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Restricted Lie algebras with subexponential growth

David Riley and Hamid Usefi

Dedicated to Professor Donald S. Passman on the occasion of his 65th birthday.

Abstract. Let L be a restricted Lie algebra generated by a finite set X.
We define its growth g(n) to be pdim Wn , where Wn is the space spanned by
all restricted monomials in X of degree at most n. First we deduce from a
theorem of Passman and Petrogradsky that g(n) grows polynomially if and
only if L is virtually nilpotent. Subsequently, we prove that if g(n) grows
subexponentially then the lower central series of L must stabilize. This yields
a gap between polynomial and exponential growth in the class of all residually
nilpotent restricted Lie algebras.

1. Introduction

There is a long history of studying groups and algebras in terms of their growth
functions. A prime result is Gromov’s celebrated theorem ([Gro]), which states
that a finitely generated group has polynomial growth if and only if it is virtually
nilpotent. Grigorchuk showed in ([Gri3]) that the polynomial growth condition
in Gromov’s theorem can be weakened to subradical growth provided the group is
known to be residually a finite p-group. Quite recently, Wilson ([Wil]) general-
ized Grigorchuk’s theorem to the class of all residually soluble groups. Grigorchuk
([Gri1], [Gri2]) also constructed the first known finitely generated groups of inter-
mediate growth; that is, groups having growth that lies strictly between polynomial
and exponential. Associative algebras with polynomial growth are less well under-
stood, but it is known ([KL]) that there exist finitely generated associative algebras
with intermediate growth.

In this paper, we examine growth functions in the category of restricted Lie
algebras.

For any positive real-valued sequences f, g, we write f ¹ g if there exists an
integer constant C such that f(n) ≤ C + Cg(Cn + C) for all n, and write f ∼ g if
both f ¹ g and g ¹ f . If there exists a positive integer d such that g(n) ¹ nd then
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we say g has polynomial growth, if g(n) ≺ en then we say g has subexponential
growth, and if g(n) ∼ en then we say g has exponential growth. Finally, if g has
subexponential growth but does not have polynomial growth then g is said to have
intermediate growth.

Let L be a restricted Lie algebra over a field F of characteristic p. Suppose
further that L is generated by a finite set X. We define

W (X, n) = 〈[x1, . . . , xi]p
j | x1, . . . , xi ∈ X, ipj ≤ n〉F.

Here the associated growth function g of L with respect to X is defined by g(n) =
pdimFW (X,n), rather than the more natural dimFW (X,n). This scaling is made
to facilitate an analogy between restricted Lie algebras and groups with the same
type of growth. It is easy to see that if g′ is the growth function corresponding
to another generating set X ′ of L then g ∼ g′. We shall say that L has polyno-
mial, subexponential, etc, growth when its corresponding growth function has the
respective properties.

Recently, Passman and Petrogradsky ([PP]) gave several characterizations of
when a finitely generated restricted Lie algebra has polynomial growth (that is,
Lp dim L < ∞ in their notation). We shall deduce from their results that the exact
restricted-Lie analogue of Gromov’s theorem holds; namely, a finitely generated
restricted Lie algebra has polynomial growth precisely when it is virtually nilpo-
tent. Our primary goal, however, is to demonstrate that the lower central series
of every finitely generated restricted Lie algebra with subexponential growth sta-
bilizes. Consequently, there are no residually nilpotent restricted Lie algebras of
intermediate growth.

2. Preliminaries

Let L be a restricted Lie algebra over a field F of characteristic p. As is
customary, we shall denote the product and p-map in L by (x, y) 7→ [x, y] and x 7→
xp, respectively. The lower central series of L is defined recursively by γ1(L) = L
and γn(L) = [γn−1(L), L], for every n ≥ 2. Recall that L is said to be nilpotent if
γn+1(L) = 0 for some n, the least such n being the class of L. Also recall that L
is called residually nilpotent if ∩n≥1γn(L) = 0 and that L is said to be virtually
nilpotent if it contains a nilpotent ideal of finite codimension in L.

