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Abstract

This paper presents a matching pursuit technique for computing the simplest normal forms of
vector fields. First a simple, explicit recursive formula is derived for general differential equations,
which reduces computation to the minimum. Then a matching pursuit technique is introduced
and applied to the Takens–Bogdanov dynamical singularity. It is shown that unlike other methods
for computing normal forms, the technique using matching pursuit does not need any algebraic
constraints which are required for the existence of the simplest normal form. The efficient method
and matching pursuit technique, which have been implemented using Maple, can be “automatically”
executed on various computer systems. A number of examples are presented to demonstrate the
advantages of the technique. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Normal form theory has been widely used in the study of nonlinear vector
fields in order to simplify the analysis of the original system (Chow et al., 1994;
Cushman and Sanders, 1988; Golubisky and Schaeffer, 1985; Guckenheimer and Holmes,
1993; Nayfeh, 1993). It provides a convenient tool to transform a given system to an
equivalent system, whose dynamical behavior is easier to analyze. (Note that the normal
form used in this paper particularly refers to the Birkhoff normal form.) Consider the
following general system:

ẋ = Jx + f (x) ≡ Jx +
N∑

k=2

f k(x) ≡ v1 +
N∑

k=2

akx
k, (1)

wherex ∈ Rn and f : Rn → Rn, N is an arbitrary positive integer andv1 ≡ Jx

represents the linear term, whereJ is the Jacobian matrix of the system evaluated at the
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the origin0—an equilibrium of the system. TheJ is assumed, without loss of generality,
in Jordan canonical form. Functionf is analytic and can thus be expanded in Taylor series.
f k denotes thekth degree homogeneous vector polynomials ofx. xk denotesxk1

1 xk2
2 . . . xkn

n

satisfyingk1+k2+· · · kn = k for all possible non-negativekj ’s. The coefficientsak can be
(rational or irrational) numbers, or symbolic notations, or a combination of both numbers
and notations. More specifically,J ∈ Qn,n, f k ∈ (Q[ak][x]k)n andf ∈ (Q[a][x])n,
wherea = (a2, a3, . . . , aN).

The basic procedure in the computation of normal forms employs a near-identity nonlin-
ear transformation to obtain a simpler form which is qualitatively equivalent to the original
system. However, the conventional normal form has been found not the simplest form and
further reductions using a similar near-identity nonlinear transformation are possible, lead-
ing to the simplest normal form (e.g. seeAlgaba et al., 1997; Baider and Churchill, 1988;
Baider and Sanders, 1992; Baider, 1989; Chua and Kokubu, 1988a,b; Kokubu et al., 1996;
Ushiki, 1984; Wang, 1993; Wang et al., 2000; Yu, 1999; Yu and Yuan, 2000, 2001;
Yuan and Yu, 2001). The fundamental difference between the computations of the conven-
tional normal form and the simplest normal form can be roughly explained as follows. First
note that computing the coefficients of the normal form and associated nonlinear transfor-
mation needs to solve a set of linear algebraic equations at each order. Since in general
the number of the variables—the coefficients of the nonlinear transformation—is larger
than the number of the algebraic equations, some coefficients of the nonlinear transforma-
tion are not determined. In conventional normal form theory, the coefficients of thekth
order nonlinear transformation are only used to possibly remove thekth order nonlinear
terms of the system and the undeterminedkth order coefficients are set to zero at orderk
(and therefore, the nonlinear transformation is simplified). However, in the computation of
the simplest normal form, the undetermined coefficients can be used to further simplify the
normal form. They are not set to zero but carried over to higher order equations so that they
may be used to eliminate nonlinear terms in higher order normal forms. In other words, the
kth order coefficients are not only used to simplify thekth order terms of the system, but are
also used to eliminate higher order nonlinear terms. This is the key idea of the simplest nor-
mal form theory. At each order, the simplest normal form computation keeps the minimum
number of terms retained in the final form, which cannot be further reduced by any other
near-identity nonlinear transformations. In addition, in this paper a recursive algorithm is
formulated for efficient computation. The formula is applicable for arbitrary dynamical
singularity, and is employed to solve the Takens–Bogdanov singularity in this paper.

It has been noticed that the computation of the simplest normal form is much more
complicated than that of the conventional normal form, and thus computer algebra systems
such as Maple, Mathematica, Reduce, etc. must be used (e.g. seeAlgaba et al., 1997;
Yu, 1999; Yu and Yuan, 2000, 2001; Yuan and Yu, 2001). Even with the aid of computer
algebra systems, computational efficiency is still the main concern in the computation
of the simplest normal form. Recently, we have paid attention to developing efficient
methodologies and efficient algorithms for computing the simplest normal form (e.g. see
Yu, 2002; Yu and Yuan, 2003). SinceUshiki (1984)introduced the method of infinitesimal
deformation in 1984 to study the simplest normal form of vector fields, many researchers
have applied Lie algebra to consider the computation of the simplest normal form.
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However, only very few singularities have been investigated so far. Hopf and generalized
Hopf bifurcations were completely solved (e.g. seeBaider and Churchill, 1988; Yu, 1999),
and explicit formulas as well as “automatic” Maple programs were developed
(Yu, 1999). The 1:2 resonant case (double Hopf) was also considered in detail
(Sanders and van der Meer, 1990; Yuan and Yu, 2002). The main attention, however, has
been concentrated on the Takens–Bogdanov dynamical singularity (an algebraic double but
geometric simple zero eigenvalue) (Baider and Sanders, 1992; Chen and Della Dora, 2000;
Chua and Kokubu,1988a,b; Kokubu et al., 1996; Ushiki, 1984; Wang et al., 2000; Yuan
and Yu, 2001). For this case, the Jacobian matrix given inEq. (1) may be assumed to
include a double zero eigenvalue, given in the form:

J = diag

[[
0 1
0 0

]
α1α2 · · · αp

[
αp+1 ω1
−ω1 αp+1

] [
αp+2 ω2
−ω2 αp+2

]
. . .

[
αp+q ωq

−ωq αp+q

]]
, (2)

whereα j < 0, j = 1, 2, . . . , p + q; ωk > 0, k = 1, 2, . . . , q, and 2+ p + 2q = n,
p, q, α j andωk are given fixed numbers. Note that for most physical systems, the unstable
manifold is assumed null. Then by normal form theory, the conventional normal form of
system(1) is of the form:

ẏ1 = y2,

ẏ2 =
n∑

j =2

a2 j 0y j
1 + a2( j −1)1y j −1

1 y2, (3)

wherea2 j k ’s are explicitly expressed in terms of the derivatives of the original functionf

evaluated atx = 0.
Baider and Sanders (1992)gave a detailed study for the Takens–Bogdanov dynamical

singularity and classified the normal forms into three cases according to the relation
betweenµ and ν: (I) µ < 2ν, (II) µ > 2ν and (III) µ = 2ν, where theµ and ν

