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Abstract

The importance of summation of series lies in the abundance of their occurrence

and their utility in all branches of applied mathematics. The usual approach

for summation is to approximate it by some rational approximant. There are

many methods for numerical computation of the rational approximants for the

series. Almost all of them directly or indirectly use Pade approximants and u-

transformation which are very simple, elegant as well as efficient routines. We

studied convergence rates of the series by these methods. We have observed that

u-transform is more accelerating in convergence than the other methods. We have

chosen some representative positive and alternating series whose exact results are

known and using the methods of Pade and u-approximation we have evaluated the

corresponding approximants. Lastly we compared these calculated approximants

with each other and with the exact/partial sum of the series. In order to put our

observations on strong footings theoretical investigation on error estimation and

error control of these approximants is required.
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Chapter 1

Introduction

There are many methods for accelerating the convergence of sequences and the

subsequent evaluation of the limit of an infinite sequence (Ford and Sidi [1987];

Smith and Ford [1977, 1982]). These methods generally employ specific sequence-

to-sequence transformations and belong, accordingly, to two broad classes; linear

and non-linear. In a comparative study of a number of these methods, Smith and

Ford [1977] have concluded that nonlinear methods are more general in scope than

the linear ones. The nonlinear methods they have reviewed are all generalizations

of Aitkenfs ∆2(Aitken [1926]). A linear method may, however, be comparable in

effectiveness in special circumstances, for example, when the parameters of the

transformations are chosen suitably for specific sequences (Knopp [1951]), or when

the method is exact on a certain class of sequences (Bauer [1965]). All methods

rely on some scheme of suitably approximating an arbitrary sequence by another

sequence that is more amenable to manipulation and whose nature, consequently,

is incorporated into the method. Any method is able; therefore, to evaluate the

limit of at least one class of sequences, most often the class whose terms are the

successive partial sums of an infinite geometric series.

In their study Smith and Ford conclude that Levin′s u-transform (Levin

[1973]) is ” the best available across-the-board method ” for accelerating the

convergence of a very broad class of sequences. A particular sequence transform

requires a finite number of terms of the sequence on which it is applied. This

number is, therefore, a parameter of the transform. A given acceleration method

refine its approximation procedure by progressively absorbing a greater number
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of terms of a sequence in the transform it employs. The number of significant

digits in the final value increases, correspondingly, to a limit imposed by round-off

errors and/or the effectiveness of the method. If the number of digits to which

the evaluation of the limit is accurate in a given method decreases finally as more

terms of a sequence are used, we call the method unstable. Levin’s method is

unstable, on this count, for positive series.

In all methods the accuracy of evaluation is usually checked against a known

result or by noting the consistent appearance of certain number of digits. It would

be more convenient if there existed an independent estimate of the error at each

point of the calculation.

Accurate numerical evaluation of a function may often pose problems even if

the function is known in closed form, as an integral or as a solution of a differential

equation. Power series expansions are useful, but the question of convergence of

such series is crucial. The series obtained may converge very slowly or may even

turn out to be divergent or asymptotic. However, it is possible to ensure a uniform

treatment in the efficient numerical evaluation of such widely different series by

means of sequence transforms.

A sequence transform uses a finite number of terms of one sequence to gen-

erate each term of an auxiliary sequence. Such a primary sequence may be a

sequence of numbers or a sequence of functions. The most widely used nonlinear

sequence transforms are Aitkenfs ∆2 -transform, Shankes’ s e-transform, Wynn’

s ε-transform and Levin ’ s u-transform. A unified discussion of these transforms

is found in ref. (Levin [1973]; Bender and Orszag [1985]; Ford and Sidi [1987];

Bhowmick et al. [1989]; Roy et al. [1992]). If the limit of the generated sequence

is the same as that of the original sequence, the sequence transform is said to be

regular.

It is well known that nonlinear sequence transforms are very effective ac-

celerators of convergence on monotone and alternating sequences of numbers.

Interestingly, they induce convergence in divergent sequences and hence are valid

methods of summation.

When a nonlinear sequence transform is applied to the sequence of partial

sums of a power series, it generates approximants in the form of rational functions.

The representation of functions by rational approximants has been a major field
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of endeavor, especially for functions represented by divergent series expansions.

Uses of the rational function representation of a function whose series expansion

is known are too numerous to mention.

The Pade approximant has been used most frequently in tackling divergent

series encountered in theoretical physics (Baker and Gammel [1970]), although the

methods of Euler and Borel have also been used to some extent (Bender and Wu

[1969]; Baker [1970]; Baker and Morris [1981]). It is well known that the nonlinear

sequence transform ε is closely related to the Pade approximant. The superiority

of the u-transform over the ε-transform in summing a wide class of convergent

and divergent test sequences of numbers, both real and complex (Bhowmick et

al. [1989]; Smith and Ford [1982]), lends encouragement to the conjecture that

the former may also prove useful as a generator of rational approximants, at least

for a certain class of power series. A recent comparison between the two methods

made on a divergent perturbation series expansion for the excluded volume effect

in the theory of polymer solutions extends support to this surmise (Bhowmick et

al. [1989]; Bhattacharya et al. [1997]).

Almost any method of summation has a sequence transform at its core. A

typical transform uses some finite sub-sequence of one sequence to generate each

term of another. A divergent sequence may thereby be transformed into another

with a non-infinite limit; the transform then produces a finite result and defines a

method of summation. The method of Pade approximants in particular has been

used extensively in the context of divergent series arising in physical theories,

predominantly in the fields of cooperative phenomena and critical points (Baker

and Gammel [1970]). The sequence transform ε
(n)
2k has been demonstrated to

be closely related to the Pade table (Shanks [1995]). This transform, however, is

only one within a family of nonlinear sequence transforms (Smith and Ford [1977];

Bhowmick et al. [1989]), the most promising member of which is believed to be

the Levin u-transform (Levin [1973]). Where the power series coefficients are

available for a function, as they are in the case of a perturbation expansion, these

transforms effectively generate successive approximants in the form of rational

polynomials (Schield [1961]; Bender and Wu [1969]; Sidi [1979]; Gerald [1980]).

Apart from the aspects mentioned above, the present work also extends the

numerical precision of the work reported by Smith and Ford for both positive and
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alternating series (Weniger [1989]; Roy et al. [1992, 1996]).

This work is an outcome of investigations on how the u-approximants, i.e.,

the rational approximants obtained by applying the u-transform on power series,

fare in comparison with Pade approximants for convergent and divergent series.

The class of convergent series that we have worked on is as wide as that reported

in Smith and Ford [1977].

The second chapter briefly touches on improvement of convergence, the Shanks

transformation, summation of divergent series, Euler summation, Borel summa-

tion, Chebyshev polynomials etc. Chapter three introduces the method of Pade

approximants, mostly for introducing the notation used in the rest of the work,

the u-transform and the associated formulas for the generation of u-approximants.

Chapter four is a comparative study of the u-approximants and Pade approxi-

mants on a number of test series. Finally in the conclusion we make some brief

comments on the outcome of our research work.
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Chapter 2

Review

In this chapter we briefly discuss mathematical preliminaries for study on im-

provement of convergence of a series with short mathematical examples

2.1 Improvement of Convergence

In this section we show how to speed up the convergence of slowly converging

series. An example of such a series is
∑∞

k=0(−z)k. Although this series converges

for all |z| < 1, the convergence is very slow as z approaches the unit circle because

the limit function (1+z)−1 has a pole at z = −1. When z is near +1, the converges

rate is affected by the distant pole at z = −1. The remainder Rn after n terms of

the series is (−z)n+1/(1+ z); Rn goes to zero as n →∞ for |z| < 1. Near z = +1

the remainder oscillates rapidly in sign (from odd to even n) and decays slowly.

We will call such a term a transient because it resembles the transient behavior of

a weakly damped harmonic oscillator, which undergoes many oscillations before

coming to rest.

Another slowly converging series is the Taylor series for the function A(z) =

1/[(z + 1)(z + 2)]. The nth partial sum of this Taylor series is

An(z) =
n∑

k=0

(−1)k(1− 1

2k+1
)zk

=
1

(z + 1)(z + 1)
− (−z)n+1

z + 1
+

(−z/2)n+1

z + 2
(2.1)

5



2.1 Improvement of Convergence

The poles of A(z) at z = −1 and z = −2 affect the rate of convergence of

An(z) to A(z). More than 1,500 terms of this series are necessary to evaluate

A(0.99) accurate to six decimal places. Yet the analytic structure of A(z) is so

simple that it would be very surprising if the first few terms did not contain

enough information to compute A(z) accurately. Indeed, there are several ways

to accelerate the convergence of (2.1); one way is to perform a Shanks transfor-

mation.

