Introductory Number Theory

Problem: You have intercepted a message to a person with public key (e, n), where

$$
e=3199957 \quad \text { and } \quad n=3832716017551
$$

The message consists of six blocks:
0182002821959
3092737753574
3397137880489
2339619796630
2916903963593
1986692232044
You know that each block corresponds to a number that encodes four characters of the standard keyboard according to the tables

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o
01	02	03	04	05	06	07	08	09	10	11	12	13	14	15

p	q	r	s	t	u	v	w	x	y	z	A	B	C	D
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45

T	U	V	W	X	Y	Z	6	1	2	3	4	5	6	7
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60

8	9	0	-	$=$	\sim	$!$	$@$	$\#$	$\$$	$\%$	\wedge	$\&$	$*$	$($
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75

$)$	-	+		,	\cdot	$/$	$<$	$>$	$?$	$;$		$:$	$"$	$[$
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90

$]$	$\{$	$\}$	\mid											
91	92	93	94											

which follow in principle the method described in Paragraph 7.2 on page 87 and page 88 of the course notes. Note that the blank has number 79 and the period has number 81 . Using computer algebra, decrypt the message by breaking the code.
(100 points)

Due date: Monday, November 15, 2021. Submit the decrypted message and a qualitative description how you broke the code. You do not have to write down all numbers explicitly. Normally, your solution should fit on one or two handwritten pages.