are defined by thea coefficients of system(3): a220 = a230 = · · · = a2µ0 = 0,
but a(2µ+1)0 �= 0, anda211 = a221 = · · · = a2(ν−1)1 = 0, but a2ν1 �= 0. They
provided a fair detailed analysis on the first two cases and obtained the “forms” of
the simplest normal form for most of the sub-cases (Baider and Sanders, 1992). Later,
Kokubu et al. (1996)and Wang et al. (2000)considered case (III) and also obtained the
“form” of the simplest normal form. Recently,Wang et al. (2001)investigated a special
sub-case of case (I). However, some special sub-cases are still unsolved. Moreover, even
for a classified case, certain non-algebraic number conditions must be satisfied in order
for the algebraic equations to be solvable (e.g. seeWang et al., 2000; Yu and Yuan, 2000;
Yuan and Yu, 2001). Unfortunately, such non-algebraic number conditions cannot be
known before determining the “form” of the simplest normal form. Therefore, regardless
of the methods used, there always exist unsolvable special cases if certain non-algebraic
number conditions are not assumed appropriately. Otherwise, one must specify the non-
algebraic number conditions case by case in the process of computing the simplest
normal form. (It will be seen more clearly inSection 5.) When the non-algebraic number
conditions are violated, the commonly developed computer programs such as those given
in Li et al. (2001)andYuan and Yu (2001)fail to obtain the simplest normal form, since a
“zero division” problem occurs when the programs are executed up to such an order.
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A novel approach called matching pursuit technique has been developed to solve this
difficulty. Here, the “matching” means that for any given vector fields, the algorithm can
match a “form” of the simplest normal form to a special non-algebraic number condition,
and the “pursuit” means that the algorithm (program) has been designed to automatically
search the right “matching” between the simplest normal form and the non-algebraic
number conditions. Symbolic programs are coded using Maple, which can be used to
“automatically” compute the simplest normal form of any given vector fields associated
with the Takens–Bogdanov singularity.

Before we describe the matching pursuit technique, we present an efficient approach
for computing the simplest normal form in the next section.Section 3deals with the
computation of the simplest normal form for the Takens–Bogdanov dynamical singularity.
The matching pursuit technique is discussed in detail inSection 4, and the algorithm is
also outlined in this section. Various examples are shown inSection 5to demonstrate the
advantage of the matching pursuit technique, and conclusions are given inSection 6.

2. An efficient approach for computing the simplest normal form

Consider the general system(1). The basic idea of normal form theory is to find a near-
identity nonlinear transformation, given by

x = y + h(y) ≡ y +
N∑

k=2

hk(y) ≡ y +
N∑

k=2

hky
k (4)

such that the resulting system

ẏ = Jy + g(y) ≡ Jy +
N∑

k=2

gk(y) ≡ Jy +
N∑

k=2

gky
k (5)

becomes as simple as possible. Herehk(y) ∈ (Q[hk][y]k)n andgk(y) ∈ (Q[gk][y]k)n

denote the generalkth degree homogeneous vector polynomials ofy with the coefficients
hk andgk to be determined.

To apply normal form theory, we define the linear vector spaceHk which consists of
the kth degree homogeneous vector polynomialsfk(x). Further define the homological
operatorLk, induced by the linear vectorv1, as

Lk : Hk �→ Hk

Uk ∈ Hk �→ Ln(Uk) = [Uk, v1] ∈ Hk,
(6)

where the operator[Uk, v1] is called the Lie bracket, defined by

[Uk, v1] = DUk · v1 − Dv1 · Uk, (7)

whereD is a Frech´et differential operator, andDv1 = J.
Next, we define the spaceRk as the range ofLk, andKk as the complementary space

of Rk. Thus,

Hk = Rk ⊕ Kk, (8)
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and we can then choose the vector space bases forRk and Kk. Consequently, a
homogeneous vector polynomialfk(x) ∈ Hk can be split into two parts: one is spanned
by the vector space basis ofRk and the other by that ofKk.

By applying Takens normal form theory (Takens, 1974), one can find thekth order
normal formgk(y), while the part belonging toRk can be removed by appropriately
choosing the coefficients of the nonlinear transformation,hk(y). The “form” of the
normal formgk(y) depends upon the vector space basis of the complementary space
Kk, which is determined by the linear vectorv1. We may apply the matrix method
(Guckenheimer and Holmes, 1993) to find the vector space basis ofRk and then determine
the basis of the complementary spaceKk. Once the vector space basis ofKk is chosen, the
form of gk(y) can be determined. The idea of further reduction of the conventional normal
form is to find an appropriatehk(y) such that some coefficients ofgk(y) can be eliminated,
leading to the simplest normal form.

Once the “form” of the normal form is determined, in order to find the explicit
expression of the conventional normal form or the simplest normal form, in general one
needs to useEqs. (1)and(4) to find a set of algebraic equations at each order. Suppose
the normal form and associated nonlinear transformation have been obtained up to(k − 1)

order, we want to find thekth order normal form. To do this, usually one may assume a
general form for thekth order nonlinear transformation and substitute it back to the original
system(1). Then with the aid of the obtained normal form one can derive thekth order
algebraic equations by balancing the coefficients of the homogeneous polynomial terms.
From this way, the solution procedure generates the expressions which contain not only
lower order terms, but also higher order terms. This dramatically increases the time and
space complexity of the computation. Therefore, a crucial step in the computation of the
simplest normal form is to derive thekth order algebraic equations as simply as possible,
i.e. only thekth order nonlinear terms should be calculated.

The following theorem gives an efficient recursive formula for computing thekth
order algebraic equations, which can be used to determine thekth order normal form and
associated nonlinear transformation for any kind of singularity.

Theorem 1. The recursive formula for computing the kth order algebraic equations is
given by

gk = f k + [hk, v1] +
k−1∑
i=2

{[hk−i+1,f i ] + Dhi (f k−i+1 − gk−i+1)}

+
[ k

2 ]∑
m=2

k−m∑
i=m

Dmf i

∑
q1l1+q2l2+···+qpl p=k−(i−m)

2≤l p<l p−1<···l1≤(k−(i−m))/m

h
q1
l1

h
q2
l2

· · · hqp
l p

q1!q2! · · · qp! , (9)

where k = 2, 3, . . . , and f k, hk and gk are the kth degree homogeneous vector
polynomials ofy (wherey has been dropped for simplicity).

Notes. The notationDmf i denotes themth order terms of the Taylor expansion of
f i (y + h(y)) abouty. More precisely,

Dmf i (y + h) = D(D(. . . D((Df i )hl1)hl2) · · ·hlm−1)hlm, (10)
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where each differential operatorD affects only functionf i , nothl j (i.e.hl j is treated as a
constant vector in the process of the differentiation), and thusm ≤ i . At each level of the
differentiation, the Frech´et derivative operator,D, results in a matrix, which is multiplied
with a vector to generate another vector, and then to another level of Frech´et derivative,
and so on.

The proof ofTheorem 1can follow a similar proof given byYu and Yuan (2003)and
thus only the main steps are outlined below: first differentiateEq. (4)and then substitute
Eqs. (1)and(5) into the resulting equation, and then applyEq. (4)again and finally employ
Taylor expansion abouty to obtain

∞∑
i=2

gi (y) =
∞∑

i=2

f i (y) +
∞∑

i=2

[hi (y), v1(y)] +
∞∑

i=2

∞∑
j =2

Dh j (y){f i (y) − gi (y)}

+
∞∑

i=2

∞∑
j =2

{Df i (y)h j (y) − Dh j (y)f i (y)} + T f , (11)

where

T f =
∞∑

i=2

∞∑
j =k

1

k! Dkf j (y)h j (y). (12)

It is easy to find the formulas for the 2nd, 3rd and 4th order equations as follows:

g2 = f 2 + [h2, v1],
g3 = f 3 + [h3, v1] + [h2,f 2] + Dh2(f 2 − g2),

g4 = f 4 + [h4, v1] + [h3,f 2] + [h2,f 3]
+ Dh2(f 3 − g3) + Dh3(f 2 − g2) + 1

2 D2f 2h
2
2. (13)

For k ≥ 5, one needs to carefully considerT f and separate thekth order terms, which
finally leads toEq. (9). Note thatgk ∈ Q(a2, a3, . . . , ak,h2,h3, . . . ,hk).