2.1.1 The Shanks Transformation

A good way to improve the convergence rate of a sequence of partial sums (or

of any sequence for that matter) is to eliminate its most pronounced transient

behavior (i.e., to eliminate the term in the remainder which has the slowest decay

to zero). Suppose the nth term in the sequence takes the form

An = A + αqn (2.2)

with |q| < 1, so that An → A as n →∞. Here, the term αqn is the transient.

Since any member of this sequence depends on the three parameters A, α, and q,

it follows that A can be determined from three terms of the sequence, say An−1,

An, An+1: An−1 = A + αqn−1, An = A + αqn, An+1 = A + αqn+1. Solving this

system of equations for A gives

A =
An+1An−1 − A2

n

An+1 + An−1 − 2An

(If the denominator vanishes, then An = A for all n.)

This formula is exact only if the sequence An has just one transient of the form

in (2.2). Nontrivial sequences may have many transients, some of which oscillates

in a very irregular fashion. Nevertheless, if the most pronounced has the form

αqn, |q| < 1, then the nth term in the sequence takes the form An = A(n) + αqn,

where for large n, A(n) is more slowly varying function of n than An. Let us

suppose that A(n) varies sufficiently slowly so that A(n− 1), A(n) and A(n + 1)

are all approximately equal. Then the above discussion motivates the nonlinear

transformation,

S(An) =
An+1An−1 − A2

n

An+1 + An−1 − 2An

, (2.3)
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2.2 Summation of Divergent Series

investigated in depth by Shanks. This transformation creates a new sequence

S(An) which often converges more rapidly than the old sequence An, even if the

old sequence has more than one transient. The sequences S2(An) = S[S(AN)],

S3(An) = S{S[S(AN)]}, and so on, may be even more rapidly convergent.

2.2 Summation of Divergent Series

Perturbation methods commonly yield divergent series. A regular perturbation

series converges only for those values of |ε| less than the radius of convergence. A

singular perturbation series diverges for all values of ε 6= 0, and even if the series

is asymptotic, the value of ε may be too large to obtain much useful information.

It is discouraging to discover that a perturbation series diverges, especially

if the terms in the series have been painstakingly computed. Clearly a naive

summation of a divergent series by simply adding up the first N terms is silly

because it gives a partial sum which gets further from the actual ” sum ” of the

series as N → ∞. By comparison, the indirect summation methods we shall

introduce here again require as input the first N terms in the series, but the

output is an approximant which converges the ” sum ” of the series as N →∞.

Thus, whenever summation methods apply, they provide the reward for in-

vesting one ’s time in perturbative calculations; even if the perturbation series

diverges and whatever the size of ε, the more terms one computes, the closer one

can approximate the exact answer. Our purpose here is merely to induce the

proper frame of mind by showing that there are special kinds of divergent series

whose sums can actually be defined.

2.2.1 Euler Summation

If a series
∑∞

n=0 an is algebraically divergent (the terms blow up like some power

of n), then the series

f(x) =
∞∑

n=0

anx
n (2.4)

converges for all |x| < 1. The Euler sum S of
∑∞

n=0 an is defined as S ≡
limx→1−f(x) whenever the limit exists.

7



2.2 Summation of Divergent Series

2.2.2 Borel Summation

If the coefficients an in the series
∑∞

n=0 an grow faster than a power of n [ an ∼ 2n

or an ∼ (n!)1/2, for example ], then Euler summation is not applicable because∑∞
n=0 anx

n diverges for x near 1. However, this power series may still have mean-

ing as an asymptotic series.

Suppose

φ(x) =
∞∑

n=0

anxn

n!
(2.5)

converges for sufficiently small x and that

B(x) ≡
∫ ∞

0

e−tφ(xt)dt (2.6)

exists. If we expand the integral B(x) =
∫∞
0

e−t/xφ(t)dt/x for small x by

substituting the series (2.5) and integrating term by term [this is justified by

Watsonfs lemma in Bender and Orszag [1985], then

B(x) ∼
∞∑

n=0

an

n!

∫ ∞

0

e−t/xtn
dt

x
=

∞∑
n=0

anxn, x → 0+ (2.7)

By construction, the series in (2.7) is asymptotic to B(x) as x → 0+.

The asymptotic series diverges, but since the function B(x) exists it makes

sense to define the Borel sum of
∑∞

n=0 anx
n as B(x) and in particular to define

the sum of
∑∞

n=0 an as B(1).

Example: Borel summation. The series
∑∞

n=0(−1)nn! diverges but φ(x) =∑∞
n=0(−x)n converges for |x| ≤ 1 to (1+x)−1. Thus, the Borel sum of

∑∞
n=0(−x)nn!

is B(x) =
∫∞
0

[e−t/(1 + xt)]dt and the Borel sum of
∑∞

n=0(−1)nn! is B(1) =∫∞
0

[e−t/(1 + t)]dt.

2.2.3 Generalized Borel Summation

Generalized Borel summation is an iterated version of Borel summation. The

series
∑∞

n=0 an is generalized Borel summable if

φ(x) =
∞∑

n=0

an

(n!)k
xn (2.8)
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2.3 Chebyshev Polynomials

converges for sufficiently small x and for some positive integer k. Then, when

the multiple integral converges, we define the generalized Borel sum of
∑∞

n=0 anx
n

to be

B(x) ≡
∫ ∞

0

· · ·
∫ ∞

0

dt1dt2 · · · dtke
−t1−t2···−tkφ(xt1t2 · · · tk), (2.9)

and, in particular, the sum
∑∞

0 an to be B(1).

2.3 Chebyshev Polynomials

We turn now to the problem of representing a function with minimum error. This

is a central problem in the software development of digital computers because it

is more economical to compute the values of the common functions using an

efficient approximation than to store a table of values and employ interpolation

techniques. Since digital computers are essentially only the arithmetic devices,

the most elaborate function they can compute is a rational function, a ratio of

polynomials. We will hence restrict our discussion to representation of functions

by polynomials or rational functions.

One way to approximate a function by a polynomial is to use a truncated

Taylor series. This is not the best way, in most cases. In order to study better

ways, we need to introduce the Chebyshev polynomials.

The familiar Taylor-series expansion represents the function with very small

error near the point of expansion, but the error increases rapidly (proportional

to a power) as we employ it at points further away. In a digital computer, we

have no control over where in an interval the approximation will be based, so

the Taylor series is not usually appropriate. We would prefer to trade some its

excessive precision at the centre of the interval to reduce the errors at the ends.

We can do this while still expressing functions as polynomials by the use of

Chebyshev polynomials. The first few of these are:

9



2.4 Approximation of Functions with Economized Power Series

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x, (2.10)

T6(x) = 32x6 − 48x4 + 18x2 − 1,

T7(x) = 64x7 − 112x5 + 56x3 − 7x,

T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1,

T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x,

T10(x) = 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1,

The number of this series of polynomials can be generated from the two-term

recursion formula

Tn+1(x) = 2xTn(x)− Tn−1(x), T0(x) = 1, T1(x) = x (2.11)

2.4 Approximation of Functions with Economized

Power Series

We are now ready to use Chebyshev polynomials to ”economize” a power series.

Consider the Maclaurin series for ex:

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
· · ·

If we would like to use a truncated series to approximated ex on the interval

[0, 1] with a precision of 0.001, we will have to retain terms through that in x6,

since the error after the term in x5 will be more than 1/720. Suppose we subtract

(
1

720

)(
T6

32

)

10



2.5 The ∆2 transform

from the truncated series. We note from Eq. (2.9) that this will exactly cancel

the x6 term and at the same time make adjustments in other coefficients of the

Maclaurin series. Since the maximum value of T6 on the interval [0, 1] is unity,

this will change the sum of the truncated series by only

1

720
.
1

32
< 0.00005

which is small with respect to our required precision of 0.001. Performing the

calculations, we have

ex = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
− 1

720

(
1

32

) (
32x6 − 48x4 + 18x2 − 1

)

= 1.000043 + x + 0.499219x2 +
x3

6
+ 0.043750x4 +

x5

120
(2.12)

This gives a fifth-degree polynomial that approximates ex on [0, 1] almost

as well as the sixth degree one derived from the Maclaurin series. (The actual

maximum error of the fifth-degree expression is 0.000270; for the sixth-degree

expression it is 0.000226). We hence have ”economized” the power series in that

we get nearly the same precision with fewer terms.

