ERRATA TO THE "SPREADING SPEEDS OF A PARTIALLY DEGENERATE REACTION-DIFFUSION SYSTEM IN A PERIODIC HABITAT" [J. DIFFERENTIAL EQUATIONS,255(2013),3983-4011]

CHUFEN WU, DONGMEI XIAO, AND XIAO-QIANG ZHAO

In the proof of [1, Lemma 2.3], the norm estimate for $v_1(t,x)$ below (2.12) is wrong. The purpose of our current note is to give a more succinct proof to correct this mistake.

Proof of Lemma 2.3. By [1, Theorem 2.1], for any given $\phi \in [0, M]_{\mathcal{C}}$, $u(t, \cdot; \phi)$ is continuous in $t \in [0, \infty)$ with respect to the compact open topology. By assumptions (A2) and (A4), it follows that there exists a cooperative 2×2 matrix A such that

$$F(x,u) - F(x,v) \le A(u-v), \quad \forall x \in \mathbb{R}, \ 0 \le v \le u \le M.$$

Note that

$$u(t,\cdot) = \ell(t)u(0,\cdot) + \int_0^t \ell(t-s)F(\cdot,u(s,\cdot))\mathrm{d}s$$

For any $\phi \geq \psi$ in $[0, M]_{\mathcal{C}}$, let $w(t, x) = u(t, x; \phi) - u(t, x; \psi)$. It then follows that

$$0 \le w(t, \cdot) \le \ell(t)(\phi - \psi) + \int_0^t \ell(t - s)Aw(s, \cdot)ds, \quad \forall t \ge 0.$$

Since $Z(t) = e^{At}\ell(t)(\phi - \psi)$ is the unique solution of the integral equation

$$Z(t) = \ell(t)(\phi - \psi) + \int_0^t \ell(t - s)AZ(s)ds,$$

the comparison principle implies that

$$0 \le u(t, x; \phi) - u(t, x; \psi) \le e^{At} [\ell(t)(\phi - \psi)](x), \quad \forall t \ge 0, x \in \mathbb{R}.$$

Let $[a, b] \subset [0, \infty)$ be a given compact interval. By the continuity of $\ell(t)\phi$ at $\phi = 0$ uniform for $t \in [a, b]$, it follows that for any $\epsilon > 0$ and K > 0, there are $\delta > 0$ and H > 0 such that

$$u_i(t, x; \phi) - u_i(t, x; \psi) < \epsilon, \quad \forall t \in [a, b], \ x \in [-K, K], \ i = 1, 2,$$

provided that $\phi_i(x) - \psi_i(x) < \delta, \forall x \in [-H, H], i = 1, 2$. For any $\phi, \psi \in [0, M]_{\mathcal{C}}$, let $\bar{\varphi}(x) = \max\{\phi(x), \psi(x)\}$ and $\underline{\varphi}(x) = \min\{\phi(x), \psi(x)\}$. Then we have

$$|\phi_i(x) - \psi_i(x)| = \bar{\varphi}_i(x) - \underline{\varphi}_i(x), \quad \forall x \in \mathbb{R}, \, i = 1, 2.$$

By the comparison principle again, it follows that

$$|u_i(t,x;\phi) - u_i(t,x;\psi)| \le u_i(t,x;\bar{\varphi}) - u_i(t,x;\varphi), \quad \forall t \ge 0, \ x \in \mathbb{R}, \ i = 1, 2,$$

and hence,

$$|u_i(t,x;\phi) - u_i(t,x;\psi)| < \epsilon, \quad \forall t \in [a,b], \ x \in [-K,K], \ i = 1, 2,$$

provided that $|\phi_i(x) - \psi_i(x)| < \delta, \forall x \in [-H, H], i = 1, 2$. Thus, $u(t, \cdot; \phi)$ is continuous in $\phi \in [0, M]_{\mathcal{C}}$ with respect to the compact open topology for t in any compact interval $[a, b] \subset [0, \infty)$. Note that for any $t, t_1 \ge 0, x \in \mathbb{R}$ and $\phi, \psi \in [0, M]_{\mathcal{C}}$, we have

$$u(t,x;\phi) - u(t_1,x;\psi)| \le |u(t,x;\phi) - u(t,x;\psi)| + |u(t,x;\psi) - u(t_1,x;\psi)|.$$

This implies that $u(t, \cdot; \phi)$ is continuous in $(t, \phi) \in [0, \infty) \times [0, M]_{\mathcal{C}}$ with respect to the compact open topology.

References

 Chufen Wu, Dongmei Xiao, Xiao-Qiang Zhao, Spreading speeds of a partially degenerate reaction-diffusion system in a periodic habitat, J. Diff. Eqns., 255(2013),3983-4011.

DEPARTMENT OF MATHEMATICS, FOSHAN UNIVERSITY, FOSHAN 528000, P.R. CHINA, *E-mail address:* chufenwu@126.com

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240,

P.R. CHINA

E-mail address: xiaodm@sjtu.edu.cn

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUND-LAND, ST. JOHN'S, NL A1C 5S7, CANADA

E-mail address: zhao@mun.ca