3. The simplest normal form for the Takens–Bogdanov dynamical singularity

In this section, we consider the Takens–Bogdanov dynamical singularity and derive the
general formula for computing the simplest normal form. For simplicity, we may choose
the system described on a 2-dimensional center manifold, given by the equations:

ẋ1 = x2 + f1(x1, x2),

ẋ2 = f2(x1, x2),
(14)

where f1, f2 ∈ C∞, which vanish, together with their first derivatives, at the origin.
Note that if the system is not given in the 2-dimensional center manifold, but in the form
of Eq. (1), one may first apply center manifold theory or normal form theory to obtain
either the 2-dimensional center manifold(14)or the conventional normal form(3). A more
sophisticated approach is to directly compute the simplest normal form from the original
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system(1). We will not discuss such an approach here, but the idea of the method can be
found inYu (2003).

The vector field of system(14)can be written as

v = (x2 + f1(x1, x2))∂x1 + f2(x1, x2)∂x2, (15)

and the homological operator is defined inEq. (6), where the linear partv1 now becomes
v1 = (x2, 0)T .

To obtain the explicit formulas, we may find the vector space basis:

{xk−1
1 x2∂x1, . . . , xk

2∂x1,−xk
1∂x1 + kxk−1

1 x2∂x2, xk−2
1 x2

2∂x2, . . . , xk
2∂x2} (16)

for Rk, and that:

{x1xk−1
2 ∂x1 + xk

2∂x2, xk
2∂x2} (17)

for Kk. However, we may use a more convenient vector space basis for the complementary
space toRk, denoted byCk which is spanned by

{xk
1∂x2, xk−1

1 x2∂x2}. (18)

Thus thekth order conventional normal form,gk(y), can be assumed in the form of

gk(y) =
(

0
g2k0yk

1 + g2(k−1)1yk−1
1 y2

)
, (19)

whereg2k0 andg2(k−1)1 are two coefficients to be determined. For the conventional normal
form, these two coefficients are generally non-zero and retained in the normal form. In the
further reduction of the conventional normal form leading to the simplest normal form, we
try to use the coefficients of nonlinear transformation to eliminate as many as possible of
theg coefficients.

Now we shall use the formulas given in the previous section and the idea stated above to
compute the simplest normal form for the Takens–Bogdanov dynamical singularity. First,
let the general forms off k andhk be given respectively by

f k(y) =
(

a1k0yk
1 + a1(k−1)1yk−1

1 y2 + · · · + a11(k−1)y1yk−1
2 + a10kyk

2

a2k0yk
1 + a2(k−1)1yk−1

1 y2 + · · · + a21(k−1)y1yk−1
2 + a20kyk

2

)
, (20)

and

hk(y) =
(

h1k0yk
1 + h1(k−1)1yk−1

1 y2 + · · · + h11(k−1)y1yk−1
2 + h10kyk

2

h2k0yk
1 + h2(k−1)1yk−1

1 y2 + · · · + h21(k−1)y1yk−1
2 + h20kyk

2

)
. (21)

Then fork = 2, applying the formulag2 = f 2 + [h2, v1] yields

g220 = a220, g211 = a211+ 2a120,

h120 = 1
2(a111+ a202), h111 = h202 + a102,

h220 = −a120, h211 = a202,

(22)

which indicates that none of the two 2nd orderg coefficients can be eliminated. In other
words, the 2nd order normal form cannot be simplified. It is also noted that the coefficients
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h102 (which does not appear in the equations) andh202 are undetermined and may thus be
used in high order equations to remove normal form coefficientsg2k0 andg2(k−1)1.

Next considerk = 3. Similarly we can apply the formulag3 = f 3 + [h3, v1] +
[h2,f 2] + Dh2(f 2 − g2) to obtain eight algebraic equations. It is noted that six of the
eight equations, which do not involve the two coefficientsg230 andg221, can be used to
determine six of the eight 3rd orderh coefficients:

h230 = −A130+ a220h202,

h221 = 1
2(A212− 4a120h202+ 2a220h102),

h212 = a203+ 2a202h202 + a211h102,

h130 = 1
3(A121− a211h202 − 2a220h102) + h221,

h121 = 1
2 [ A112+ 2a111h202 − 2(a120+ a211)h102] + h212,

h112 = a103+ 2a102h202 + a111h102 + h203,

(23)

whereAi jk are known coefficients related to the original system.
The remaining two equations, which may be calledkeyequations and can be used to

determine the normal form coefficientsg230 andg221, are given as follows:

g230− a230− a111a220+ a120a211 = 0,

g221− a221− 3a220h202+ 3a130− 5a102a220

+ 7a120a202− 1
2(a111+ a202) = 0.

(24)

The first equation of(24) indicates thatg230 must be retained in the normal form, given
by

g230 = a230+ a111a220− a120a211. (25)

On the other hand, the second equation of(24)suggests that one may set

g221 = 0, (26)

under the conditiona220 �= 0, and then the 2nd order coefficienth202 can be used to solve
the equation, uniquely determined as

h202 = − 1

3a220

[
a221− 3a130+ 5a102a220− 7a120a202+ 1

2
(a111+ a202)

]
. (27)

It is observed from the above procedure that the coefficienth202which is not determined
in the 2nd order equation has been used to eliminate the 3rd order conventional normal
form coefficientg221. This clearly shows the basic idea of the simplest normal form
computation:lower order nonlinear transformation coefficients are used to eliminate
higher order normal form coefficients.

However, it is noted in the 3rd order equations that the 2nd order coefficienth102 is not
determined, and in addition, two 3rd order coefficientsh103 andh203 are undetermined. It
can be shown thath102 will be used in the 4th order equation to remove the normal form
coefficientg231 under the conditiona211+ 2a120 �= 0. Further, the coefficienth203 will be
used to eliminate the 5th order normal form coefficientg241, and so on.
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For an arbitrarykth order equation, we want to use theh coefficients which are not
determined in lower order equations to eliminate thekth order normal form coefficients
g2k0 andg2(k−1)1. Similarly applyingEq. (9)results in 2k + 2 linear algebraic equations,
among which two equations do not involve thekth orderh coefficients but contain the
two g coefficientsg2k0 andg2(k−)1 as well as some lower orderh coefficients. It can be
shown that the lower orderh coefficients can be used to eliminate either one or both of
the twog coefficients. Under the assumption:a220(a211+ 2a120) �= 0, the general rule for
choosing the nonlinear transformation coefficientsh10k andh20k to eliminate the normal
form coefficientsg2k0 andg2(k−1)1 are given as follows (for proof seeYu and Yuan, 2003):

For k = 3, h202 g221 = 0,

For k = 3m + 1, h102m g2(k−1)1 = 0,

For k = 3m + 2, h20(2m+1) g2(k−1)1 = 0,

For k = 3m + 3, h20(2m+2) g2(k−1)1 = 0,

h10(2m+1) g2k0 = 0,

(28)

where m≥ 1. The meaning of notation “ ” means “imply”, for example,
h202 g221 = 0 indicates thatg221 can be set zero by appropriately choosing the
coefficienth202.

