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1
Introduction



1.1 Background

Vortex methods introduced 1in 1930s by
Rosenhead

Developed for complicated, unsteady and vortical

flows
N-Bod
Digita

y algorithm introduced in 1950s
| computers introduced 1n 1970s

N-Boc

'y stmulation 1s particle-interactions and

calculation cost is O(N?)

Vortex method 1s one of the N-body algorithms



ANSYS Inc.

1.1 Background(Contd...) o ——

e Advantages of Vortex Method (VM)

— Lagrangian based CFD method
— Calculates only regions of non-zero vorticity

— Can be applied to high Reynolds number flows in
complex geometry

— Can be solved convection in straightforward

e Disadvantages of VM

— High computation cost

Asakura, 2002

— Descretization error
— Diffusion error




1.2 The need for acceleration techniques

mmmp N2 Calculation

N  Accelerating N-body calculation




1.3 Motivation

Two ways to reduce calculation cost
— Fast algorithms (Cheng, 1999)

— Special-purpose computers (Susukita, 2003; Narumi,
2006)
Fast algorithm has high proportionality cost at
higher accuracy (Greengard, 1987)

Special-purpose computers have been developed
to accelerate MD simulations (Narumi, 1997)

— It can be applied to accelerate VM calculation

— Fast algorithms can be implemented

— It does not support for Fast Poisson solver

Recently GPGPU has been used to accelerate VM
calculation (Stock, 2008)



1.3 Motivation(Contd...)

e To calculate for high Reynolds number turbulent
flows which required high performance
computational resources

Tennekes and Lumely, A first course Kida, 1994
In turbulence

e The collision of vortex rings contain millions of
particles result in a highly turbulent state



1.4 Previous Studies

Vortex rings have been studied in the broader arena of
vortex 1nteraction (Shariff, 1992)

Large N 1s necessary to capture the essential characteristics
of vortex rings collisions (Winckelmans, 1993)

High Reynolds number 1s necessary to generate a
secondary vortex rings (Mammetti, 1999)

Computational resources are essential for longer

calculation and to produce the fast mechanism of energy
transfer (Chatelain, 2003)

Fast Poisson solvers are still faster compared with VIC
method (Cottet, 2002)

Fast algorithm 1s successfully implemented on special-

purpose computers for astrophysical problems (Makino,
1991, Kawai, 2004)



1.5 Purpose of the present study

To accelerate the high Reynolds number VM calculation
without loss of numerical accuracy

To develop a fast vortex method using special-purpose
computers

To solve the three critical issues
— The efficient calculation of Biot-Savart law and stretching term

— An optimized function table

— Round-off error caused by the partially single precision of
MDGRAPE

— Special treatments for cross product calculation

To implement fast algorithms on special-purpose
computers for further acceleration

Comparative study to validate this scheme



2
Numerical Methods



2.2 Vortex Methods

e Lagrangian methods used to simulate
unsteady, convection-dominated problems

It has a difficulty 1n achieving higher order
spatial accuracy compared to Eulerian
methods

It 1s required to consider an accurate viscous
diffusion scheme



2.2.1 Formulation of 3D VM

.. D
Vorticity transport: D(;) (@-Viu+1Vae (2.1
: | (X—X)xco( )
Biot-Savart Law: u(x)=—4ﬂ j dv(x)  (2.2)
N 5/2
Discretized form: u, = L + 6/ )0 r.xy. (2.3)

T arx = (rl.j +0'j)5/2 ! !