In the next section we discuss some methods which are available for approxi-

mation other than u-transform in [Bhowmick et al. [1989]].

2.5 The ∆2 transform

This is derived by approximating the remainder after the nth partial sum of a

series whose first term is an+1 and common ratio is ρn+1. Thus, we have

S = Sn + gn∆Sn

= Sn +
an+1

1− an+2/an+1

i.e.

S = Sn − (∆Sn)2/∆2Sn (2.13)

Clearly the ∆2 transform sums a geometric series exactly.

11



2.5 The ∆2 transform

Alternatively, this transform can be obtained by demanding in

S = Sn + gn∆Sn (2.14)

that

∆gn = ∆((S − Sn)/∆Sn) = 0 (2.15)

We should really write g1n for gn and T1n for S in the above relations. here,

and subsequently, we write gn for its approximation gkn to simplify the notation.

From equation (2.15), then, gn is a constant (c, say) and the relation (2.15)

is equivalent to a relation on {Sn} given by

Sn+2 + c1Sn+1 + c0Sn = 0,

where c1 and c0 are simply related to c, with

1 + c1 + c0 = 0

The method, therefore, is exact if {Sn} satisfy a homogeneous linear difference

equation of the second order with constant coefficients. It is well known that the

partial sums of a geometric series satisfy such a relation. Hence this is another

way of saying that the ∆2 transform uses the geometric series as a template for

the remainder.

2.5.1 The ε transform

We can write the ∆2 transform which follows from (2.14) and (2.15) as

T1n =
∆(Sn/∆Sn)

∆(1/∆Sn)

Now, ∆(Sn/∆Sn) = Sn+1∆(1/∆Sn) + 1.

Hence,

T1n = Sn+1 + 1/∆(1/∆Sn). (2.16)

Introduce here the variables

ε
(n)
0 = Sn,

ε
(n)
1 = 1/∆Sn = 1/∆ε

(n)
0 ,

ε
(n)
−1 = 0, ε

(n)
2 = T1n

12



2.5 The ∆2 transform

Then we have

ε
(n)
1 = ε

(n+1)
−1 + 1/∆ε

(n)
0 ,

and from Eq. (2.16)

ε
(n)
2 = ε

(n+1)
0 + 1/∆ε

(n)
1 ,

This can be generalized as

ε
(n)
k+1 = ε

(n+1)
k−1 + 1/∆ε

(n)
k , k = 0, 1, ...,

Collected together, the transform

ε
(n)
1 = 0, ε

(n)
0 = Sn,

ε
(n)
k+1 = ε

(n+1)
k−1 + 1/∆ε

(n)
k , k = 0, 1, ..., (2.17)

is called the ε transform.

2.5.2 The θ transform

In order to proceed with the generalization of the ∆2 transform, we may now

demand instead of (2.15) that

∆2gn = 0 (2.18)

using Eq. (2.18) in (2.14) we get

T2n =
∆2(Sn/∆Sn)

∆2(1/∆Sn)
(2.19)

Now

∆2(Sn/∆Sn) = ∆{Sn+1∆(1/∆Sn)}
Therefore, if we define

θ
(n)
−1 = 0, θ

(n)
0 = Sn,

θ
(n)
1 = 1/∆Sn = 1/∆θ

(n)
0 , θ

(n)
2 = T2n

we have from Eq. (2.19)

13



2.5 The ∆2 transform

θ
(n)
1 = θn+1

−1 + 1/∆θ
(n)
0 ,

θ
(n)
2 = ∆(θn+1

0 ∆θ
(n)
1 )/∆2θ

(n)
1

The above two relations can be generalized as

θ
(n)
2k+1 = θ

(n+1)
2k−1 + 1/∆θ

(n)
2k ,

θ
(n)
2k+2 = ∆(θ

(n+1)
2k ∆θ

(n)
2k+1)/∆

2θ
(n)
2k+1 (2.20)

= θ
(n)
2k+1 +

∆θ
(n+1)
2k ∆θ

(n+1)
2k+1

∆2θ
(n)
2k+1

This is the θ transform of Brenziski [1971]. Here also only the even order

transforms are meaningful.

However, in our investigation we will concentrate our attention only on the

Pade and u-approximation and work then out in details. This is the object of the

next chapter.

14



Chapter 3

Method of Pade and

u-Approximation

We have seen that expansion of a function in terms of Chebyshev polynomials

gives a power-series expansion that is much more efficient on the interval (-1,

1) than the Maclaurin expansion. In this application, we measure efficiency by

the computer time required to evaluate the function, plus some consideration

of storage requirements for the constants. Since the arithmetic operations of

a computer can directly evaluate only polynomials, we limit our discussion on

more efficient approximations to rational functions, which are the ratios of two

polynomials.

3.1 Approximation with Rational Functions

Our discussion of methods of finding efficient rational approximations will be ele-

mentary and introductory only. Obtaining truly best approximations is a difficult

subject. In this present stage of development it is as much art as science, and

requires successive approximations form a ”suitably close” intial approximation.

Our study will serve to introduce some of the ideas and procedures used.

We start with a discussion of Pade approximations. Suppose we wish to

represent a function as the quotient of two polynomials:

f(x) = RN(x) =
a0 + a1x + a2x

2 + · · ·+ anx
n

b0 + b1x + b2x2 + · · ·+ bmxm
, N = n + m.

15



3.1 Approximation with Rational Functions

The constant term in the denominator can be taken as unity without loss

of generality, since we can always convert to this form by dividing numerator

and denominator by b0. The constant b0 will generally not be zero, for, in that

case, the fraction would be undefined at x = 0. The most useful of the Pade

approximations are those with the degree of numerator equal to, or one greater

than, the degree of the denominator. Note that the number of constants in RN(x)

is N + 1 = n + m + 1.

The Pade approximations are related to Maclaurin expansions in that the

coefficients are determined in a similar fashion to make f(x) and RN(x) agree at

x = 0 and also to make the first N derivatives agree at x = 0.

We begin with Maclaurin series for f(x) (we use only terms through xN) and

write

f(x)−RN(x) = (c0 + c1x + c2x
2 + · · ·+ cNxN)− a0 + a1x + · · ·+ anxn

b0 + b1x + · · ·+ bmxm

(3.1)

The coefficient ci are f (i)(0)/(i!) of the Maclaurin expansion. Now if f(x) =

RN(x) at x = 0, the numerator of Eq. (3.1) must have no constant term. Hence

c0 − a0 = 0 (3.2)

In order for the first N derivatives of f(x) and RN(x) to be equal at x = 0,

the coefficients of the power of x up to and including xN in the numerator must

all be zero also. This gives N additional equations for the a′s and b′s. The first

16



3.1 Approximation with Rational Functions

n of these involves a′s, the rest only b′s and c′s:

b1 + c1 − a1 = 0,

b2c0 + b1c1 + c2 − a2 = 0,

b3c0 + b2c1 + b1c2 + c3 − a3 = 0,
...

bmcn−m + bm−1cn−m+1 + · · ·+ cn − an = 0, (3.3)

bmcn−m+1 + bm−1cn−m+2 + · · ·+ cn+1 = 0,

bmcn−m+2 + bm−1cn−m+3 + · · ·+ cn+2 = 0,
...

bmcN−m + bm−1cN−m+1 + · · ·+ cN = 0,

Note that, in each equation, the sum of the subscripts on the factors of each

product is the same, and is equal to the exponent of the x-term in the numerator.

The N + 1 equations of Eqs. (3.2) and (3.4) give the required coefficients of the

Pade approximation. We illustrate this by an example.

Example: Find the rational approximants of arctanx for N = 9. Use in the

numerator a polynomial of degree five.

The maclaurin series through x9 is

arctanx = x− 1

3
x3 +

1

5
x5 − 1

7
x7 +

1

9
x9 (3.4)

We form, analogously to Eq. (3.1),

f(x)−R9(x) = (x− 1

3
x3 +

1

5
x5 − 1

7
x7 +

1

9
x9)− a0 + a1x + · · ·+ a5x

5

b0 + b1x + · · ·+ b4x4

(3.5)

17



3.1 Approximation with Rational Functions

Making coefficients through that of x9 in the numerator equal to zero, we get

a0 = 0,

a1 = 1,

a2 = b1,

a3 = −1

3
+ b2,

a4 = −1

3
b1 + b3,

a5 =
1

5
− 1

3
b2 + b4,

1

5
b1 − 1

3
b3 = 0,

1

7
+

1

5
b2 − 1

3
b4 = 0,

−1

7
b1 +

1

5
b3 = 0,

1

9
− 1

7
b2 +

1

5
b4 = 0.