Once the twokeyequations are solved, the remaining 2k equations can be solved using
the 2k h coefficients as follows:

−h2k0 = A1k0 + α2k0h20(k−1) + β2k0h10(k−1),

(k − j )h2(k− j ) j = A2(k− j −1)( j +1) + α2(k− j ) j h20(k−1)

+ β2(k− j ) j h10(k−1),

(k − j + 1)h1(k− j +1)( j −1) − h2(k− j ) j = A1(k− j ) j + α1(k− j +1)( j −1)h20(k−1)

+ β1(k− j +1)( j −1)h10(k−1),

h11(k−1) − h20k = A10k + α11(k−1)h20(k−1) + β11(k−1)h10(k−1),

(29)

where j = 1, 2, . . . , k − 1, andAi jk are known coefficients. Note that the first and the last
equations of(29) are decoupled from the other(2k − 2) equations. The first equation can
be used to solveh2k0, while the last equation may be used to determineh20k.

Summarizing the above results yields the following theorem.

Theorem 2. The generic simplest normal form of system(14) for Takens–Bogdanov
dynamical singularity up to an arbitrary order is given by

u̇1 = u2,

u̇2 = a220u
2
1 + (a211+ 2a120)u1u2 + g230u

3
1

+
m∑

j =1

(g2(3 j +1)0 + g2(3 j +2)0u1)u
3 j +1
1 , (30)

if a220(a211+ 2a120) �= 0, where the coefficients g2k0’s are expressed explicitly in terms of
the coefficients ai jk ’s of the original system(14).
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Notes. The simplest normal form given in the above theorem is for a general system
described on a 2-dimensional center manifold, given byEq. (14). However, in many cases
the original system is given in the conventional normal form(3) in which only a2k0 and
a2(k−1)1 are non-zero. This is a particular case of the general system(14). In this particular
case, the condition required for the generic simplest normal form reduced toa220a211 �= 0,
as expected (e.g. seeYuan and Yu, 2001).

It should be pointed out that the basic rule given inEq. (28) is the same regardless
of whether the general system(14) or the particular system(3) is used. This can be
easily shown by using conventional normal form theory to transform system(14) into
system(3) with a nonlinear transformation. In fact, we can find the following nonlinear
transformation:

x1 = y1 + 1
2(a111+ a202)y2

1 + a102y1y2

+ 1
6[a212+ 2a121+ a2

111+ a202(3a111+ 2a202) − a102(a211+ 4a120)]y3
1

+ 1
2[a112+ a203+ a102(a111+ 2a202)]y2

1y2 + a103y1y2
2 + · · ·

x2 = y2 − a120y2
1 + a202y1y2 − (a130+ a120a202− a102a220)y3

1

+ 1
2(a212+ 2a2

202+ a102a211)y2
1y2 + a203y1y2

2 + · · ·

(31)

to transform system(14) into the following conventional normal form:

ẏ1 = y2,

ẏ2 = ã220y
2
1 + ã211y1y2 + ã230y

3
1 + ã221y

2
1y2 + ã240y

4
1 + ã231y

3
1y2 + · · · (32)

which is in the form of(3), whereãi j k ’s are explicitly given in terms ofai jk ’ s. Thus the
generic condition,a220(a211+ 2a120) �= 0, required for system(14)becomes̃a220ã211 �= 0
for the new system(32), as expected. If system(14)is given in the form of the conventional
normal form(3), thenã2k0 = a2k0 andã2(k−1)1 = a2(k−1)1. Therefore, the degenerate cases
discussed on the basis of the conventional normal form(3) may be unlikely to occur for
the general system(14)since the coefficients̃a230, ã221, ã240, etc. are generally not zero if
the function f1 given inEq. (14)is non-zero.

The above discussion is for the generic case. The same argument can be applied to non-
generic cases, and thus the conclusion is true for any case. That is, considering systems
(3) and(14) equivalent and gives the same rule for eliminating thekth order normal form
coefficientsg2k0 andg2(k−1)1 by using theh nonlinear transformation coefficients.

4. The matching pursuit technique for computing the simplest normal form

In the previous section we have discussed the computation of the simplest normal
form for the Takens–Bogdanov dynamical singularity and obtained the explicit formulas
for computing the coefficients of the simplest normal form and the associated nonlinear
transformation. However, the results are obtained under the assumption thata220(a211 +
2a120) �= 0 when the system is described by the general equation(14), or a220a211 �= 0 if
the system is given in the conventional normal form(3). As shown in the previous section,
the rule for choosing the nonlinear transformation coefficients to eliminate the two normal
form coefficientsg2k0 andg2(k−1)1 is the same regardless of the type of the original system.
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Therefore, without loss of generality, we will useEq. (3) throughout this section for the
convenience of discussion.

Although since 1984 many researchers studied the simplest normal form of the Takens–
Bogdanov dynamical singularity, the problem is not completely solved. Not only because
few results are obtained for computing the simplest normal form, but also because the
analytical “form” for some special cases are not found. Even suppose one can classify all
sub-cases and find all of the analytical “forms”, there still exists the non-algebraic number
problem (Wang et al., 2000). Roughly speaking, some non-algebraic number conditions
must be satisfied at certain order equations to make the equations solvable. Unfortunately,
such non-algebraic number conditions are not predictable. In other words, unless the
simplest normal form is explicitly computed, it is impossible to find or determine the non-
algebraic number conditions. Therefore, no matter what methods are used, there always
exist unsolvable special cases if certain non-algebraic number conditions are not assumed
appropriately.

The computation approaches recently developed (e.g. seeAlgaba et al., 2001;
Li et al., 2001; Yuan and Yu, 2001) are based on explicit analytical formulas. Thus only
the cases for which the explicit formulas have been obtained are computable. Even for
the limited cases, the non-algebraic number problem is not solved because the obtained
formulas do not take account of this. Therefore, from the computational point of view, a
natural question would arise: can we design a computational approach or an algorithm to
solve the problem completely? More precisely, can we develop a program with the aid of
computer algebra, which can be used to compute the simplest normal form of the Takens–
Bogdanov dynamical singularity for a given general system without requiring any non-
algebraic number conditions or assumptions? Fortunately, the answer isyes. The advantage
for developing such algorithms is obvious: for a given system, one does not need to worry
about what case it might be and one can always find the simplest normal form up to any
desired order. The matching pursuit technique has been developed and “automatic” Maple
programs have been coded. It has been shown that this approach is indeed very powerful,
and many systems have been tested to give correct results. Unlike many other programs
which depend upon explicit formulas, this algorithm does not need to specify cases in the
input file and is very convenient for users. Therefore, this matching pursuit technique has
completely solved the problem of computing the simplest normal form for the Takens–
Bogdanov dynamical singularity.