1 & | r+(5/2)0°
Stretching term: TR
£ 47[ ; { (r + 0 )5/2 :
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Ly, e (XY )} (2.6)



Core Spreading Method

Viscous Diffusion:

Green’s Function Solution:

Vorticity at arbitrary point:

Cutoff Function:

Core expansion rate:

Position update:

(2.7)

(2.8)

(2.9)

(2.10)

2.11)

(2.12)



2.3 FaSt MethOdS Interaction cell

[ 1 Objective cell

Neighbor cell
(neighbor particles )

Far particles

 Tree Algorithm (Barnes and Hut, 1986)
— Hierarchical data structure
— Calculation cost O(N logN)
— Can be implemented on special-purpose computers

e Fast Multipole Method (Greengard and Rokhlin, 1987)

— All particles are uniformly distributed in a unit cube
— Far particles calculated as a multipole expansion

— Neighbor particles calculated in a direct summation
— Calculation cost 1s proportional to O(N)

e Other fast methods
— Anderson’s method (Anderson, 1992)
— Pseudo-particle multipole method (Makino, 1999)



2.3 Fast Methods(Contd...)

« FMM has been used 1in my calculation
e Biot-Savart equation has been derived as

—7 7{771\4 }xvs (2.13)

nOmnjl

—7 7{77JL]}><VR (2.14)

nOmnjl

. Stretching term derived as

By {77 M, }(y,»vs,.) 215)

Dt 47Zn0mn]1

Ly y{yy.ij}(%.vg) (2.16)

nOanI

Here p 1s order of moment and L, M, R, S are denoted to
simplify the equations.



Summary

e A fast vortex method has been formulated
e 3D core spreading method 1s explained

e Different fast methods are reviewed brietly



4
Fast Vortex Method Calculation
using a Special-purpose
Computer



4.1 Introduction

A mathematical formulation will be developed for VM
calculation using MDGRAPE-2

The efficient calculation of Biot-Savart law and stretching
term will be performed

An optimum range of a function table 1s determined
The cross-product calculation will be demonstrated

The accuracy will be evaluated by calculating the
impingement of two 1dentical vortex rings

The calculated results is compared with and without the
use of MDGRAPE-2 and with referenced work carefully



Special-purpose Computer: MDGRAPE-2
(Narumi, 1997)

e PCI-board for accelerating Molecular Dynamics
Simulation

e Reduced computation cost significantly for N2
calculation

e Particle Memory: 5.0x10° (20MB)
e (Calculation speed: 64 Gflops
e Speed up 10-1000 times faster

e Compatible for FORTRAN and C programming
Languages




Host Machine and MDGRAPE-2

General-purpose Special-purpose
Time Integration, Vorticity, etc.. Induced Velocity, Stretching Term

PCI Interface

MDGRAPE-2
O(N) O(N) O(N?)



Hosts for performance measurement

Special- Host CPU Cache | Memory OS Compiler
purpose
MDGRAPE-2 | Intel P4 512KB | 1GB Linux 8.0 ifort
2.66GHz (2 GB Kernel 2.4.18-14
(1CPU 1 Core) Swap
Memory)
MDGRAPE-3 | Xeon 5160 4096KB | 32GB Cent 4.3 (Final) | ifort
3.0GHz (0 GB Kernel 2.6.9-
(1CPU 2 Core) Swap 34_ELsmp

Memory)




CPU Time[s]

Performance

—e—Intel P4(2.66GHz)
—S—MDGRAPE-2

10

N=6x10*

100 times at N~10°



Efficiency of VM calculation

_ nmd(xmd + ymd + zmd)

N, = - N =5.5x10°
APPL CPUtime(sec/ step) GRAPE
Efficiency: 15 I
N ——MDGRAPE-2
— APPL
n= o Intel P4(2.66GHz)
NGRAPE
1
= o o o o o
05 °
0]
O | | l L
10° 10° 10



Difficulties with MDGRAPE-2 for VM

e Not designed for vector product calculation

e Requires optimum generation of a function table

e (Calculates partly with single precision

Special treatments are required to solve these
problems



4.2 Mathematical Formulations

Coulomb Potential: &, Z ibljg(alerlj‘2+8;)) (4.1)
j=1

@

N N
Coulomb Force: f, = Zbij g(w)rl.j :Zbij g(aij Qrij 2
j=1 j=1
Vortex Method (Induced velocity)

N 2 ( 2
ri +(5/2)0;
ul' = E J I'JXVJ

i=1 47 (l’ + O’ )5/2




4.2 Mathematical Formulations (contd.)

e Input

I :(xij’yij’zij)

e Vector product

ZXVJZ

J

Vi ¥

Y
i Y

e 3 x Scalar product

Soryvi =2 Cgrnvirnzri) > X 0.y, 2,70) (46)
J J

=(7},7§,7§-) (4.4)

Y =XV =y, 7)) (4.5)

J

PR SEDS (X,y-?’f, Yi¥i Zzﬂ’}))% > (xly-?’fao,-zl-j?}) (4.7)
j j

J

Z Ly V)= Z (753,75 2,75) = 2 (7l 710) (48)
J J

J




Mathematical Formulations(contd.)