Solving first the last four equations for the b′s, and then getting the a′s, we

have

a0 = 0, a1 = 1, a2 = 0, a3 =
7

9
, a4 = 0, a5 =

64

945

b1 = 0, b2 =
10

9
, b3 = 0, b4 =

5

21

A rational function which approximates arctanx is then

arctanx =
x + 7

9
x3 + 64

945
x5

1 + 10
9
x2 + 5

21
x4

(3.6)

Before we discuss better approximations in the form of rational functions,

remarks on the amount of effort required for the computation using Eq. (3.6) are

in order. If we implement the equation in a computer as it stands, we would, of

course, use the constants in decimal form, and we would evaluate the polynomials

in nested form:

Numerator = [(0.0677x2 + 0.7778)x2 + 1]x,

Denominator = (0.2381x2 + 1.1111)x2 + 1

18



3.2 Pade Summation

Since additions and subtractions are generally much faster than multiplica-

tions or divisions, we generally neglect them in a count of operations. We have

then three multiplications for the numerator, two for the denominator, plus one

to get x2, and one division, for a total of seven operations.

3.2 Pade Summation

When a power series representation of a function diverges, it indicates the pres-

ence of singularities. The divergence of the series reflects the inability of a poly-

nomial to approximate a function adequately near a singularity. The basic idea of

summation theory is to represent f(z), the function in question, by a convergent

expression. In Euler summation this expression is the limit of a convergent series,

while in Borel summation this expression is the limit of convergent integral.

The difficulty with Euler and Borel summation is that all of the terms of

the divergent series must be known exactly before the ”sum” can be found even

approximately. In realistic perturbation problems only a few terms of a pertur-

bation series can be calculated before a state of exhaustion is reached. Therefore,

a summation algorithm is needed which requires as input only a finite number

of terms of a divergent series. Then, as each new term is computed, it is im-

mediately folded in with the others to give a new and improved estimate of the

exact sum of the divergent series. A well-known summation method having this

property is called Pade summation.

3.2.1 Generalized Pade Summation

The Pade methods that we have introduced here could be called ”one-point” Pade

methods because the approximants are constructed by comparing them with a

power series about a particular point. However, the function in question may have

been investigated in the vicinity of two or more points. For example, its large

ε as well as its small ε dependences may have been determined perturbatively.

One may wish to incorporate information from all these expansions in a single

sequence of Pade approximants. The numerical results are sometimes impressive.
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3.3 Pade Approximation

Suppose f(z) has the asymptotic expansions

f(z) ∼
∞∑

n=0

an(z − z0)
n, z → z0, (3.7)

f(z) ∼
∞∑

n=0

bn(z − z1)
n, z → z1, (3.8)

in the neighborhoods of the distinct points z0 and z1, respectively. A two-

point Pade approximant to f(z) is a rational function F (z) = RN(z)/SM(z)

where SM(0) = 1. RN(z) and SM(z) are polynomials of degrees N and M ,

respectively, whose (N +M +1) are arbitrary coefficients are chosen to make the

first J terms (0 ≤ J ≤ N + M + 1) of the Taylor series expansion of F (z) about

z0 agree with Eq. (3.7) and the first K terms of the Taylor series expansion of

F (z) about z1 agree with (3.8), where J + K = N + M + 1. The formulation of

the general equations for the coefficients of the polynomials RN(z) and SN(z), as

well as the development of efficient numerical techniques for their solution.

3.3 Pade Approximation

The idea of Pade summation is to replace a power series
∑

anxn by a sequence of

rational functions (a rational function is a ratio of two polynomials ) of the form

PN
M (x) =

∑N
n=0 Anx

n

∑M
n=0 Bnxn

, (3.9)

where we choose B0 = 1 without loss of generality. We choose the remaining

(M+N+1) coefficients A0, A1, ..., AN , B1, B2, ..., BM , so that the first (M+N+1)

terms in the Taylor series expansion of PN
M (x) match the first (M +N +1) terms

of the power series
∑∞

n=0 anxn. The resulting rational function PN
M (x) is called a

Pade approximant.

We will see that constructing PN
M (x) is very useful. If

∑
anx

n is a power

series representation of the function f(x), then in many instances PN
M (x) → f(x)

as N,M →∞, even if
∑

anx
n is a divergent series. Usually we consider only the

convergence of the Pade sequences P j
0 , P 1+j

1 , P 2+j
2 , P 3+j

3 , · · · having N = M + J
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3.3 Pade Approximation

with J fixed and M → ∞. The special sequence J = 0 is called the diagonal

sequence.

Example: Computation of p0
1(x). To compute p0

1 we expand this approximant

in a Taylor series: P 0
1 = A0/(1 + B1x) = A0 − A0B1x + O(x2). Comparing

this series with the first two terms in the power series representation of f(x) =∑∞
n=0 anx

n gives two equations : a0 = A0, a1 = −A0B1. Thus, P 0
1 (x) = a0/(1 −

xa1/a0).

The full power series representation of a function need not be known to con-

struct a Pade approximant - just the first M + N + 1 terms. Since Pade approx-

imants involve only algebraic operations, they are more convenient for computa-

tional purposes than Borel summation, which requires one to integrate over an

infinite range the analytic continuation of a function defined by a power series.

In fact, the general Pade approximant can be expressed in terms of determinants.

The Pade approximant PN
M (x) is determined by a simple sequence of matrix

operations. The coefficients B1, ..., BM in the denominator may be computed by

solving the matrix equation in (Bender and Orszag [1985])

a




B1

B2
...

BM


 = −




aN+1

aN+2
...

aN+M


 (3.10)

where a is an M ×M matrix with entries aij = aN+i−j (1 ≤ i, j ≤ M). Then

the coefficients A0, A1, ..., AN in the numerator are given by

An =
n∑

j=0

an−jBj, 0 ≤ n ≤ N (3.11)

where Bj = 0 for j > M . Equations ( 3.10 ) and (3.11) are derived by equating

coefficients of 1, x, ..., xN+M

N+M∑
j=0

ajx
j

M∑

k=0

Bkx
K −

N∑
n=0

Anx
n = O(xN+M+1), x → 0 (3.12)

which is just a restatement of the definition of Pade approximants.

21



3.4 The Method of Pade Approximation

3.4 The Method of Pade Approximation

For the power series expansion of a function f(x) of the real variable x,

f(x) =
∞∑

n=0

anxn, (3.13)

the sequence {Sn} of the partial sums of this series is given by

Sn =
n−1∑

k=0

akx
k, n = 1, 2, ... (3.14)

The Pade approximant [M, N ] of f(x) is the uniquely determined rational

function defined by

[M, N ] =
PM(x)

QN(x)
, (3.15)

where PM(x) and QN(x) are polynomials in x of degree M and N , respectively,

such that for any pair of integers (M, N). So we can write the equation of Pade

approximant as follows:

PN
M (x) =

∑N
n=0 Anxn

∑M
n=0 Bnxn

(3.16)

where An and Bn are the coefficients of the polynomials in the numerator and

denominator of the Pade approximants, respectively.

In order to calculate the Pade approximants of some test series, we first have

proceed as follows:

i) We have calculated the term ai of given test series.

ii) Using these terms we have formed M×N matrix a by the relation aij = aN+i−j,

where 1 ≤ i, j ≤ M

iii) It has been used to solve the matrix equation

a




B1

B2
...

BM


 = −




aN+1

aN+2
...

aN+M


 (3.17)
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3.5 The u-transform

to determined B1, B2, B3, ..., BM . Notice that we have always chosen B0 = 1.

After we have computed the coefficients of denominator i.e., B1, B2, B3, ..., BM ,

then we have calculated the coefficient of numerator An using the coefficient of

denominator Bn and the coefficient of the given test series i.e. using the relation

An =
n∑

j=0

an−jBj, where 0 ≤ n ≤ N (3.18)

where Bj = 0 for j > M and an−j is the term of the given series.

After calculating the coefficient of numerators and denominators then we have

calculated the total sum of the numerator using the coefficient of numerator and

putting the value of x in the relation

N∑
n=0

Anxn

After that we have calculated the total sum of the denominator using the

coefficient of the denominator and putting the value of x in the relation

M∑
n=0

Bnxn

Finally, Pade approximants is obtained by substituting the value of numerator

and denominator in the formula (3.16) of Pade approximant which is given above.