4.1. The matching pursuit technique

Now we turn to discuss the matching pursuit technique. The basic idea of the technique
is based on the following observation: both the non-algebraic number problem and the
necessity for Baider and Sanders to classify the three cases are due to the same cause.
Recall that the computation of thekth order simplest normal form of the Takens–
Bogdanov dynamical singularity (described in the previous section) is to use the lower
order h coefficients to eliminate the twokth orderg coefficients, (g2k0 and g2(k−1)1).
Further, note that there are only twokeyequations at each order which contain the twog

coefficients. So the further reduction leading to the simplest normal form can be achieved
by using theh coefficients involved in the twokey equations to remove as many of
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the kth orderg coefficients as possible. In the generic case, under the basic assumption
a220(a211 + 2a120) �= 0 (with no extra non-algebraic number conditions), the rule of
choosing theh coefficients is given inEq. (28). It is shown that starting from the 3rd
order at leastg2(k−1)1 can be removed, and for orderk = 3m + 3, both the twokth order
g coefficients can be eliminated. The basic assumption becomes clear in the following
discussion. When we determine oneh coefficient from akeyequation, we actually solve a
linear algebraic equation for theh coefficient. It is thus obvious that the linear equation is
solvable as long as the coefficient of theh variable is non-zero, which generates the non-
algebraic number conditions. For example, consider the second equation of(24), which
containsg221 and−3a220h202 terms. Hence, ifa220 �= 0, we can setg221 = 0 and then
uniquely determineh202. That is why we need to assumea220 �= 0 for the generic case.
The second conditiona211+2a120 �= 0 comes from one of the 4th orderkeyequations. For
simplicity, instead ofEq. (14), we useEq. (3) in the following analysis. Then the second
condition becomesa211 �= 0 and thekeyequation is of the form:

g231− a231+ 4

3
a220a211h102 + a221

9a220
(9a230+ a2

211) = 0, (33)

which clearly shows that as long as the coefficient ofh102 is non-zero, i.e.a220a211 �= 0,
we can setg231 = 0 and uniquely determineh102, as the rule given inEq. (28)shows.

Further it can be shown that for the generic case the only condition required is
a220a211 �= 0 (remember that we are now usingEq. (3)) no other non-algebraic number
conditions are required. In other words, under the assumptiona220a211 �= 0, all theh
coefficients can be uniquely determined to remove theg coefficients by following the
rule given inEq. (28). However, this is not always true, i.e. when the basic condition,
a220a211 �= 0, does not hold, some extra non-algebraic number conditions must be satisfied.
For example, considera220 = 0, buta230 �= 0 anda211 �= 0. Here,µ = 2 andν = 1, so
it belongs to case (III)µ = 2ν. Then the rule given inEq. (28)cannot be followed. The
2nd and 3rd order equations show thatg220 = 0, g211 = a211, g230 = a230, g211 = a211.
Compared withEq. (33), thiskeyequation at the 4th order becomes

g231− a231+ 1
3(9a230+ a2

211)h202 = 0 (34)

which indicates that if 9a230+ a2
211 �= 0, then one can setg231 = 0 to uniquely determine

h202 (note that here it ish202, not h102 like the generic case). Further, one of the 5th order
keyequations is found to be

g241− a241+ 5

4
a211a230h102 + a231(18a240+ 5a211a221)

2(9a230+ a2
211)

= 0 (35)

which implies that in order to setg241 = 0 by choosingh102, one needsa211a230 �= 0,
in addition to 9a230 + a2

211 �= 0. Therefore, this case (whena220 = 0) not only requires
the basic assumptiona211a230 �= 0, but it also needs the non-algebraic number condition
9a230 + a2

211 �= 0 at the 4th order. In fact, it can be shown using the program developed
by Yuan and Yu (2001)that more non-algebraic number conditions need to be satisfied at
higher orders (see Example 4 in the next section).
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In general, for thekth order equation we may find a set of algebraic equations, written
in the matrix form:



0 0 | −1
k 0 | −1

k-1 0 | −1
. . .

... | . . .

1 0 | −1
− − − − − | − − − − − −
0 0 0 0 0 | 0 0 0 0 0 0

0 | k
0 | k-1
0 | k-2
... | . . .

0 | 1 0







h1k0
h1(k−1)1
h1(k−2)2

...

h10k

− − −−
h2k0

h2(k−1)1
h2(k−2)2
h2(k−3)3

...

h20k




= w, (36)

where the 2(k + 1)-dimensional vectorw contains the undeterminedh coefficients, one or
two of them are solved at the current order, while others will be determined in higher order
equations. It is seen fromEq. (36)that the coefficienth2k0 can be solved first from the
first equation. Note that the coefficienth10k does not appear in the equations, whileh20k

is only involved in the(k + 1)th equation and can thus be chosen arbitrarily. The twokey
equations are the(k + 2)th and(k + 3)th equations which contain the two coefficientsg2k0
andb2(k−1)1. The remaining(2k − 2) equations can be used to determine the remaining
(2k − 2) h coefficients:h1k0, h1(k−1)1, . . . , h12(k−2) andh2(k−1)1, h2(k−2)2, . . . , h21(k−1).

Summarizing the above discussions gives the following theorem.

Theorem 3. The rule for choosing the nonlinear transformation coefficients, h, to
eliminate the normal form coefficients, g, is determined by the twokey equations. The
solvable non-algebraic number conditions are determined by the coefficients of the h
variables which are involved in the twokeyequations.

It should be noted that the conditions determined by the coefficients of theh
variables include not only the non-algebraic number conditions, but also the simple
conditions (in terms ofa2k0 and a2(k−1)1) for classifying the three cases due to
Baider and Sanders (1992). So strictly speaking, there is no difference between the simple
classifying conditions and the non-algebraic number conditions, and thus it is not necessary
to consider the non-algebraic number conditions separately. Since, as discussed before,
the non-algebraic number conditions are not predictable, the classification to the three
cases (Baider and Sanders, 1992) is not enough and there should exist infinite sub-cases.
However, it becomes quite simple when considering the problem from the computational
point of view. For a given system, suppose the vector field of the system is explicitly given,
then at each order one only needs to investigate theh coefficients involved in the two
keyequations. It is straightforward to use theh coefficients to possibly remove the twog
coefficientsg2k0 andg2(k−1)1.

Now the only remaining problem is: when a degenerate case occurs (i.e. when some
non-algebraic number condition is not satisfied), someh coefficient is not present and will
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appear in high order equations, how can we determine when thish coefficient becomes
useless? In general, if one of theh coefficients is not used at the current order, it may be
used later in higher order equations. However, thish coefficient may become nonlinear as
the order of the equations increases. Here we assume to obey the same rule in computing
normal forms: At each order, we only solvelinear algebraic equations with respect to the
h variables. Therefore, one can establish a rule for discarding anh coefficient: once anh
coefficient appears in higher order equations and becomes at least quadratic, set it to zero.

By summarizing the above discussion, we can establish the rules for using the matching
pursuit technique to find thekth order simplest normal form for the Takens–Bogdanov
dynamical singularity as follows.

(1) First solveh2k0 from the first equation given inEq. (36)since the result may contain
the lower orderh coefficients which may be used at the current order.

(2) Solve the(k + 2)th and(k + 3)th equations of(36) usingh coefficients linearly to
possibly removeg2k0 andg2(k−1)1.

(3) If a lower orderh coefficient is not present in lower order equations but appears in
higher order equations due to a degenerate condition (i.e. a non-algebraic number
condition is not satisfied), then carry it over until either (i) it can be used to linearly
solve a higher order equation, or (ii) it can be set to zero if it becomes nonlinear.

Note that the above rules are applicable for a given explicitly described system. For a
system not described numerically but in symbolic notations, it is usually assumed that
all the unknown non-algebraic number conditions are satisfied. That is, one may assume
that any algebraic expressions on denominators are non-zero so that the “zero division”
problem is avoided.

4.2. Outline of the matching pursuit technique algorithm

It is straightforward to follow the discussion and the established rules given above to
design an algorithm using computer algebra systems. In fact, Maple has been used to
develop programs for computing the simplest normal form of a given vector field associated
with the Takens–Bogdanov dynamical singularity. They can be conveniently executed on
various computer systems and only require a minimum preparation for an input from a user.

