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Abstract

It is well known that nonlincar sequence transforms are very cffective accclerators of
convergence on monotone and alternating sequences. A given aceeleration method refines its
approximation procedurc by progressively absorbing a greater number of terns of a sequence
in the transform it cmploys. In this work the nccessary mathematical formulation for
calculation of Pade Approximant is performed and routine for its numecrical evaluation is
developed. The approximation is then applied to two concrete problems of fluid dynamics
and mecrits and efficiency of this approach relative to other approaches to the solution of the
problem is discussed.

Introduction

There are many methods for accelerating the convergence of sequences and the subscquent cvaluation
of the limit of an infinite sequence [1,2,3]. Thesc methods generally cmploy specific scquence-to-sequence
trapsformations and belong, accordingly, to two broad classes: lincar and non-linear, In a comparative study of a
number of thesc methods, Smith and Ford [2] have concluded that nonlinear methods arc morc general in scope
than the linear ones. The nonlinear methods they have reviewed arc all gencralizations of Aitken's A? [10]. A
particular sequence transform requires a finite number of terms of the sequence on which it is applied. This
number is, thercfore, a parameter of the transform. A given acccleration method refines its approximation
procedurc by progressively absorbing a greater number of terms of a scquence in the transform it employs. The
number of significant digits in the final value increascs, correspondingly, to a limit imposcd by round-off crrors

. and/or the effectivencss of the method, If the number of digits 1o which the cvaluation of the limit is accurate in
© a given method decreases finally as morc terms of a scquence arc uscd, we call the method unstable. In all
_methods the accuracy. of cvaluation is usually checked against a known result or by noting the consistent

appearance of a certain number of digits. It would be more convenient if there cxisted an independent estimate

-of the error at each point of the calculation.

' A scquence tegnsform uscs a finite number of terms of onc scquence to gencrate cach term of an
auxiliary sequence. Such a primary sequence may be a-sequence of numbers or a sequence of functions, an

- example of the latter being the partial sums of a power serics, The most widcly used nonlincar sequence
- transforms are Aitken’s AZ?—transform, Shanks’s e-transform, Wynn's £-transform and Levin’s w-transform. A

unified discussion of these transforms is found in ref. [5]. If the limit of the generated sequence is the samc as

- that of the original sequence, the sequence transformyis said to be regular. It is well known that nonlincar

scquence transforms are very cffective accelerators of convergence on monotone and alternating sequence of

. numbers. Interestingly, they induce convergence in divergent sequences and hence arc valid methods of

summation. When a nonlinear sequence transform is applicd to the sequence of partial sums of a power serics. it
gencrates approximants in the form of rational functions. The fepresentation of functions by rational
approximants has been a major field of endeavor, especially for functions represented by divergent serics
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cxpansions. Uses of the rational function represcntation of a function whose scrics expanston is known are too
numerous to mention,

.. The Padc approximant has becn used most frequently in tackling divergent series encountered in
theoretical physics [6], although the methods of Euler and Borel have also been uscd to some extent. it is well
, .-I;:n:ow_n that the nenlinear scquence transform € is closcly related to the Pade approximant. The superiority,of the
u-transform over the  E-transform in summing a wide class of convergent and divergent test scquences of
numbers, both reat and complex[5,7], lends encouragement o the conjecture that the former may also prove
uscful as a generator of rational approximants, at Icast for a cerlain class of power scrigs. A recent comparison
between the two methods made on a divergent perturbation serics cxpansion for the excluded volume effect in
the theory of polymer solutions extends support to this surmisc [8].

In realistic perturbation problems only a few terms of a perturbation scrics can be caleulated before o
statc of exhaustion is reached. Therefore a summation algorithm is needed which requires as input only a finite
number of terms of a divergent serics. Then as cach new term is computed, it is immediately folded in with the
others' to give a new and improved estimate of the cxact sum of the divergent series. A well-known summuation
method having this property is callcd Pade summation. In this work we focus our attention only 1o Pade
approximation.