1 1
u =3 ;jgl(w)(rij x7;) (4.9)

stx———Z oWy vy vy -vr. vy %7;)3 (4.11)

3 z y . Z y i
—EZJ: 0075, vy =27 27 = %770 5,7 yijy;)o-j. (4.12)
I=(7r)S—(y'Tl+ ' T2+ 7'T3) (4.14)

Function Table and Coefficients

Here, g (W) A j B j E;j
gl(w)—WJrjz i 1

QU/G)Z r;| = l’i—r-|; w2 | 52 o3 0

w7 | |




Function Table

Function g(w):

g(w): min < w<max (Domain of function)

Wmax < 232

g(w) Function Tablel

Min Max



Block Diagram of MDGRAPE-2 pipeline

1 1 N P — 2 - ..
Pairwise force: f = bij g(aij r; )I”q (3.1)
B — 64bit floating point
A g — = 32bit floating point
unction o e .
J X Bvaluator W) — 40bit fixed point
Output: U; V; W;
Input: x; y; z;
SR 3B->uf-
_t®|__t@_> v || Induced
: Velocity
S
I

Ref: Tetsu Narumi, 1997, PhD Thesis, Tokyo University



Function Evaluator

32FE: 32-bit Function Evaluator
E 32 32FMAJ & 32FMBJ: 32-bit Floating-point Multipliers
é_ > 32
32 32 32 32
I, 32FMAJ 32FE ] 32FMBJ B g(Ajr2)>

Approximation:
g(w)=c, +wlc, + wlc, + wlc, + we,)))

==) 32 bit floating-point calculation
==) Relative accuracy: 10~/



4.3 Typical distribution of vortex elements
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Range of a Function Table

tested table ranges

le-7 to lel -
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4.3.4 Optimum Range of a Function Table
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4.5 Application



Calculation Condition

R = Radius of ring
r = Radius of cross-section
S = Distance between the center

of two rings
@ = Inclined angle of a ring

O~

Position

N

Rer

Inclined

0.05

0.065

2x502x61

400




52 \/(‘xhost _ xmd)2 + (yhost _ ymd)2 + (Zhost o Zmd)
0, =MiN©);0,,,, =mean0);0,,, =maxo); .,

Convection error

10°

10 ‘ —
m O o
0 max
D 8 i
6 mean
10+ I
min
0] -7
5107 . :
= oy
[Ze)
10° . ]
*
10_9 Ll “‘\4 HH\S L
10 10 10 10 10

Number of Ele ments

0 Cm O I
- - - Smax
O O 8 1
mean |
10” " Omi
3
[}
5
?g/
-10
© 10 + .t * * . i
2 *
+ *
10° 10° 10° 10° 10°
Number of Ele ments
10" —
0 o
max
5 O e 8mean |
10 ¢ - + .
. . O min
S
5 s
= 10 L
(]
%
[Ze) * * %
107} - +
*
-8
10 I Lol | Lo
10° 10° 10" 10° 10

Number of Ele ments



Snapshots of vortex elements

Ring radius R=1

Cross-section radius r=0.05
Reynolds number Re=400
Core radius = 0.065, Circulation of ring = 1

Total number of elements = 2x502x61
Particles are evenly distributed
y Initial distance between two rings = 2.7

X Inclined angle = 159



:

0.95r¢
0.9+
0.857
0.8}
0.75¢
0.7+
0.657

Kinetic Energy & Enstrophy

Kinetic energy: Eq. (4.16) and Enstrophy: Eq. (4.17)

Kinetic Energy

—  MDGRAPE-2
© Wnkmns93

~ Intel P4(2.66GHz) |

tr/R>

¢z,

Enstrophy

— Inte] P4(2.66GHz)
~ - “MDGRAPE-2

© Wnkmns93

{r/R?