Input: The input gives an index,CASE, for classifying irrational numbers, the order, Ord,
for the computation of the simplest normal form, and the original differential equations
given in homogeneous polynomials. The reason for definingCASEto identify irrational
numbers is that more careful treatment should be taken when arithmetic operations
involve irrational numbers. In particular, rationalization must be performed whenever an
expression involves irrational numbers on its denominator. Other steps are outlined below.

(A) For a sub-orderk(2 ≤ k ≤ Ord), compute the algebraic equations using the efficient
method.

(a) Build the procedures for computing the Lie bracket, vector multiplication and
equation solver.

(b) Separate the original different equations to obtain homogeneous vector
polynomials. Set general forms for thekth order nonlinear transformation and
normal form.
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(c) Use the recursive formula(9) to find thekth order equation which only contains
thekth order terms. The variable COF is used to transfer non-definite multiple
loops to single loops so the searching scheme can be handled by the regular
program routines.

(d) Get the coefficients of the monomials from thekth order equation, which
consists of thekth order algebraic equations.

(B) Call the subroutine for computing the simplest normal form of the Takens–Bogdanov
dynamical singularity. For a sub-orderk(2 ≤ k ≤ Ord), recursively calculate
the coefficients of the simplest normal form and the corresponding nonlinear
transformation.

(a) Build several procedures for computing the index and solving the twokey
equations.Index1 andIndex2 are used to record the relation betweenh10p and
h20q(p, q ≤ Ord) as well as the number ofh10p’s andh20q’s which have been
used.

(b) Set the two key coefficientsh20k = s2k−3 and h10k = s2k−2 for a
consistent identifying process.Control no is a counter to record the number of
s coefficients which have been used.

(c) Solve the equation for the initial order (k = 2), and find the 2nd order normal
form coefficients,g21 andg22. (Note: The notationsg2k0 andg2(k−1)1 used in
the text are replaced bygk1 and gk2 respectively, in the Maple program for
convenience.)

(d) For a sub-order 3≤ k ≤ Ord, get the coefficients ofsm’s from the expressions
cof2k0 andcof2(k−1)1.

(e) Classify the cases based on the information obtained in (d), solve thes
coefficients and determine whether or not to carry the unsolveds coefficients
to higher order equations.

(f) Determine the rule to eliminategk1 andgk2.
(g) Call the procedure to solve thekth order non-key nonlinear transformation

coefficients,hi jk .

Output: The simplest normal form is expressed in polynomials which contain minimum
terms with coefficients given in rational functions of the original coefficients ofaik ’s.

The Maple source code and a sample input can be downloaded from the website:
http://pyu1.apmaths.uwo.ca/∼pyu/pub/preprints. (The file names arematchingmapleand
matchinginput.)

5. Examples

In this section we shall present several examples for the computation of the simplest
normal form using the matching pursuit technique and the Maple programs developed in
this paper. The first example shows the computation starting from originaln-dimensional
differential equation, while others are based on a general conventional normal form. In par-
ticular, it is shown that unlike other theory or methods which require certain non-algebraic
number conditions, our matching pursuit technique and the Maple program do not have any

http://pyu1.apmaths.uwo.ca/~pyu/pub/preprints
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limitations. In principle, the Maple program can be used to compute the simplest normal
form of the Takens–Bogdanov dynamical singularity up to any order. However, in practice,
due to limitations of computer memory, it always stops at a certain order. The results given
in this paper are up to the 12th order. It should be pointed out that our program computes
not only the simplest normal form but also the associated nonlinear transformation. Also it
is noted that the Maple program can treat both numerical (rational or irrational) numbers
and symbolic notations. The following examples use numerical numbers (but still handle
them symbolically) for the convenience of presenting higher order results.

In the following computations, if the original system is described byEq. (1)we shall
first use normal form theory to find the conventional normal form given in form(3), and
then apply the results presented in the previous sections to obtain the simplest normal
form. If the original system is already given in the conventional normal form(3), then the
formulas and programs developed in this paper are directly employed to find the simplest
normal form. Five examples are present in this section.

5.1. Example 1

Consider the following 6-dimensional differential equation, given by

ẋ1 = x2 + x2
1 + 5x2x3x4 − x2

3 + 1
3x3

2,

ẋ2 = 2x2x3 + 3
7x3x5 + 1

2, x2
4 − 11x1x5,

ẋ3 = −2
7x3 + 2

3x2x4 + 1
2x2

5,

ẋ4 = −1
3x4 + 11x1x6 + 7x2

4,

ẋ5 = −5x5 + x6 + x2x3 + 1
3x6x4x5,

ẋ6 = −x5 − 5x6 + 3
5x2

2 + 1
11x1x3.

(37)

The Jacobian of the system evaluated at the equilibriumxi = 0 is in Jordan canonical
form, having a double zero eigenvalue,λ1 = λ2 = 0, two real eigenvalues,λ3 = −2

7
andλ4 = −1

3, and a complex conjugate eigenvalue,λ5,6 = −5 ± i . The conventional
normal form of system(37) can be found by using the Maple program developed by
Bi and Yu (1999)as follows (up to 12th order):

ẏ1 = y2,

ẏ2 = 2y1y2 + 11

26
y3

1y2 − 33

130
y5

1 + 115961

338000
y5

1 y2 + 363

16900
y7

1 − 7381

54925
y6

1y2

+ 1089

21970
y8

1 − 2787053907

45697600
y7

1 y2 + 39599857

2197000
y9

1 + 165961642011

4158481600
y8

1 y2

− 1320167799

114244000
y10

1 + 291338703339460741

417036297600000
y9

1y2 − 2197367304

1160290625
y11

1

− 6117027761700617401

527087542800000
y10

1 y2 − 190417469981733

5406026080000
y12

1

+ 633964920131991951132899

5168469848256000000
y11

1 y2. (38)
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The coefficients given in the above equation can be written in the form ofa2 j 0 and
a2( j −1)1 according to formula(3). By noting thata220 = a230 = a240 = 0, a250 �= 0,
a211 �= 0, we know that this is a non-generic case. According to the notation of
Baider and Sanders (1992), this belongs to case (II)µ > 2ν. For this example,µ = 4,
ν = 1. Executing our Maple program based on the matching pursuit technique yields the
simplest normal form:

u̇1 = u2,

u̇2 = 2u1u2 − 33

130
u5

1 + 1089

8450
u7

1 + 1089

21970
u8

1 + 19730051

1098500
u9

1

− 9304535517

799708000
u10

1 − 276693133299

29703440000
u11

1 − 14527959542023

1351506520000
u12

1 . (39)

5.2. Example 2

In the previous example, although the original system is a generaln-dimensional sys-
tem (n > 2), one first needs to use a method to find the conventional normal form on the
2-dimensional center manifold, and then apply the approach developed in this paper to find
the simplest normal form from the conventional normal form. Note that with the approach
developed in this paper, one does not require the equations to be described on the center
manifold to be given in the conventional normal form. For an example, consider the follow-
ing system with randomly chosen coefficients up to 12th degree homogeneous polynomial:

ẋ1 = x2 + x2
1 + 1

2x1x2 + 2x2
2 + 2x3

1 + 1
7x2

1x2 + 5
3x1x2

2 + 1
2x3

2 + 5x4
1 + 1

3x3
1x2

− 15x2
1x2

2 + 7
3x1x3

2 + 2x4
2 − 2x5

1 + 5x4
1x2 + 1

4x3
1x2

2 + x2
1x3

2 + 7
4x1x4

2 + 20x5
2

+ · · ·
ẋ2 = 3x2

1 + 1
4x1x2 + 5x2

2 + 2
5x3

1 + 3x2
1x2 + 10x1x2

2 + 4
7x3

2 + 4
3x4

1 − 2
3x3

1x2

+ 10x2
1x2

2 + 3x1x3
2 + x4

2 + 7x5
1 − 3

5x4
1x2 + 7x2

1x3
2 + 3

4x1x4
2 + 1

8x5
2

+ · · · (40)

The complete description of the above equation can be found from the input given
in http://pyu1.apmaths.uwo.ca/∼pyu/pub/preprints. (The file name ismatchinginput.)
Executing the Maple program takes only about a few seconds on a PC to obtain the
following simplest normal form:

u̇1 = u2,

u̇2 = 3u2
1 + 9

4
u1u2 + 33

20
u3

1 + 7330723

134400
u3

1u2

+ 27908277

256000
u4

1u2 + 4028573967382003

3612672000000
u6

1u2

− 61168958903742460366387

682795008000000000
u7

1u2 (41)

http://pyu1.apmaths.uwo.ca/~pyu/pub/preprints
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− 2136699101955403817686368261611713

569811028049657856000000000
u9

1u2

− 1264850044225914971746326926326209573613

50143370468369891328000000000000
u10

1 u2.

In the next two examples, the computation of the simplest normal form is based on the
following general conventional normal form, say, up to 12th order:

ẏ1 = y2,

ẏ2 = a220y2
1 + a211y1y2 + a230y3

1 + a221y2
1y2 + · · · + a2120y12

1 + a2111y11
1 y2.

(42)

5.3. Example 3

First considerµ = 1, ν = 2, which, according to the classification, satisfiesµ < 2ν.
This implies thata211 = 0, a220 �= 0, a221 �= 0.Li et al. (2001)have computed the simplest
normal form for this case and shown that the following non-algebraic number condition:

183a230(a230a221− a220a231) + 110a220(a220a241− a240a221) �= 0 (43)

must be satisfied. In fact, we can show that this condition is not required until the 9th order.
Now suppose that condition(43)is satisfied, then one may use either the Maple program

developed byYuan and Yu (2001)or the program developed based on the matching pursuit
technique to find the following explicit expressions for the coefficients of the simplest
normal form (only the non-zero coefficients are listed):

g220 = a220,

g221 = a221,

g231 = a231− a230a221

a220
,

g241 = a241− a240a221

a220
,

g251 = a260−
1330a230a250 + 560a2

240 + 85a230a2
221− 50a220a221a231 − 2268a2

230a240
a220

500a220
,

g261 = a261− 28a241a240 + 35a230a251 + 12a250a231 + 20a221a260 + 4a2
221a231

20a220

− 231a240a230(a230a221 − a231a220) − 5a220a221(4a2
221a230 + 28a2

240 + 47a250a230)

100a3
220

,

.

.

.

(44)

However, if condition(43) is not held, for example, let

a231 = a230a221

a220
+ 110(a220a241− a240a221)

183a230
,

then the Maple program given inYuan and Yu (2001)will experience a “zero division”
problem when it is executed up to the 9th order. The Maple program using the matching
pursuit technique can overcome this difficulty and produce the unique simplest normal
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form. To demonstrate this and avoid massive expressions, we use the following numerical
conventional normal form:

ẏ1 = y2,

ẏ2 = a220y2
1 + a211y1y2 + a230y3

1 + a221y2
1y2 + g(y1, y2),

(45)

where

g(y1, y2) = y4
1 + y3

1 y2 + 2
3 y5

1 + y4
1y2 + 1

2 y6
1 + 1

2 y5
1y2 + 5y7

1 + 2y6
1y2 + 7y8

1

+ 3y7
1y2 + 3

7 y9
1 + 11y8

1y2 + 2
9 y10

1 + 5
9 y9

1y2 + 1
7 y11

1 + 5
11y10

1 y2

+ 3y12
1 + 2

3 y11
1 y2. (46)

We choosea211 = 0, a220 = a230 = 1
2 �= 0, a221 = −73

37, anda240 = a231 = a241 = 1,
which violates condition(43). Executing the Maple program results in the following
simplest normal form:

u̇1 = u2,

u̇2 = 1

2
u2

1 + 1

2
u3

1 + 110

37
u3

1u2 + 183

37
u4

1u2 + 336001

2053500
u6

1 − 52435501

6078360
u6

1u2

+ 3772692223

151959000
u7

1u2 − 35707023869779

1443103970000
u9

1

+ 68381511867548876645498506669

22112830839772146612996000
u9

1u2

+ 75258144273234194651505534919139

7567502109610912396447520000
u10

1 u2. (47)

It should be pointed out that the violation of condition(43) would, in general, yield one
more termu9

1 (marked by a box inEq. (43)) than the simplest normal form obtained
when condition(43) is satisfied. Suppose condition(43) is held. For example, leta231 =
2, a241 = 5, instead ofa231 = a241 = 1, then one can find the second equation of the
simplest normal form given as follows:

u̇2 = 1

2
u2

1 + 1

2
u3

1 + 147

37
u3

1u2 + 331

37
u4

1u2 − 69149

2053500
u6

1 − 533790509

30391800
u6

1u2

+ 1665621781

50653000
u7

1u2 + 158926741092910680991

69236127146865000
u9

1u2

+ 7444055008477339875641

823348539043800000
u10

1 u2. (48)

It is clearly seen fromEqs. (47)and(48)thatEq. (47)has one more term,u9
1, thanEq. (48),

due to the violation of the condition at the 9th order at which anh coefficient does not
appear and thus cannot be used at this order. In general, if some non-algebraic number
condition like the one given inEq. (43)is not satisfied at thekth order, then one more term
than the regular simplest normal form is retained at thekth order normal form.
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Also, it should be noted that by a method such as used byAlgaba et al. (1997),
Chen and Della Dora (2000), Li et al. (2001), Yu (2002)andYuan and Yu (2001), higher
order simplest normal forms may require more non-algebraic number conditions like the
one given byEq. (43). There is no way to find all such non-algebraic number conditions for
the simplest normal form of a system up to an arbitrary order. However, with the matching
pursuit technique and the Maple program, one does not need to worry about these non-
algebraic number conditions, and the simplest normal form can be obtained even when
these unknown non-algebraic number conditions are not satisfied.

5.4. Example 4

We now turn to consider a case:µ = 2, ν = 1 which belongs to case (III)µ = 2ν,
i.e. a220 = 0, a211 �= 0, a230 �= 0. It can be shown that the following algebraic conditions
should be held, which are found using the Maple program given inYuan and Yu (2001):

9a230+ a2
211 �= 0 at 4th order,

62a230+ 3a2
211 �= 0 at 6th order,

315a2
230− 229a230a2

211− 6a4
211 �= 0 at 8th order.

(49)

The condition for the 4th order has been given byAlgaba et al. (2001). We can use the
matching pursuit technique to find the simplest normal forms for the above three cases
when the conditions are violated. Again, using the numerical equation, described in
Eq. (45), here we choosea221 = 1 for convenience. The results for the three cases are
given below.