3.5 The u-transform

Let {Sn, n = 1, 2, ...} be an infinite sequence of real numbers tending to a limit

S. Define an associated sequence {gn} such that

S = Sn + gn∆Sn, (3.19)

where ∆ is the usual forward difference operator defined by (Schield [1961];

Gerald [1980])

∆0Sn = Sn

,

∆k+1Sn = ∆kSn+1 −∆kSn, k = 1, 2, ...
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3.5 The u-transform

If {Sn} is, in particular, the sequence formed by the successive partial sums

of some infinite series with terms {an} then

∆Sn = an+1

Also, {Sn} may, in particular, be defined by the sequence of Partial sums of

a power series, i.e., as

Sn =
n−1∑

k=0

akz
k, n = 1, 2, ... (3.20)

where {ak} is the sequence of the coefficients in the perturbation expansion.

Hence, if {gn} can be expressed in terms of {Sn}, S can be evaluated. In

the general case, the term gn depends on all the terms in the infinite sequence

{Si, i = n, n+1, n+2, ...}. A class of techniques for accelerating the convergence

of sequences consists in assuming that each term gn is a function of only (k + 1)

corresponding terms in {Sn}. We thus define the sequence of approximations to

{gn} as

gkn(Sn) = gkn(Sn, ρn+1, · · · ρn+k),

where,

ρn = an+1/an = ∆Sn/∆Sn−1.

If gkn is used as an approximation to gn, we then have a corresponding ap-

proximation Tkn for S obtained by the sequence transform

Tkn = Sn + gkn∆Sn (3.21)

The nth term of the transformed sequence is defined in terms of (k+1) terms of

the original sequence, beginning from the nth term. We call this an approximation

of order k. If the transform is regular or limit preserving, in addition to being

accelerating, then a further application would be useful in evaluating S. Thus

using the transform iteratively we have,

T µ+1
kn = T µ

kn + gµ
kn∆T µ

kn, (3.22)
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3.5 The u-transform

T 0
kn = Sn, g

µ
kn = gµ

kn(∆T µ
kn), (3.23)

where µ is the order of iteration and T µ
kn is the sequence obtained in the µth

iteration of the transform.

The sequence transforms to be described attempt in some sense to simulate

the approach to the limit by a given sequence. A certain transform and its iterates

can be said to accelerate the convergence of a sequence if

|r′n|/|rn| → 0 as n →∞

where,

rn = S − Sn, r′n = S − Tkn.

Stated more simply, the limit can be evaluated to some desired accuracy by

the transform using a rather small number of terms of the original sequence.

For completeness of study we note that a sequence transformation is linear if

(i) Tkn({cSn}) = cTkn({Sn}),

(ii) Tkn({Sn + S ′n}) = Tkn({Sn}) + Tkn({S ′n}),
where c is a constant.

Thus the best approximation to gn seems to be a linear expression in n cor-

responding to ∆2gn = 0. Further refinement can be achieved by adding terms in

1/n and its higher powers. To this end, we write

gn = αn +
k−2∑
i=0

αin
−i = pk−1/n

k−2, (3.24)

where pk−1 is a polynomial of degree (k − 1) in n. Then

∆k(pk−1) = ∆k(nk−2gkn) = 0
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3.5 The u-transform

using this in (3.22) and (3.23) we have

Tkn =
∆k(nk−2Sn/∆Sn)

∆k(nk−2/∆Sn)
, (3.25)

This transform is known as Levin’s u-transform given by

ukn({Sn}) =
∆k(nk−2Sn/∆Sn)

∆k(nk−2/∆Sn)
, k, n = 1, 2, ..., (3.26)

which can be recast in the form

ukn({Sn}) =
Nk(z)

Dk(z)

=

∑k
j=0 vknjSn+jSn+j/∆Sn+j−1∑k

j=0 vknjSn+j1/∆Sn+j−1

⇒ ukn({Sn}) =

∑n+k−1
j=0 zi

∑k
j=0 wknjaj−i∑k

j=0 wknjzi
(3.27)

where

vknj = (−1)j k!

j!(k − j)!
(n + j)k−2,

wknj = (−1)j k!

j!(k − j)!

(n + k − j)k−2

an+k−j−1

,

and ai = 0 for i < 0.

Thus ukn represents a table of rational functions, each element of which is

obtained from n + k terms of the original sequence {Sn} and is an approximant

of the function f(z).

We now show that

f(z)− ukn = ©(zn+k)

To establish this, making use of the symbol Pn(z) to denote any polynomial

in z of degree n. Thus

Sn = Pn−1(z)

Let us also assume that ai 6= 0 for all i > 0. Then it follows that
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3.5 The u-transform

⇒ ∆iSn = ∆i(Pn−1(z))

⇒ ∆iSn = zn(Pn−1(z)) (3.28)

where Pn−1(z) denote some polynomial in z of degree (i− 1).

and, for convenience, writing

bn =
nk−2

an−1zn−1
,

= ∆i(
nk−2

an−1zn−1
),

=
∆i(nk−2)

∆i(an−1zn−1)
,

⇒ ∆i(bn) =
Pi(z)

zn−1
(3.29)

Now, for two sequences {un} and {vn} by using

∆(ukvk) = uk∆vk + vk+1∆uk

we have

∆k(unvn) =
k∑

j=0

k!

j!(k − j)!
∆k−jun+j∆

jvn

and therefore,

∆k(bnSn) =
k−1∑
j=0

k!

j!(k − j)!
∆k−jSn+j∆

jbn + Sn+k∆
kbn.

⇒ ∆k(bnSn) = zPk−1(z) + Sn+k∆
kbn (3.30)

Since each term inside the summation symbol is a polynomial of the same

degree, i.e.,

∆k−jSn+j∆
jbn = zn+jPk−j−1(z)

Pj(z)

zn+j−1

= zPk−1(z)
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3.5 The u-transform

[since, ∆iSn = znPi−1(z), ∆ibn = Pi(z)
zn−1 ]

Hence,

ukn({Sn}) =
∆k(bnSn)

∆kbn

=
zPk−1(z) + Sn+k∆

kbn

∆kbn

=
zPk−1(z)

∆kbn

+ Sn+k

= Sn+k +
zPk−1(z)

∆kbn

= Sn+k +
zPk−1(z)

Pk(z)/zn+k−1

⇒ ukn({Sn}) = Sn+k + zn+k Pk−1(z)

Pk(z)
(3.31)

which completes the demonstration.

Incidentally, the right hand side of Eq. (3.31) brings into focus the extrap-

olative nature of the u−transform in its assessment of the limit of an infinite

sequence. In this case, the ”remainder” is clearly in the form of a rational func-

tion and can be obtained in closed form. Since it is evident from Eq. (3.27)

that

ukn({Sn}) =
Pn+k−1(z)

Pk(z)

(disregarding the exact cancellation of the coefficient of the highest power in

the numerator), Eq. (3.29) can be rewritten as

ukn({Sn}) = Sn+k + zn+k

∑k−1
j=0 rknjz

j

∑k
j=0 wknjzj

(3.32)

where

rknj =
k−1∑
i=j

wk,n,k+j−ian+i.

When some ai’s vanish, suitable modifications in the above considerations

may be made by correspondingly redefining {Sn}.
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3.6 The Method of u-transformation

3.6 The Method of u-transformation

If {Sn, n = 1, 2, ...} is the sequence of partial sums of a power series and ∆ the

forward difference operator (Schield [1961]; Gerald [1980]), i.e.,

∆0Sn = Sn

∆k+1Sn = ∆kSn+1 −∆kSn, k = 1, 2, ...

the kth order u−transform is then defined by

ukn({Sn}) =
∆k(nk−2Sn/∆Sn)

∆k(nk−2/∆Sn)
, k, n = 1, 2, ...,

which can be recast in the form

ukn({Sn}) =
Nk(z)

Dk(z)

=

∑k
j=0 vknjSn+jSn+j/∆Sn+j−1∑k

j=0 vknjSn+j1/∆Sn+j−1

=

∑n+k−1
j=0 zi

∑k
j=0 wknjaj−i∑k

j=0 wknjzi

where

vknj = (−1)j k!

j!(k − j)!
(n + j)k−2,

wknj = (−1)j k!

j!(k − j)!

(n + k − j)k−2

an+k−j−1

,

and ai = 0 for i < 0.

Thus ukn represents a table of rational functions, each element of which is

obtained from n + k terms of the original sequence {Sn} and is an approximant

of the function f(z).