Wnkmns93: G. S. Winckelmans and Leonard, J. Comp. Phys, 109, 247-273(1993)



Summary

A mathematical formulation has been developed
using MDGRAPE-2

A rigorous assessment of this hardware has been
made for a pair of impinging vortex rings
Computational domain has been investigated that
determines optimal range of a function table

The global kinetic energy and enstrophy has been
evaluated to address the numerical accuracy

The results have good agreement when compared
with the host calculation and referenced work



S
The Study ot Colliding Vortex
Rings using a Special-purpose
Computer and FMM



5.1 Introduction

Simultaneous use of the FMM with MDGRAPE-3

To 1investigate the possibility of further
accelerations

T'he various forms of FMM are investigated

T'he accuracy 1s achieved by simulating the
impingement of two 1dentical inclined vortex rings

The effect of temporal and spatial resolutions will
be investigated

The reconnection of vortex rings 1s observed



Special-purpose Computer: MDGRAPE-3
(Taiji, 2003; Narumi, 2006 )

e Petaflops special-purpose computer and the
successor of MDGRAPE-2

e One small board consists of 2 chips

e One MDGRAPE-3 chip combined with 20 parallel
pipelines

e (Calculation speed of one small board 1s
330GFlops/250MHz

e 12.5 times faster than MDGRAPE-2 ~ MDGRAPE-3 Board
* Total memory/chip: 9Mbits LS | D

TR
:.'- a-,.,:- .
-.I-..'l: .
-
:‘_"!:'ﬂ: s

:.1._'._ =

LA
R




CPU time [s]

[am—
-

10+

Performance

=8—=MDG3

=0—Xecon 5160 (3.0GHz)

~

N=10¢°

1000 times at N~ 106



Efficiency of VM Calculation

nmd (xmd + ymd + zmd) 10
N poy = , N =10
APPL CPUtime(sec/ step) CrAPE
Efficiency: |5 S
N | ——MDGRAPE-3
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Comparative study between
MDGRAPE-2 and MDGRAPE-3



CPU time [s]

10 -

CPU-Time

MDG?2
7 MDG3

~ < Xeon 5160 (3.0GHz)

10



Scaling Error

— Xeon 5160 (3.0GHz)

0.14

0.12 ¢

0.1

0.08 ¢

0.06




[.2 norm error
Z {(uhost o umd )2 + (vhost o de )2 + (Whost o Wmd )2}

L=
Z {uiost + viost + Wiost}
J
—~MDG?2
0 e

10 MDG3
=
Q
£
S 10

D

10-10

(3.14)



FMM on MDGRAPE-3



Hot-Spot of FMM

If we want to calculate for this box

General rule : M2L can not be preformed for neighbors

M2M

Y

red is

blue is

source —» target

Neighbor particles are solved directly

Far particles are solved by the FMM

60

cputime [s]
w
S

It

L| P 2M

M 2M

|| Im2L

[zl

[ M2l

[ Index

| 2P

ElDirect

10

20 30 40
time step

Direct

M2L

50 If the box is too coarse .
this could also be the hot-spot 1his is the hot-spot of the FMM

M2L L2L
! —>
+
Direct M2L

f

Many sources acting on one target



2
L” norm error

Momentum Effect on FMM Accuracy

u, = Z {Z;/M }xvs (2.13)

nOmnjl

[E—
o

Y é\ ™M

X |
2

L" norm error

10 10 10 10
N N

Biot-Savart Stretching
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Cputime [s]

5.4.2 CPU-Time
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L2 norm error

5.4.2 Error

| —e—MDG3

| ——FMM

' ——FMM-MDG?3
| —+—PPM-MDG3

10



Acceleration Ratio

N=10°¢
Biot-Savart Stretching
Direct Direct
lX462 l X119 l X613 l X 52
FMM MDG?3 FMM MDG3
l X 4.1 l X16 l X2.8 l X33
FMM+MDG3 FMM+MDG3