For any subset S of L and positive integer j, we denote by Spj

the F-subspace
of L spanned by the elements xpj

with x ∈ S. We shall denote by 〈S〉 the Lie
subalgebra generated by S and by 〈S〉p the restricted Lie subalgebra generated by
S. For each integer n ≥ 1, we define

Dn(L) =
∑

ipj≥n

γi(L)pj

.

The restricted ideal Dn(L) is sometimes called the nth dimension subalgebra of L
and arises naturally in the context of the restricted universal enveloping algebra of L
(see [RS]). It follows from the defining axioms of a restricted Lie algebra that for all
x, y in L we have [x, yp] = x(ad y)p and (x + y)p = xp + yp modulo γp(〈x, y〉), and
consequently that Dm(L)p ⊆ Dpm(L) and [Dm(L), Dn(L)] = γm+n(L) for every
m,n. We shall use these basic facts without explicit reference. For each integer n ≥
1, we put dn = dimFDn(L)/Dn+1(L) and an = dimF γn(L) + Dn+1(L)/Dn+1(L).
We also set ρn = pdimF L/Dn(L). It is clear that ρn+1 ≤ g(n), for every n ≥ 1.
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We record now some simple facts for later use.

Lemma 2.1. The following statements hold in every restricted Lie algebra L.
(1) If m is a positive integer such that p - m then dm = am.
(2) If n is such that dn = 0 then γn+1(L) = γn+2(L).
(3) If the lower central series of L stabilizes then dn(L) = 0, for infinitely

many n.

Proof. Notice that if p - m and i < m then ipj ≥ m implies ipj ≥ m + 1. It
follows that if p - m then dm = am. Suppose next that n is such that dn = 0. Then
γn+1(L) = [Dn(L), L] = [Dn+1(L), L] = γn+2(L). For the final statement suppose
that γm(L) = γm+1(L). Then clearly an = 0 for every n ≥ m. However, by the
first statement, if p - n we have dn = an. Consequently, dn = 0 for every n ≥ m
that is relatively prime to p. ¤

3. Polynomial growth

We are ready to deduce from Passman and Petrogradsky’s main result in [PP]
the exact analogue of Gromov’s theorem. We require this new form in the proof of
our main result, Theorem C.

Theorem A. Suppose that L is a restricted Lie algebra over a field of charac-
teristic p. The following properties are equivalent.

(1) L is finitely generated and has polynomial growth.
(2) L is poly-CF; that is, L has a finite series whose factors are either cyclic

or finite-dimensional.
(3) L = Hp, where H is a finite-dimensional Lie subalgebra of L.
(4) L = R ⊕ Z, where R is a finite-dimensional Lie subalgebra and Z is a

central free abelian restricted Lie subalgebra of finite rank.
(5) L is virtually nilpotent.

Proof. The equivalence of (1)-(4) comes directly from [PP]. To see why (5)
implies (2), suppose that L has a nilpotent ideal J of finite codimension in L.
Without loss, we may assume that J is restricted. Let c be the class of J . Since
L is finitely generated, it follows from [BKS] that J is also finitely generated
(when viewed as a restricted Lie algebra). This forces the finite-dimensionality of
J/Dc(J). Next observe that [J,Dc(J)] ⊆ γc+1(J) = 0. Consequently, Dc(J) is
an abelian restricted subalgebra of finite codimension in L. Since any restricted
subalgebra of finite codimension contains a restricted ideal of finite codimension
(see [BMPZ]), it follows that L contains an abelian restricted ideal A of finite
codimension. But then A is generated as a restricted Lie algebra by a finite set
X. Therefore A = Hp, where H = 〈X〉F . The implication (3)⇒(2) applied to A
now yields that A is poly-CF. But then L is poly-CF, too, as required. Finally, to
prove (4)⇒(5) we need only point out that Z contains a restricted ideal of finite
codimension in L. ¤

4. Uniserial actions

Our main technique is an application of the theory of uniserial modules devel-
oped in [RSe] to solve the so-called Coclass Conjectures in the category of restricted
Lie algebras.
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Recall that L is said to be p-nilpotent if Lpk

= 0 for some k. We say that
L lies in the class Fp if it is both finite-dimensional and p-nilpotent. It follows
from Engel’s theorem that such an L is nilpotent. An L-module V is a vector
space over F endowed with a bilinear map [ , ] : V × L → V satisfying [v, [x, y]] =
[[v, x], y]− [[v, y], x] and [v, xp] = [v,p x], for all x, y ∈ L and v ∈ V .

