right) \neq \emptyset$. Let $X=\prod_{i=1}^{n} X_{i}$ and $X^{+}=$ $\prod_{i=1}^{n} X_{i}^{+}$. Then $\left(X, X^{+}\right)$is an ordered Banach space with X^{+}being normal and $\operatorname{Int}\left(X^{+}\right) \neq \emptyset$. Let $\tau \geq 0$ be a given real number. We consider an abstract linear periodic FDE on the Banach space $C:=C[-\tau, 0], X)$:

$$
\begin{equation*}
\frac{d u(t)}{d t}=L(t) u_{t}, \quad t \geq 0 \tag{0.1}
\end{equation*}
$$

where $F(t): C \rightarrow X$ is a linear operator for each $t \in \mathbb{R}$, and $L(t)$ is ω periodic in $t \in \mathbb{R}$ for some $\omega>0$. Assume that for any $\phi \in C$, equation (0.1) has a unique solution $u(t, \phi)$ satisfying $u_{0}=\phi$. Define $P(t) \phi=u_{t}(\phi)$. It then follows that $P(t)$ is an ω-periodic semilow on C. Let $r(P(\omega))$ be the spectral radius of the Poincaré map $P(\omega)$.

Lemma 1. Assume that (0.1) admits the comparison principle, that is, $P(t)$ is a monotone periodic semiflow on C. If (0.1) has a solution $u^{*}(t)=$ $e^{\mu t} v^{*}(t)$ such that $v^{*}(t+\omega)=v^{*}(t) \gg 0$ in X for all $t \in \mathbb{R}$. Then $r(P(\omega))=$ $e^{\mu \omega}$.
Proof. Define $\phi^{*} \in C$ by $\phi^{*}(\theta)=e^{\mu \theta} v^{*}(\theta), \forall \theta \in[-\tau, 0]$. Then $\phi^{*} \gg 0$ in C, and $u\left(t, \phi^{*}\right)=u^{*}(t), \forall t \geq-\tau$. It follows that

$$
\left[P(\omega) \phi^{*}\right](\theta)=u\left(\omega+\theta, \phi^{*}\right)=e^{\mu(\omega+\theta)} v^{*}(\omega+\theta)=e^{\mu \omega} \phi^{*}(\theta), \forall \theta \in[-\tau, 0]
$$

and hence, $P(\omega) \phi^{*}=e^{\mu \omega} \phi^{*}$. Now Lemma A implies that $r(P(\omega))=e^{\mu \omega}$.

Let $\tau_{i} \in[0, \tau], 1 \leq i \leq n$, be given real numbers. We set

$$
Y=\prod_{i=1}^{n} C\left(\left[-\tau_{i}, 0\right], X_{i}\right), \quad Y^{+}=\prod_{i=1}^{n} C\left(\left[-\tau_{i}, 0\right], X_{i}^{+}\right)
$$

Lemma 2. Let $P(t)$ be defined as in Lemma 1. Assume that (0.1) generates a monotone ω-periodic semiflow $\tilde{P}(t)$ on Y. If $r(\tilde{P}(\omega))$ is an eigenvalue of $\tilde{P}(\omega)$ having a strongly positive eigenvector in Y, then $r(\tilde{P}(\omega))=r(P(\omega))$. Proof. Let $\mu:=\frac{\ln r(\tilde{P}(\omega))}{\omega}$. By the essentially same arguments as in [3, Proposition 2.1], it then follows that (0.1) has a solution $u^{*}(t)=e^{\mu t} v^{*}(t)$ such that $v^{*}(t+\omega)=v^{*}(t) \gg 0$ in X for all $t \in \mathbb{R}$. Thus, Lemma 1 implies that $r(P(\omega))=e^{\mu \omega}=r(\tilde{P}(\omega))$.

Remark 1. If $\tilde{P}(t)$ is eventually compact and strongly monotone on Y, then the conclusion of Lemma 2 holds true. This is because Lemma B, together with the fact that $(\tilde{P}(\omega))^{n}=\tilde{P}(n \omega), \forall n \geq 0$, implies that $r(\tilde{P}(\omega))$ is a simple eigenvalue of $\tilde{P}(\omega)$ having a strongly positive eigenvector in Y.

Remark 2. In the study of nonlinear evolution systems with time-periodic delay, it is not necessary to choose the product space as its phase space. In some published papers, such a product space was used to find the positive solution $u^{*}(t)=e^{\mu t} v^{*}(t)$ for the linear system associated with the definition of the basic reproduction ratio R_{0}, which was introduced in [4, 2].

References

[1] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves formonotone semiflows with applications, Commun. Pure Appl. Math., 60(2007), 1-40.
[2] X. Liang, L. Zhang and X.-Q. Zhao, Basic reproduction numbers for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dynamics and Differential Equations, 2017, https://doi.org/10.1007/s10884-017-9601-7.
[3] D. Xu and X.-Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311(2005), 417-438.
[4] X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynamics and Differential Equations, 29(2017), 67-82.

