Galois Theory

Problem 1:

- 1. Show that the multiplicative group $\mathbb{Q}^{\times} := \mathbb{Q} \setminus \{0\}$ of nonzero rational numbers is not cyclic. (15 points)
- 2. Suppose that K is a field of characteristic zero. Show that its multiplicative group $K^{\times} := K \setminus \{0\}$ is not cyclic. (10 points)

(This is the first part of Exercise 81 on page 70 in the textbook.)

Problem 2: Suppose that p is a prime and that K is an infinite field of characteristic p > 0.

- 1. Show that there is no algebraic element $\alpha \in K$ with the property that $K = \mathbb{Z}_p(\alpha)$, where \mathbb{Z}_p is viewed as the prime field of K. (5 points)
- 2. Show that the multiplicative group $K^{\times} := K \setminus \{0\}$ is not cyclic. (20 points)

(This is the second part of Exercise 81 on page 70 in the textbook, which contains a hint for the problem.)

Problem 3: Let K be a field with eight elements.

- 1. Copy down the addition table for K that you have obtained in the first part of Problem 4 on Sheet 5 again. (2 points)
- 2. Make an addition table for the group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. (8 points)
- 3. Explain how the two tables are related. (15 points)

Problem 4: Let *K* be a field with eight elements.

1.	Copy down the multiplication table for K that you have	ve obtained in the
	second part of Problem 4 on Sheet 5 again.	(2 points)
2.	Make an addition table for the group \mathbb{Z}_7 .	(8 points)
3.	Explain how the two tables are related.	(15 points)

(You do not need to copy the old tables by hand; you can also submit photocopies. Furthermore, you can make corrections if there were mistakes.)

Due date: Wednesday, November 13, 2019.