5.5 Vortex Ring Calculation



KK,

Eq. (4.16)
7 ~ Xeon 5160(3GHz)
0.95  \ MDG3
0.9 ~ - -FMM:-MDG3
0.85" AN > Wnkmns93
0.8 AN
0.75r¢
0.7/ o
0.65r¢
0 2 4 6
([/R*

Energy and Enstrophy

G/,

Eq. (4.17)
1 ‘ ‘
— Xeon 5160(3GHz)
0.8 MDG3
» — FMM-MDG3
—A
0.6 Wnkmns93
0.4+ \\\\
\\xxh A gféffgfé\f‘lk
0.2+ I
OO 2 4 6 8
{I/R*

Wnkmns93: G. S. Winckelmans and Leonard, J. Comp. Phys, 109, 247-273(1993)



E(k)

10

10

10~

10

Energy Spectra

~~ Xeon 5160(3GHz)

—=MDG3
FMM-MDG?3

10



5.5.3 Calculation Conditions

Vorticity distribution:
Initial core radius:
Kinetic Energy:
Enstrophy:

Reynolds number:

Number of particles:

o = I exp | —
270’ P13
O0 _»
h
1N
K:—Zul u,
25
N
(=) 0, 0,
I
Re . =—=400
| 4




5.5.4 Effect of Temporal Resolution

A/, =0.1,0.05,0.02
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Kinetic Energy and Enstrophy (dt)
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5.5.5 Effect of Spatial Resolution

Case A B C
Number of Rings 2 2 2
N per Cross Section 190 418 910
Cross Sections 271 1261 5677
Total 102980 | 1054196 | 10332140




Position of vortex elements

Ring radius R=1; Cross-section radius r=0.05
Reynolds number Re=400
Core radius = 2xspace, Circulation of ring = 1

Initial distance between two rings = 3.0

N=10¢°

N=105 Inclined angle = 300
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Kinetic Energy and Enstrophy

eCase A

99




Summary

The vortex method calculation has been accelerated dramatically with
the simultaneous use of the FMM and MDGRAPE-3
Biot-Savart calculation

— The FMM itself accelerates the calculation 462 times, and the
simultaneous use of the MDGRAPE-3 further accelerates it 4.1 times

— The MDGRAPE-3 can accelerate the calculation 119 times, and the
simultaneous use of FMM on MDGRAPE-3 is about 16 times than that of
MDGRAPE-3

Stretching term calculation

— The calculation cost has been reduced 613 times when used FMM, and
another 2.8 times faster by the simultaneous of FMM and MDGRAPE-3

— The MDGRAPE-3 accelerates 52 times and another 33 times when
combined with the FMM

The errors involved in the use of MDGRAPE-3 are less than the errors
of the FMM, and small enough to perform an accurate VM calculation

The effect of temporal and spatial resolutions are important for
accurate calculations



6
Conclusions and Outlook



Conclusion

e A fast vortex method has been developed using

special-purpose computers and the simultaneous
use of FMM and MDGRAPE-3

e The calculation cost has been reduced
significantly by using the proposed acceleration
techniques

e The reconnection of the vortex rings was clearly
observed, and the discretization error became
nearly negligible for the calculation using 10’
elements

e The overall accuracy are satistfactory for VM
calculations



Outlook

The present results indicate that the calculation of further
Reynolds number, the accurate vortex methods requires
significantly larger N, which is possible by using the
present acceleration method

There are still some rooms to improve the acceleration rate

— By reconstructing the subroutines which call MDGRAPE library

— Present routines require to call MDGRAPE library in 18 times for
one cross product term calculation

— The acceleration can be improved by reducing the CALLing times

The overall accuracy can be improved by regenerated a
sophisticated function table for respective problems

Other than the present flow, this method can be applied to
calculate the homogeneous shear flow, smoothed particle
hydrodynamics, dissipative particle dynamics and so on.