Pade Approximation

oo
. - * . ’: - -
The idca of Pade summation is to replace a power scries Z a,X by ascquence of rational functions (a
5 n=0
rational function is a ratio of two polynomials ) of the form

N
N ,Z‘)A"xn (1)
Py (x) =M
R : %3 |
n=0

where we choose Bo=1 without Ioss of generality, We choose the remaining (M+N+1) cocfficients AgAlAn,

. . N
BiiBa,....By, so that the first (M+N+1) terms in the Taylor scries cxpansion of P M (JC) match the first

. - oo . - N
{M+N+1) terms of the power serics Zanx " The resulting rational function P, M (X) is called a Pade
. n=0 .

Approximant.

(=)
N n
We will sce that constructing PM (JC) is very uscful. If Eanx is a power scrics representation
n=0

N o
of the function ffx), then in many instances PM (X) — f{x) as NM——— oo ceven if Zanx” isa

- n=0

divergent series. Usually we consider only the convergence of the Pade scquences Poj ,P]Hj s P22+j ,P;’” yoe

4
having N=M+J with J fixed and M ~—— oo The special sequence J=0 is called the diagonal scquence.

‘The full power series representation of a 'function need not be known to construct a Pade approximant-
we need just the first M+N+1 terms. Since Pade approximants involve only algebraic operations, they are more
convenient for computational purposes than Borel summation, which requires one to integrate over an infinite
ranige the analytic continuation of a function defined By a power scrics. In fact, the general Pade approximant
can be expressed in terms of determinants, .

The Pade approximant P} (x)is determined by a simple sequence of matrix operations. The

cocfficicnts By, ..., By in the denominator may be computed by solving the matrix Equation
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where @ is an MXM matrix with entries a;= 2wy (1 SijS M ). Then the cocfficicnts A, Al Ay in the
numerator are given by

Ay= Zan_ij, 0f£n <N o (3)

A

where Bj=0 for j > M. Equations (2 ) and (3 ) arc derived by equating coefficients of I, Xy XM

N+ M M N
> ax Y Bxt = A x" = O M), x 0 (4)
Jj=0 k=0 n=(

which is Just a restatement of the definition of Pade approximants.

In order to evaluate the Pade Approximant for a given serics numerically, we have developed a standard routine
namely PADE (K, COEF, X, PDAPX) wherc

K is an input integer which indicates number of the coefficicnt which is obtaincd
from the given serics, ‘

COEF  is an input which represents the sequential terms of given series which is taken
from the CALLing program

X is an input variable of the Taylor scrics and

PDAPX the rational approximation as an output.

To implement the routine one has to follow the following procedurc:
¢ Calculate the cocfficients (COEF) of the Taylor scrics using the main program.

* Using thesc tenns forman MXM matrix @ by the relation aij = COEF(N+i-j), where I<ij<M

» - The matrix equation above is solved. For solving this equation we have used another standard
SUBROUTINE GAUSSI(A,N,NP;B,M,MP) where,

A is an input matrix of N by N clements stored in array of physical dimensions NP by NP,

B is an input matrif of N by M containing the M right hand side vectors, stored in array of physical
" dimensions NP by MP, i

and on output, .

A... isreplaced by the matrix inverse, and '

B is replaced by the corresponding sct of solution vectors.

7
After computing the coefficients of the denominator one cajculates the coefficient of numerator using the
cocfficicnt of denominator and the coefficient of the given test serics i.c.using the relation shown in the theorem.

The total sum of the numerator is evaluated using the cocfficient of numerator and putting the valuc of x in the
given relation. .

Iy
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Subscquently the total sum of denominator is evaluated using the cocfficient of denominator and putting the
valuc of x in the defined relation. '

-

Finally, Pade approximants (PDAPX) is obtaincd by dividing the valuc of the sum of numerator by the sum of
denominator, »

Case Studies
Case I
. Paul and Hossain [1X] have investigated the problem on the unstcady two-dimensional flow of a
viscous incompressible fluid past an insulated permeable plate assuming that the free-stream and the
transpiration velocity oscillatc .about constant means. In that analysis small amplitude oscillation has been
considercd. Using appropriate transformations the governing two-dimensional boundary laycer cquations of
motion and the energy have been reduced to following equations:

Steady parts:
ST+ f7=0 (1)
~I;I;9"+f9'+2f’2=0 » 2)

with the boundary conditions

S=% f'=0, @=0a n=0

f'=0, 8=0as N—w 3)
Unsteady parts:
: oF’ oF
F74 B+ fF+ 201 - F)= 2§ f <. pr o 4
o FF+f zé(_‘ .) Uy e Q
1 ., p . ” 09  _OF
— ~OF -2iEp+ 4 fF" =24 29 _g oL 5
5. &SP iSp+4af f 2 0 ae (5)

witﬁ ii)c;undary conditions
F0.5) =7, F(0,8)=0, ¢(0.8)=0
Fleog)=1, ¢fe=,8)=0 - (6)

'whc;é: .
2 v
=+§ |—, Pr=— (N
4 vl (04

where the functions £ Gand F, ¢are, respectively the dimensionless steady and {luctuating strcam function and
the temperature function, &, is the local frequency number , Us, being the mean free stream velocity,
Now, the unsteady part of this problem has been solved applying the Pade Approxirnation method and

the result has been compared with those obtained by the scries solution method and finite difference mcthod.
The results arc su‘mmarizc;]_ in the following figures:
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Figure 1: Amplitude and phasc of the skin-friction against small & while Pr=0.7 & Sc=0.5.
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Figure 2: Amplitude and phase of the surface temperature against small & with Pr=0.7 & Sc=0.5.

By observing the above figures we can conclude that Pade Approximation mcthod is better than any
other methods. Here calculated values are the amplitude and phase angle of the fluctuating skin-friction md
fluctuating surface temperature respectively.
L

Case 1I: .
M. A. Hos%ain and S. Hossain [12] have investigated the problem on the respensc of conjugate heat
and mass transfer to laminar free convection boundary [ayer flow of a viscous incompressible fluid a vertial
plate considering small amplitude oscillations to surface temperature and surface species concentration 10 a
respective steady non-zero mean, Using appropriate transformations the governing two-dimensional the heat
transfer and the mass transfer have been reduced to following equations:

: !

For the stcady flow:
» n+3 ., n+l
f+ y - > I +(l—~w)g+wh=0 (8)
1, n+3 _, , ‘
—g+ & -nfg=0 - 9)

Pr 4
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I, n+3 _, _

'-"S:;}l"i'T_fh —nfh—O- . (10)
FO)=r0©)=0, go)=1, A0)=1 ay
F)= o) = o) =0

and for the fluctuating flow:

F~+i;(ﬁ'+fF)~(n+1)frf+(1—w)e+wH—fﬁF'=ﬂé(f’£—f”aFJ (i

2 oL ok
L, n+3, Nl Aiin o U=n) [ 3G LoF )
PTG"" 3 (/G + g'F) .n(fG—!-g-F) iEG = > ¢(f~——a§ g_aéjJ (13)
1 ., n+3, ., n (i-n){ ,0H ,oF
—H WHF)=n{fH+ hF")~i&H = i
= +4(fH+.)”(f+ )i > {f.ag aé:} (14)

FIEO)=FE0)=0, GE0)=1, H(E0)=1
F& )= H(E,00) = G(E ) =0

where the functions £ g, hand F, G H are, respectively the dimensionless steady and fluctuating strecam
function and the temperature function, é is the local frequency number, Us is the mean free stream velocity.

Now, as before, the numerical solution of the unsteady part of this problem is found by applying the
Pade approximation method and the result is compared with those obtained by serics solution and finite
differerice methods. A comparative picturc of the results arc shown in the following figures:
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Figure 3: Amplitude and phasc of the shear-stress against small & whilc Pr=0.7, S¢=0.22
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Figure 4: Amplitude and phase of the heat-transfer against small E_, while Pr=0.7, Sc=0.22
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Figure 5: Amplitude and phasc of the mass-transfer against small E_, while Pr=0.7, S¢=0.22

By observing the above figures wc again conclude that Pade approximation method is beticr than other methods.
Here' calculated values arc the amplitude and the phase angle of the fluctuating skin-friction and fluctuating
surface temperature.

Conclusion
L 3
The finding that Pade approximation applied on a power serics expansion of a function leads to
approximants tha®¥are usually better representation of the function, as judged against dher solutions of the
problems discussed in this work. This is 2 considerable improvement over standard linearization schcme
coupled with- a power series expansion. Additional improvemcnts may be obtained by cmploying new
interpolants obtained from other non-fincar transforms, as in the case of approximants discussed in ref. [3].
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