For a subspace W of V , we shall denote by [W,L]L the L-submodule of V
generated by all the elements of the form [w, x], where w ∈ W and x ∈ L. A
section of V is a quotient of L-submodules of V . An L-module V is said to be
uniserial if every section of V on which L acts trivially has dimension at most 1.
We let V0 = V and recursively define Vi = [Vi−1, L]L for every i ≥ 1.

Lemma 4.1. Suppose that L ∈ Fp and let V be an L-module with dimF(V ) = n.
Then V is uniserial if and only if Vn−1 6= 0.

Proof. Suppose that Vn−1 6= 0. Then, since L is nilpotent, we have the
following strictly descending series of L-submodules

V = V0 > V1 > · · · > Vn−1 > Vn = 0,

where each factor has dimension 1. In order to prove that V is uniserial, it is enough
to show that the Vi are the only submodules of V . We prove this by induction on
n, the case n = 1 being trivial. Suppose then that n ≥ 2 and that the assertion is
true for all modules of dimension at most n− 1. Now if W is a proper submodule
of V then W ∩V1 = Vi for some i ≥ 1, by the induction hypothesis applied to V1. If
W ≤ V1 then W = Vi. Otherwise, we must have W + V1 = V , [W,L]L ≤ W ∩ V1 =
Vi, and i ≥ 2. However, then V1 = [W + V1, L]L = [W,L]L + [V1, L]L = V2, a
contradiction. The converse is trivial. ¤

Next we recall the following key lemma from [RSe].

Lemma 4.2. Suppose that L ∈ Fp acts uniserially on a module W . Then
[Wj , Dpi(L)]L = Wj+pi for all i, j ≥ 0.

Lemma 4.3. Let L be a restricted Lie algebra such that d1 is finite and suppose
that di = 1, for every pj ≤ i ≤ 2pj, where j ≥ 1. Then a2pj = 0 and so d2pj+1 = 0.

Proof. We consider first the case when L ∈ Fp. Regard the section W =
Dpj /D2pj+1 as an L-module. We claim that W cannot be uniserial. Indeed, suppose
otherwise. Then since dimFW = pj +1, Wpj 6= 0 by Lemma 4.1. However, because
Dpj (L)/Dpj+1(L) is one-dimensional, clearly we have Wpj = [W,Dpj (L)] = 0, by
Lemma 4.2. Hence, W is not uniserial; in other words, Wpj = 0 by Lemma 4.1. It
follows immediately that a2pj = 0. Hence, by Lemma 2.1, we have d2pj+1(L) = 0.
To extend the result to an arbitrary restricted Lie algebra L, let L̄ = L/D2pj+2(L).
Once we observe that L̄ ∈ Fp, ai(L̄) = ai(L) and di(L̄) = di(L), for every 1 ≤ i ≤
2pj + 1, the proof is complete. ¤

4. Subexponential growth

We are now ready to prove our main results. We begin with a more precise
technical result. For a real number r we denote by brc the greatest integer less than
or equal to r.
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Theorem B. Let L be a restricted Lie algebra over a field of characteristic p.
(1) If p is odd and m ≥ 2 is such that ρm < pm+blogp mc−1, then dn = 0 for

some n ≤ m− 1. In particular, γm(L) = γm+1(L).
(2) Fix an integer m ≥ 4 and let k be the unique odd integer such that 2k ≤

m < 2k+2. If p = 2 and ρm < 2m+(k−1)/2, then dn = 0 for some n ≤ m−1.
In particular, γm(L) = γm+1(L).