Case (A). Let a211 = 1, a230 = −1
9 which results in 9a230 + a2

211 = 0. Executing the
Maple program yields the simplest normal form:

u̇1 = u2,

u̇2 = u1u2 − 1

9
u3

1 + u2
1u2 + u4

1 + u3
1u2 + 2

3
u5

1

+ 3621

448
u7

1 − 24939007

376320
u8

1 + 333914934217

541900800
u9

1

− 269347581147289

34139750400
u10

1 + 416637981737123969

5608022999040
u11

1

− 133819136648903746555259

158626936258560000
u12

1 . (50)

Note that the 4th order termu3
1u2 is an extra term retained due to the violation of the first

condition of (49). In other words, if 9a230 + a2
211 �= 0, then this 4th order term can be

removed from the simplest normal form using anh coefficient.
Case (B). Let a211 = 1, a230 = − 3

62, then 62a230 + 3a2
211 = 0. Our matching pursuit

technique program produces the simplest normal form given by

u̇1 = u2,

u̇2 = u1u2 − 3

62
u3

1 + u2
1u2 + u4

1 + 2

3
u5

1 − 14249

5425
u6

1
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− 328918

875
u5

1u2 − 102353455517

59810625
u8

1

− 2111755396570657

382189893750
u9

1 − 32177532310230110717

28893555967500
u10

1

+ 464736490815052588637611013

29579777921728125000
u11

1

− 628486844636952471726823764521

825958414275946875000
u12

1 . (51)

Similarly, if the condition 62a230+ 3a2
211 �= 0 is held, then the 6th order termu5

1u2 can be
removed.

Case (C). Let a211 = 1, a230 = 229+√
44881

630 , which renders 315a2
230 − 229a230a2

211 −
6a4

211 = 0. The simplest normal form for this case is found by using the matching pursuit
technique as

u̇1 = u2,

u̇2 = u1u2 + 229+ √
60001

630
u3

1 + u2
1u2 + u4

1 + 2

3
u5

1 + 43
√

60001− 1790

9450
u6

1

+ 38921872− 138287
√

60001

782775
u7

1 + 290685973
√

60001− 68546927567

328765500
u8

1

+ 3355418332083737− 13698517799633
√

60001

6904075500
u7

1u2

+ 2663452386309233068− 10873082633724827
√

60001

6524351347500
u10

1

+ 436651948790906635720110052517− 1782608491453734639408295583
√

60001

4435977661838451225000
u11

1

+ 7258395195718581514659263443917
√

60001− 1777951073104100318846081480159243

3220519782494715589350000
u12

1 ,

(52)

where an extra termu7
1u2 cannot be eliminated due to the third non-algebraic number

condition of(49)being violated.
It can be seen from this example that the Maple program developed in this paper can

be used to compute the simplest normal form of the systems containing not only rational
coefficients, but also irrational coefficients. In fact, the program can be executed for any
combinations of numerical numbers and symbolic notations.

5.5. Example 5

From the previous examples, we have observed that, in general, the two terms of the
conventional normal form at each order may be eliminated by one, two, or none. Thus one
may expect that no simplest normal forms may have more terms at any order than that
of the conventional normal form. However, this is not always true. Now we shall give an
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example to demonstrate that the general rule is not applicable if the conventional normal
form looks sufficiently “irregular”.

For a more clear investigation, consider the following 15th order conventional normal
form:

ẏ1 = y2,

ẏ2 = y2
1y2 + y4

1 + y3
1 y2 + y4

1y2 + 1
2 y6

1 + 5y7
1 + 3y7

1y2 + 3
7 y9

1 + 2
9 y10

1

− 5
9 y9

1y2 + 1
7 y11

1 + 2
11y10

1 y2 + 3y12
1 + 2

3 y11
1 y2 + 3y13

1 + 7 y12
1 y2

+ 9y14
1 + y13

1 y2 + 5y15
1 + 11 y14

1 y2 (53)

which satisfies

a220 = a211 = a230 = a250 = a251 = a261 = a280 = a281 = 0. (54)

The box notation given inEq. (53)is marked for the comparison with the simplest normal
form obtained below. Note that herea221 �= 0 anda240 �= 0, suggesting that this case may
belong toµ = 3, ν = 2(µ < 2ν). However, since more higher ordera coefficients vanish,
it does not follow the “rule” of the case. Executing our Maple program yields the following
simplest normal form up to 15th order:

u̇1 = u2,

u̇2 = u2
1u2 + u4

1 + u3
1u2 + 1

2
u6

1 − 1

9
u5

1u2 + 5u7
1 + 41

42
u8

1 − u9
1 + 50453

74088
u8

1u2

+ 7963

37044
u10

1 + 3914237

33006204
u10

1 u2 − 448499369

24004512
u12

1 + 82102121

432081216
u13

1

− 45215814840251

634592280924
u14

1 − 56124385596423502097

928799415836861184
u13

1 u2

− 2464725735875010107

25396859026789173
u15

1 . (55)

Comparing the above simplest normal form with the conventional normal form given by
Eq. (53)shows that (paying particular attention to the terms marked by the boxes):

(a) The simplest normal form and conventional normal form have thesamenumber of
terms up to 3rd, 6th, 7th, 8th or 10th order.

(b) The conventional normal form hasone5th order term while the simplest normal form
hasno5th order term.

(c) The conventional normal form hasone6th order term but the simplest normal form
hastwo 6th order terms.

(d) The conventional normal form hasone9th order term but the simplest normal form
hastwo 9th order terms.

(e) The conventional normal form hastwo 10th order terms while the simplest normal
form hasone10th order term.
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(f) From the 11th order on, the simplest normal form resumes the normal simplification
process.

It can be seen from this “irregular” example that the simplest normal form is simpler
than the conventional normal form up to 5th order, while the conventional normal form is
simpler than the simplest normal form up to 9th order. They have same terms up to 6th
order and 10th order. Starting from 11th order terms, the simplification process in finding
the simplest normal form resumes normally, i.e., the simplest normal form simplifies the
conventional normal form at any orderk ≥ 11.

6. Conclusions

A matching pursuit technique has been developed for computing the simplest
normal form of the Takens–Boganov dynamical singularity. It has been shown that this
approach is indeed computationally efficient. From the computational point of view, the
method completely solves the simplest normal form of the Takens–Bogdanov dynamical
singularity. It does not need any non-algebraic number conditions or requirements as other
approaches do. “Automatic” symbolic computation programs written in Maple have been
developed. Examples are presented to show the advantages of the matching pursuit method.
It has been observed from the five examples that in general the process of simplification is
carried out order by order. However, for “irregular” systems like example 5 there may
exist an “upper boundary” order (which is 10 for example 5). When the order of the
simplest normal form is smaller than the boundary, the conventional normal form contains
no fewer terms than the simplest normal form (as we would expect). Although the simplest
normal form is simpler than the conventional normal form for sufficiently high order,
the conventional normal form may actually be simpler than the simplest normal form for
some lower orders. When the order is greater than the boundary, the simplification process
resumes normally, i.e., the simplest normal form simplifies the conventional normal form
at any order after the “boundary”.

It should be pointed out that the five examples presented in this paper for computing
the simplest normal form do not contain perturbation parameters (unfolding). In fact, it
has been noted that no single example has been given to show the real application of the
simplest normal form in bifurcation analysis, since a physical or engineering system always
contains perturbation parameters. Thus, for real applications, the theory and methodology
for computing the simplest normal form with unfolding needs to be developed. Such
simplest normal form for single zero dynamical singularity can be found inYu (2002),
and that for Hopf bifurcation has also been obtained (Yu and Leung, 2003). It is expected
that the matching pursuit technique can be extended to consider the simplest normal form
with perturbation parameters.
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