To calculate the u−approximants of a test series we have followed the following

steps:
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3.7 Calculation of the u−approximants : an example

(i.) Calculate the coefficient of the given series i.e., ai where 0 ≤ i ≤ n

(ii.) Calculate wknj from the relation

wknj = (−1)j k!

j!(k − j)!

n + k − jk−2

an+k−j−1

,

(iii.) Calculate the sum of one part of the numerator i.e.,
∑∞

i=0 wkniaj−i

(iv.) After calculating the above part the total sum of the numerator was

obtained from the relation
∑n+k−1

j=0 zi
∑k

j=0 wknjaj−i

(v.) Then calculate the total sum of the denominator of the u−approximants

from the relation
∑k

j=0 wknjz
i

(vi.) Finally we have calculated the u−approximants from definition (3.27)

given above

3.7 Calculation of the u−approximants : an ex-

ample

Here we discuss in some detail the explicit calculation of the approximant u31 for

the series expansion of 1
x
ln(1 + x) (series 2 of Table 3.1) as an example. Thus,

taking n = 1 and k = 3,

u31 =

∑3
j=0 xj

∑3
i=0 w31iaj−i∑3

j=0 w31jxj
,

with

w31j = (−1)j 3!

j!(3− j)!

(4− j)

a3−j

Now,
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3.7 Calculation of the u−approximants : an example

1

x
ln(1 + x) =

1

x
(x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · · )

= (1− 1

2
x +

1

3
x2 − 1

4
x3 + · · · )

For this series

an =
(−1)n

n + 1
,

so that

w310 = (−1)0 3!

0!(3− 0)!

(4− 0)

a3−0

=
4

a3

=
4

−1/4
= −16

w311 = (−1)1 3!

1!(3− 1)!

(4− 1)

a3−1

= −3.2.1

1.2.1

3

a2

= −3
3

1/3
= −27

w312 = (−1)2 3!

2!(3− 2)!

(4− 2)

a3−2

=
3.2.1

2.1.1

2

a1

= 3
2

−1/2
= −12
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3.7 Calculation of the u−approximants : an example

w313 = (−1)3 3!

3!(3− 3)!

(4− 3)

a3−3

= − 3!

3!0!

1

a0

= −1

1
= −1

Now we calculate the numerator of the approximant u31, taking

Ni =
3∑

i=0

w31iaj−i

= w310aj−0 + w311aj−1 + w312aj−2 + w313aj−3

= −16aj − 27aj−1 − 12aj−2 − aj−3

Therefore,

N3(x) =
3∑

j=0

xj(−16aj − 27aj−1 − 12aj−2 − aj−3)

= −16a0 + x(−16a1 − 27a0) + x2(−16a2 − 27a1 − 12a0)

+x3(−16a3 − 27a2 − 12a− 1− a0)

= −16(1) + x{−16(−1/2)− 27(1)}+ x2{−16(1/3)− 27(−1/2)− 12(1)}
+x3{−16(−1/4)− 27(1/3)− 12(−1/2)− 1}

= −16− 19x− 23

6
x2

[since, ai = 0 for i < 0]

Again, we calculate the denominator of the approximant u31, taking,

D3(x) =
3∑

j=0

w31jx
j

= w310x
0 + w311x

1 + w312x
2 + w313x

03

= −16− 27x− 12x2 − x3
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3.7 Calculation of the u−approximants : an example

Table 3.1: Test series and their u−approximants

No. Test Series numerators and Denominators

(1.) ex =
∑∞

n=0
xn

n!
N3(x) = 1 + 1

4
x

D3(x) = 1− 3
4
x + 1

4
x2 − 1

24
x3

(2.) 1
x
ln(1 + x) N3(x) = 16 + 19x + 23

6
x2

=
∑∞

n=0
(−1)nxn

n+1
D3(x) = 16 + 27x + 12x2 + x3

(3.)
∫ infty

0
e−t

1+xt
dt N4(x) = 1 + 231

25
x + 442

25
x2 + 98

25
x3

=
∑∞

n=0 n!(−x)n D4(x) = 1 + 256
25

x + 648
25

x2 + 348
25

x3 + 24
25

x4

(4.)
√

2/π
∫∞

0
e−t2/2

1−x2t2
dt N4(x) = 1 + 423

25
x2 + 1517

25
x2 + 759

25
x6

=
∑∞

n=0(−1)n (2n)!
2nn!

x2n D4(x) = 1 + 448
25

x2 + 378
5

x4 + 336
5

x6 + 21
5
x8

(5.)
√

π/2erf(x)/x N4(x) = 1 + 37
225

x2 + 23
675

x4 + 4
2625

x6

=
∑∞

n=0
(−1)n

n!
x2n

2n+1
D4(x) = 1 + 112

225
x2 + 1

10
x4 + 2

225
x6 + 1

5400
x8

Thus, we can write,

u31 =
N3(x)

D3(x)

=
−16− 19x− 23

6
x2

−16− 27x− 12x2 − x3

=
16 + 19x + 23

6
x2

16 + 27x + 12x2 + x3
.

Finally, putting the value of x in this relation we can get required approxima-

tion.

The table 3.1 is a list of some functions and the numerators and denominators

of their respective u−approximants.
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Chapter 4

Comparative Study of Pade and

u-approximants on some test

series

In this chapter we make a comparative study of Pade approximants (PAppxs) and

u−approximants (uAppxs) calculated from the series expansions of some known

functions. In the previous chapter the actual calculation of an u−approximant

was given in some detail. Table 3.1 is a list of these functions and the numerators

and denominators of their respective uAppxs. The numerical efficiency of these

approximants in relation to PAppxs for these functions appear in tables 4.1, 4.2

and 4.3. The comparison of the actual functions with their PAppxs and uAppxs

is shown in Figs. 4.1 to 4.5.

The use of the u−transform as a generator of approximants has not previously

been investigated. Preliminary investigations on forming rational approximants

with the u−transform indicate unambigously its capability to achieve better re-

sults than the Pade scheme. The u−transform has the considerable practical ad-

vantage of being simple in structure and is consequently easier to implement. The

definition is more direct and for a given number of terms used in the transform,

the u-approximant requires less algebraic manipulations than the Pade scheme.

Before considering the results it should be made clear that the number of terms

of the power series required to obtain an aprroximant depends on the degree of

both its denominator and the numerator. Thus direct computation of the Pade
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4.1 Comparison of the Numerical Results

approximant [M,N ] requires M +N +1 partial sums of the power series, whereas

any approximant {M, N} given by the u−transform has the form {M,M − 1}
and uses M + 1 partial sums.

In all the examples n = 1 in ukn and for brevity we shall write uk for uk1.

4.1 Comparison of the Numerical Results

The actual values of the approximants and their errors [error = abs(exactvalue−
approximant)] are listed in Tables 4.1, 4.2 and 4.3 for exponential series ex for x =

1, x = 5 and for logarithmic series 1
x
ln(1+x) for x = 1. Here we have considered

two series where one is positive series and the other is alternating. Below we

discuss convergence rates and errors of u−approximants and Pade approximants

separately. From Tables 4.1 through 4.3 we have taken different terms of series

which indicates in the first column in each table and taking the accuracy upto

five decimal places of the approximants. Everywhere we have observed that Pade

approximants need more terms than the u−approximants of the original series.

We have calculated error terms in exponential form which indicates in the last

two columns in each table.

In table 4.1, we have taken 21 terms of the series which indicates in the

first column. For calculating the required accuracy, Pade approximant needs

minimum eight terms of the series whereas u−approximant needs six terms. We

have observed that the error of u−approximants is more smaller than the Pade

approximants. In table 4.2, we have taken 27 terms of the series which indicates

in the first column. For calculating the required accuracy, Pade approximant

needs minimum nineteen terms of the series whereas u−approximant needs only

thirteen terms. We have observed that the error of u−approximants is much more

smaller than the Pade approximants. Here we also observed that upto first seven

terms Pade approximants gives unexpected result. In table 4.3, we have taken

18 terms of the series which indicates in the first column. For calculating the

required accuracy, Pade approximant needs minimum seven terms of the series

whereas u−approximants needs only six terms. We have observed that the error

of u−approximants is more smaller than the Pade approximants upto fourteen

terms. On the other hand the error of Pade approximant is more smaller than
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4.1 Comparison of the Numerical Results

Table 4.1: A comparison of the convergence rates of the Pade approximants and

u-approximants to ex at x = 1.

k Exact Value Pade Appxs u-Appxs Error of Error of

PN
M (1) uk({Sn}) u-Appxs. Pade Appxs.