Proof of (1). Suppose, to the contrary, that ρm < pm+blogp mc−1 and yet
dn ≥ 1 for every n ≤ m− 1. If m < p then, by hypothesis, d1 + · · ·+ dm−1 < m− 1
and so dn = 0 for some n ≤ m − 1. Thus, we may safely assume that m ≥ p; in
other words, k = blogp mc ≥ 1. Next notice that ρpk < ppk+k−1 for otherwise

ρm = ρpkpd
pk +···+dm−1

≥ ppk+k−1pm−pk

= pm+k−1 = pm+blogp mc−1,

a contradiction. Consequently, we need only to consider the case when m = pk

and k ≥ 1. We claim next that d1 ≥ 2. Indeed, otherwise d1 = 1 and so γ2(L) =
[L,D2(L)] = γ3(L). However, since p is odd, this would imply that d2 = a2 = 0
by Lemma 2.1, a contradiction. Thus, d1 ≥ 2 as claimed. Also, again using the
fact that p is odd, we have pj ≤ 2pj ≤ pj+1 − 1 for every j ≥ 1. Therefore,
according to Lemma 4.3, for every j ≤ k− 1 there exists an integer rj in the range
pj ≤ rj ≤ pj+1 − 1 such that drj ≥ 2. This now yields

ρpk = p(d1+···+dp−1)+(dp+···+dp2−1)+···+(d
pk−1+···+d

pk−1)

≥ pp+(p2−p+1)+···+(pk−pk−1+1) = ppk+k−1,

a contradiction.

Proof of (2). Suppose we have ρm < 2m+(k−1)/2 and yet dn ≥ 1 for all
n ≤ m − 1. If d1 = 1 then γ2(L) = γ3(L), and so d3 = a3 = 0 by Lemma 2.1,
contradicting our assumption that m ≥ 4. Thus, d1 ≥ 2. Now observe that if
m < 8 then d1 + · · ·+dm−1 < m and so dn = 0 for some n ≤ m−1, a contradiction.
Thus, m ≥ 8; that is, k ≥ 3. Next notice that ρ2k < 22k+(k−1)/2 for otherwise

ρm = ρ2k2d2k+···+dm−1

≥ 22k+(k−1)/22m−2k

= 2m+(k−1)/2;

therefore, it suffices to consider only the case when m = 2k and k ≥ 3. From
Lemma 4.3 it follows that, for every odd integer j ≤ k − 2, there exists an integer
rj in the range 2j ≤ rj ≤ 2j+2 − 1 such that drj ≥ 2. Now we have

ρ2k = 2d1+(d2+···+d23−1)+···+(d2k−2+···+d2k−1)

≥ 22+(23−2+1)+···+(2k−2k−2+1)

= 22k+(k−1)/2,

our final contradiction. ¤

Consider the following consequence of the odd characteristic case of Theorem
B: if ρpk < ppk+k−1 for some k then dn = 0 for some n. This bound is best
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possible. Indeed, consider the 1-generator restricted Lie algebras H = 〈x|xp = 0〉
and K = 〈y〉. One can present their wreath product L = H oK by

L = 〈x, y| ai = x(ad y)i, [ai, aj ] = 0, ap
i = 0, i, j ≥ 0〉.

It is not difficult to check that dn = 2 for each n a power of p and dn = 1 otherwise.
This leads easily to the fact that ρpk = ppk+k−1 for all k.

We are finally ready to state our main result.

Theorem C. Let L be a finitely generated residually nilpotent restricted Lie
algebra. The following statements are equivalent.

(1) L has subexponential growth.
(2) dn = 0, for some n.
(3) L is nilpotent.
(4) L has polynomial growth.

Proof. The implication (1)⇒(2) follows immediately from Theorem B and the
fact that ρn+1 ≤ g(n) for any growth function g of L. Lemma 2.1 shows (2)⇒(3).
Theorem A yields (3)⇒(4). The last implication, (4)⇒(1), is trivial. ¤
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