Galois Theory

Problem 1: Suppose that $F \subset E$ is a field extension.

1. Show that the set

 $K := \{ \alpha \in E \mid \alpha \text{ is algebraic over } F \}$

- is a subfield of E. (22 points)
- 2. Show that $F \subset K$. (3 points)

(This is Exercise 72 (ii) on page 58 in the textbook, which contains a hint for the problem. The field K is called the algebraic closure of F in E.)

Problem 2: Consider the field $K := \mathbb{Z}_p(t)$ of rational functions with coefficients in \mathbb{Z}_p . Show that the polynomial

$$f(x) := x^p - t \in K[x]$$

is irreducible.

(25 points)

(This is Exercise 75 on page 58 in the textbook, which contains a hint for the problem.)

Problem 3: Show that the polynomial

$$f(x) = x^4 - 10x^2 + 1 \in \mathbb{Q}[x]$$

is irreducible.

(25 points)

(This is Exercise 67 on page 43 in the textbook, which contains a hint for the problem.)

Problem 4: By Moore's theorem (Corollary 53 on page 57 in the textbook), a field K that contains 8 elements is uniquely determined up to isomorphism.

- 1. Write out an addition table for K. (13 points)
- 2. Write out a multiplication table for K. (12 points)

(This is Exercise 61 on page 38 in the textbook, which contains a hint for the problem.)

Due date: Monday, October 28, 2019.