0 2.71828 P 0
0 = 1.00000 1.71828

1 2.71828 P 0
1 = ∞ u1 = 0.00000 2.7 ∞

2 2.71828 P 1
1 = 3.00000 u2 = 2.00000 7.2× 10−1 2.8× 10−1

3 2.71828 P 1
2 = 2.66667 u3 = 2.72727 9.0× 10−3 5.2× 10−2

4 2.71828 P 2
2 = 2.71429 u4 = 2.71845 1.6× 10−4 4.0× 10−3

5 2.71828 P 2
3 = 2.71875 u5 = 2.71828 1.4× 10−5 4.7× 10−4

6 2.71828 P 3
3 = 2.71831 u6 = 2.71828 4.5× 10−9 2.8× 10−5

7 2.71828 P 3
4 = 2.71828 u7 = 2.71828 2.4× 10−10 2.3× 10−6

8 2.71828 P 4
4 = 2.71828 u8 = 2.71828 2.7× 10−12 1.1× 10−7

9 2.71828 P 4
5 = 2.71828 u9 = 2.71828 1.4× 10−14 6.7× 10−9

10 2.71828 P 5
5 = 2.71828 u10 = 2.71828 1.2× 10−14 2.8× 10−10

11 2.71828 P 5
6 = 2.71828 u11 = 2.71828 4.4× 10−16 1.4× 10−11

12 2.71828 P 6
6 = 2.71828 u12 = 2.71828 4.4× 10−16 4.8× 10−13

13 2.71828 P 6
7 = 2.71828 u13 = 2.71828 4.4× 10−16 2.0× 10−14

14 2.71828 P 7
7 = 2.71828 u14 = 2.71828 4.4× 10−16 8.9× 10−16

15 2.71828 P 7
8 = 2.71828 u15 = 2.71828 8.9× 10−16 4.4× 10−16

16 2.71828 P 8
8 = 2.71828 u16 = 2.71828 8.9× 10−16 4.4× 10−16

17 2.71828 P 8
9 = 2.71828 u17 = 2.71828 8.9× 10−16 4.4× 10−16

18 2.71828 P 9
9 = 2.71828 u18 = 2.71828 4.4× 10−16 4.4× 10−16

19 2.71828 P 9
10 = 2.71828 u19 = 2.71828 4.4× 10−16 4.4× 10−16

20 2.71828 P 10
10 = 2.71828 u20 = 2.71828 4.4× 10−16 4.4× 10−16
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4.1 Comparison of the Numerical Results

Table 4.2: A comparison of the convergence rates of the Pade approximants and

u-approximants to ex at x = 5.

k Exact Value Pade Appxs u-Appxs Error of Error of

PN
M (1) uk({Sn}) u-Appxs. Pade Appxs.

0 148.41316 P 0
0 = 1.00000 147.41316

1 148.41316 P 0
1 = −0.25000 u1 = 0.44444 1.5× 102 1.5× 102

2 148.41316 P 1
1 = −2.33333 u2 = 0.11765 1.5× 102 1.5× 102

3 148.41316 P 1
2 = 1.45455 u3 = −1.11765 1.5× 102 1.5× 102

4 148.41316 P 2
2 = 9.57143 u4 = 456.00000 3.1× 102 1.4× 102

5 148.41316 P 2
3 = −12.75000 u5 = 108.50965 4.0× 10 1.6× 102

6 148.41316 P 3
3 = −169.00000 u6 = 145.98121 2.4 3.2× 102

7 148.41316 P 3
4 = 71.38462 u7 = 148.51068 9.8× 10−2 7.7× 10

8 148.41316 P 4
4 = 128.61905 u8 = 148.42553 1.2× 10−2 2.0× 10

9 148.41316 P 4
5 = 158.62097 u9 = 148.41345 2.9× 10−4 1.0× 10

10 148.41316 P 5
5 = 149.69688 u10 = 148.41315 8.1× 10−6 1.3

11 148.41316 P 5
6 = 148.00123 u11 = 148.41315 4.5× 10−6 4.1× 10−1

12 148.41316 P 6
6 = 148.36220 u12 = 148.41316 2.4× 10−6 5.1× 10−2

13 148.41316 P 6
7 = 148.42659 u13 = 148.41316 5.3× 10−8 1.3× 10−2

14 148.41316 P 7
7 = 148.41469 u14 = 148.41316 1.6× 10−7 1.5× 10−3

15 148.41316 P 7
8 = 148.41282 u15 = 148.41316 1.9× 10−7 3.4× 10−4

16 148.41316 P 8
8 = 148.41312 u16 = 148.41316 1.0× 10−7 3.6× 10−5

17 148.41316 P 8
9 = 148.41317 u17 = 148.41316 5.5× 10−8 6.8× 10−6

18 148.41316 P 9
9 = 148.41316 u18 = 148.41316 2.8× 10−8 6.7× 10−7

19 148.41316 P 9
10 = 148.41316 u19 = 148.41316 4.0× 10−9 1.1× 10−7

20 148.41316 P 10
10 = 148.41316 u20 = 148.41316 2.0× 10−9 1.0× 10−8

21 148.41316 P 10
11 = 148.41316 u21 = 148.41316 2.9× 10−10 1.5× 10−9

22 148.41316 P 11
11 = 148.41316 u22 = 148.41316 1.2× 10−10 1.2× 10−10

23 148.41316 P 11
12 = 148.41316 u23 = 148.41316 2.2× 10−11 1.9× 10−11

24 148.41316 P 12
12 = 148.41316 u24 = 148.41316 8.2× 10−12 3.4× 10−12

25 148.41316 P 12
13 = 148.41316 u25 = 148.41316 3.0× 10−12 9.7× 10−13

26 148.41316 P 13
13 = 148.41316 u26 = 148.41316 7.4× 10−13 2.4× 10−12
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4.1 Comparison of the Numerical Results

Table 4.3: A comparison of the convergence rates of the Pade approximants and

u-approximants to 1
x
ln(1 + x) at x = 1.

k Exact Value Pade Appxs u-Appxs Error of Error of

PN
M (1) uk({Sn}) u-Appxs. Pade Appxs.

0 0.69315 P 0
0 = 1.00000 3.1× 10−1

1 0.69315 P 0
1 = 0.66667 u1 = 0.75000 5.7× 10−2 2.6× 10−2

2 0.69315 P 1
1 = 0.70000 u2 = 0.68750 5.6× 10−3 6.9× 10−3

3 0.69315 P 1
2 = 0.69231 u3 = 0.69345 3.1× 10−4 8.4× 10−4

4 0.69315 P 2
2 = 0.69333 u4 = 0.69314 4.8× 10−6 1.9× 10−4

5 0.69315 P 2
3 = 0.69312 u5 = 0.69315 5.9× 10−7 2.5× 10−5

6 0.69315 P 3
3 = 0.69315 u6 = 0.69315 4.9× 10−8 5.3× 10−6

7 0.69315 P 3
4 = 0.69315 u7 = 0.69315 1.1× 10−9 7.6× 10−7

8 0.69315 P 4
4 = 0.69315 u8 = 0.69315 9.2× 10−11 1.5× 10−7

9 0.69315 P 4
5 = 0.69315 u9 = 0.69315 8.8× 10−12 2.3× 10−8

10 0.69315 P 5
5 = 0.69315 u10 = 0.69315 3.8× 10−10 4.4× 10−9

11 0.69315 P 5
6 = 0.69315 u11 = 0.69315 3.6× 10−10 6.7× 10−10

12 0.69315 P 6
6 = 0.69315 u12 = 0.69315 4.1× 10−10 1.3× 10−10

13 0.69315 P 6
7 = 0.69315 u13 = 0.69315 1.2× 10−11 2.0× 10−11

14 0.69315 P 7
7 = 0.69315 u14 = 0.69315 1.3× 10−11 3.7× 10−12

15 0.69315 P 7
8 = 0.69315 u15 = 0.69315 4.6× 10−10 5.9× 10−13

16 0.69315 P 8
8 = 0.69315 u16 = 0.69315 5.9× 10−10 1.1× 10−13

17 0.69315 P 8
9 = 0.69315 u17 = 0.69315 7.5× 10−10 1.7× 10−14
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4.2 Comparison of the Graphical Representation

 

Figure 4.1: Rational approximants for f(x) = ex =
∑∞

n=0
xn

n!
.

the u−approximant in the rest of three terms. From overall study we conclude

that uAppxs is better representation than the PAppxs for the same number of

terms of the series.

4.2 Comparison of the Graphical Representa-

tion

Now we make a comparative study of Pade approximants (PAppxs) and u-approximants

(uAppxs) with the exact value and/or partial sum as follows.

Case 1: Taking f(x) = ex =
∑∞

n=0
xn

n!
.

The first example is on approximating ex in the interval (−∞,∞) . It is well

known that in binary arithmetic the problem can be reduced to one of approxi-
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4.2 Comparison of the Graphical Representation

mating ex in the finite interval (−ln2, ln2), or approximately (−0.7, 0.7). Figure

4.1 shows the different approximants along with the actual function. It is seen

that u3 represents the function well over almost the entire range (−1.5, 1.5) and

is a better representation than the [2, 2]PAppxs. For calculation of u3, only four

terms of the original series as input we used, whereas to compute [2, 2] five terms

of the original series are essential. Here we have calculated the exact value of the

original series and compared with the different approximants in the given figure

4.11. On the other hand we have observed that u2 is more divergent than the

[1, 1]PAppxs beyond the range (−0.7, 0.7) which uses the same number of terms.

Also it is seen that [2, 1]PAppxs represents the function well over almost the en-

tire range (−1.5, 1.5) and is therefore, a better representation than u2 whereas

[2, 1]PAppxs uses the four terms and u2 uses the three terms of the original se-

ries respectively. We thus conclude that u−approximants is better representation

than the Pade approximants in the given range. The straddling property of PAp-

pxs is not present here as the exponential series is not a Stieltjes series. However,

the higher PAppxs approaches the true limit.

Case 2: Taking f(x) = 1
x
ln(1 + x) =

∑∞
n=0

(−1)nxn

n+1

The second example is on approximating 1
x
ln(1 + x) in the whole range. Fig-

ure 4.2 shows the different approximants along with the actual function. Now,

the given series for 1
x
ln(1 + x) converges very slowly for x < 1 and diverges for

x > 1. It is seen that u3 and [2, 1]PAppxs represents the function well over almost

the entire range (−1, 2.5) and is a better representation than the other approxi-

mants, where uses the same number of terms of the given series i.e., needs only

four terms. Here we have calculated the exact value of the original series and

compared with the different approximants in the given figure 4.2. On the other

hand it is seen that for u2 represents the fucntion well over almost the entire

range (−1, 2.5) and is a better representation than the [1, 1]PAppxs for the same

number of terms. Here we have used the exct value of the original series. In

1Notice that in figure 4.1, we have calculated the exact value instead of partial sum of actual
function. Also we have denoted the exact value by f which used in figure.
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4.2 Comparison of the Graphical Representation

 

Figure 4.2: Rational approximants for f(x) = 1
x
ln(1 + x) =

∑∞
n=0

(−1)nxn

n+1

the figure 4.21, f indicates the exact value of the original series. A glance at

figure 4.2 confirms that u3 reproduces the function 1
x
ln(1 + x) over the range

(−1, 2.5), i.e., beyond the radius of convergence of the series. Overall we can con-

clude that u−approximants is better representation than the Pade approximants.

Case 3: Taking f(x) =
∫∞

0
e−t

1+xt
dt =

∑∞
n=0 n!(−x)n.

The third example is on approximating
∫∞

0
e−t

1+xt
dt in the whole range. Series

3 is a divergent Stieltjes series and is obtained by expanding as an infinite power

series in t, the function

f(x) =

∫ B

A

ρ(t)

1 + xt
dt,

where ρ(t), t and x are real, and each of the limits A and B (B > A) may

be finite or infinite. Taking ρ(t) = e−t, the range of integration (0,∞) and ex-

panding (1 + xt)−1 one gets Euler’s famous series (series 3 of table 3.1). Figure

1Notice that in figure 4.2, we have calculated the exact value instead of partial sum of actual
function. Also we have denoted the exact value by f which used in figure.
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4.2 Comparison of the Graphical Representation

 

Figure 4.3: Rational approximants for f(x) =
∫∞
0

e−t

1+xt
dt =

∑∞
n=0 n!(−x)n.

4.3 shows the different approximants along with the partial sum. It is seen that

u2 and [2, 1]PAppxs reproduce the same approximants over the interval (0, 2),

whereas u2 needs only three terms of the series and [2, 1]PAppxs needs four terms

of the series i.e., one term more than the uAppxs. It is observed that u3 and

u4 represent the functions well over almost the entire range (0, 2) and are better

representation than [2, 2]PAppxs and [1, 1]PAppxs. Here we use the partial sum

of only four terms of the series. The given series is an alternating series, so the

partial sums oscilate. In the figure 4.3, f indicates the partial sum upto four

terms.

Case 4: Taking f(x) =
√

2
π

∫∞
0

e−t2/2

1−x2t2
dt =

∑∞
n=0(−1)n (2n)!

2nn!
x2n.

The fourth example is on approximating
√

2
π

∫∞
0

e−t2/2

1−x2t2
dt over the interval

(−∞, +∞). Series 4 is a divergent Stieltjes series and is obtained by expanding

as an infinite power series in x, the function
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4.2 Comparison of the Graphical Representation

 

Figure 4.4: Rational approximants for f(x) =
√

2
π

∫∞
0

e−t2/2

1−x2t2
dt =

∑∞
n=0(−1)n (2n)!

2nn!
x2n.

√
2

π

∫ B

A

ρ(t)

1− x2t2
dt,

where ρ(t), t and x are real, and each of the limits A and B (B > A) may

be finite or infinite. If ρ(t) is an even function of t and the domain of integration

(−∞, +∞), we can rewrite the integral as

f(x) = 2

∫ ∞

0

ρ(t)

1− x2t2
dt.

To get series 4 of table 3.1 (in the previous chapter), we take ρ(t) =
√

2
π
e−t2/2

.

The PAppxs [M,M ] and [M, M−1] for this case are teh approximants of a special

case of Gauss’s continued fraction. These approximants bound the exact value

from above and below. Figure 4.4 shows the different approximants along with

the partial sum. It is seen that u2 and u1 are reproduces the different approx-

imants over the range (−1, 1). It is also observed that these two approximants

are bounded by the other two Pade approximants [1, 1]PAppxs and [1, 0]PAppxs.

It is decided that u1 and u2 represents the functions well over almost the entire
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4.2 Comparison of the Graphical Representation

 

Figure 4.5: Rational approximants for f(x) =
√

π/2erf(x)/x =
∑∞

n=0
(−1)n

n!
x2n

2n+1
.

range (−1, 1) and the better representations than [1, 1]PAppxs and [1, 0]PAppxs.

Here we use the partial sum of only three terms of the original series. The given

series is an alternating series, so the partial sum oscilate. In the figure 4.4, f

indicates the partial sum upto three terms.

Case 5. Taking f(x) =
√

π/2erf(x)/x =
∑∞

n=0
(−1)n

n!
x2n

2n+1
.

Finally we have considered the function
√

π/2erf(x)/x over the interval (−∞, +∞).

The figure 4.5 shows the different approximants indicated by different lines along

with the partial sum. It is seen that u2 and [2, 1]PAppxs represent the function

closely well over almost the entire range (0, 5). Here we observe that u2 needs

three terms and [2, 1]PAppxs needs four terms of the series. It is also seen that

u3 and u4 substitute the function well over almost the entire range (0, 5) and are

better approximation than [2, 2]PAppxs and [1, 1]PAppxs. Also we observed that

PAppxs needs more terms than the uAppxs of the original series. Here we used

the partial sum of only four terms of the series. The given series is an alternating
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4.2 Comparison of the Graphical Representation

series, so the partial sum oscilate. In the figure 4.5, f indicates the partial sum

upto four terms.

It is apparent from the comparison of the two kinds of approximants for these

representative convergent and divergent series that, for a given number of terms

as input, the uAppxs are, on the whole, significantly better.

Finally, from the above observation we conclude that for the cases we have

considered u−approximants is the better representation than the Pade approxi-

mants.
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Conclusions and Discussion

In our work we have established a new method of finding rational approximants

of a function from its series expansion by applying the u-transform. We have

developed the theory, algorithm and program for approximation of a function by

u-transform. We have also reproduced the well-established Pade Approximant

for these functions. The new approximants have been compared with the corre-

sponding Pade approximants on some test functions. Given a fixed number of

terms of a power series as input, we found that the u-approximant is better rep-

resentation than the Pade approximant for a wide class of test series. However,

the present method is unable to reproduce the poles of a function with the same

facility as the Pade approximant but if it is known that a function has only poles

and no zeros in a given interval, then the reciprocal of the series can be used to

generate the reciprocal of the desired approximant. In certain cases a regrouping

of the terms of a given series and the application of the u-transform on the groups

separately produces better results. These conclusions are consistent with those

reported previously on sequence of numbers.
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