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1 1 � Introduction

1 Introduction

In mathematics, we use various number systems.
The integers Z consist of the positive and negative whole numbers, as

well as zero: 0, ±1, ±2, . . . . They suffice to solve simple equations such as

x − 3 = 0.

The rational numbers Q are quotients of the form a
b

where a and b are
integers and b , 0. They are needed to solve equations such as

4x − 5 = 0.

Rational numbers have a decimal representation which either terminates
or includes a repeating pattern after the decimal point.

The irrational numbers (which have no generally accepted symbol) are
solutions to equations such as

x2 − 2 = 0.

They include any number whose decimal representation does not termi-
nate or repeat.

Together, the rational and irrational numbers make up the real numbers
R.

However, even the real numbers are insufficient to solve equations such
as

x2
+ 1 = 0. (1.1)

The solution to Equation 1.1 would require x = ±
√
−1, and we know that

the square root is undefined for negative real numbers.
However, we can expand our number system beyond R if we define a

new number i which has the property that

i2
= −1.

This would mean that the solutions to Equation (1.1) are x = i and x = −i.
In this manner, we can define the complex numbers C to consist of all

numbers of the form z = α + iβwhere α and β are real numbers. We call α
the real part of z because, if β = 0, then z = α is just a real number. We call
β the imaginary part of z and, if α = 0, we refer to z as a (pure) imaginary
number.

Note that, in some disciplines, the symbol j is used in place of i.
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Example 1.1. Solve the equation x2 + 4x + 5 = 0.

Solution. Using the quadratic formula, we have

x =
−4 ±

√

(−4)2 − 4 · 5
2

=
−4 ±

√
−4

2
=
−4 ± 2

√
−1

2
= −2 ± i. �

Observe that the integers are a subset of the rational numbers; the
rational and irrational numbers are both subsets of the real numbers; and
the real numbers are a subset of the complex numbers.

2 Arithmetic of Complex Numbers

Complex numbers can be added or subtracted by adding or subtracting
the real parts and the imaginary parts.

Example 2.1. (1 + 2i) + (3 + 4i) = (1 + 3) + (2 + 4)i = 4 + 6i

Complex numbers can be multiplied much like first-degree polynomi-
als, with the added stipulation that i2 = −1.

Example 2.2. (1 + 2i)(3 + 4i) = 3 + 4i + 6i + 8i2 = 3 + 10i + 8(−1) = −5 + 10i

Two complex numbers are equal if and only if both their real parts
are equal and their imaginary parts are equal. That is, if z = α + iβ and
w = γ + iδ then z = w if and only if both α = γ and β = δ.

This means that if α + iβ = 0 then α = β = 0 because 0 = 0 + 0i.
Some expressions which cannot be factored in terms of real numbers

can be factored using complex numbers. For instance, the sum of squares
can be

α2
+ β2

= (α − iβ)(α + iβ),

as can be shown simply by expanding the expression on the righthand
side.

Example 2.3. x2 + 9 = (x − 3i)(x + 3i)

The notion of the reciprocal of a complex number (and, therefore, the
division of complex numbers) is a bit more involved than addition or
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3 2 � Arithmetic of Complex Numbers

multiplication. If z = α + iβ , 0 then

1

z
=

1

α + iβ

=
1

α + iβ
·
α − iβ

α − iβ

=
α − iβ

α2 + β2

=
α

α2 + β2
− i

β

α2 + β2
. (1.2)

In other words, the reciprocal of z is the complex number with real part
α

α2 + β2
and imaginary part −

β

α2 + β2
. On its own, Equation (1.2) isn’t

particularly useful. But notice that if z , 0 then at least one of α and β is
non-zero, and so α2 + β2

, 0. In other words, this result does guarantee
that every non-zero complex number has an inverse.

We might also observe from the derivation of Equation (1.2) that, in the
second step, it was very useful to multiply both the numerator and the
denominator of the expression by α − iβ. This is similar to the approach
we take when we rationalise an expression involving square roots — and,
just like in that situation, we refer to α − iβ as the conjugate of α + iβ. If z
is a complex number then we denote its conjugate as z.

We can use the conjugate to simplify quotients of complex numbers,
and therefore to carry out division without having to make direct use of
Equation (1.2).

Example 2.4.
2 + 2i

2 − 3i
=

2 + 2i

2 − 3i
· 2 + 3i

2 + 3i
=

4 + 10i − 6

4 + 9
= − 2

13
+

10

13
i

We define the absolute value or modulus of a complex number z = α+iβ
as

|z| =
√

α2 + β2.

Note that |z| is always a real, non-negative number.
The conjugate and the modulus obey or motivate several properties

of complex numbers. If z and w are complex numbers, then we have the
following:
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1. z ± w = z ± w

2. zw = z · w

3.
(

z

w

)

=
z

w

4. (z) = z

5. z is real if and only if z = z

6. zz = |z|2

7.
1

z
=

z

|z|2

8. |z| ≥ 0 for all z

9. |z| = 0 if and only if z = 0

10. |z||w| = |zw|

11.
∣

∣

∣

∣

z

w

∣

∣

∣

∣

=
|z|
|w|

12. |z + w| ≤ |z| + |w|

All of these results can be proved using the definitions of a complex
number, its conjugate and its modulus. For example, we can prove Prop-
erty #2 by assuming that z = α + iβ and w = γ + iδ. Then

zw = (α + iβ)(γ + iδ) = αγ + iαδ + iβγ − βδ = (αγ − βδ) + i(αδ + βγ)

so

zw = (αγ − βδ) − i(αδ + βγ).

On the other hand,

z · w = (α − iβ)(γ − iδ) = αγ − iαδ − iβγ − βδ = (αγ − βδ) − i(αδ + βγ)

as well. Hence zw = z · w.
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5 3 � The Complex Plane

3 The Complex Plane

We cannot plot complex numbers on a real number line. Instead, we plot
them on the complex plane. Like the Cartesian plane, this consists of two
perpendicular axes which intersect at the origin. The horizontal axis is
called the real axis and the vertical axis is called the imaginary axis. We
then identify the complex number α+ iβwith the point (α, β) in this plane.
In other words, the real part α determines the horizontal coordinate while
the imaginary part β determines the vertical coordinate.

Example 3.1. The complex numbers z1 = 3 + 2i, z2 = −2i and z3 = 3 are
plotted in Figure 1.1.

✲

✻

z1 = 3 + 2i

z2 = −2i

z3 = 3

•

•

•

Figure 1.1: Three numbers plotted in the complex plane.

Note that real numbers are plotted on the real axis (since this is ef-
fectively just the familiar real number line) while imaginary numbers are
plotted on the imaginary axis.

The distance between two numbers in the complex plane is given by
the modulus of their difference. That is, if z = α + iβ and w = γ + iδ then
the distance between z and w is

|z − w| =
√

(α − γ)2 + (β − δ)2.
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4 Math 2000: Power Series and Euler’s Formula

To this point, you’ve probably only encountered functions where the do-
main and range are the real numbers R or a subset of R. However, we can
just as easily define functions where the domain and range are the complex
numbers C or a subset of C.

This is particularly easy for algebraic functions.

Example 4.1. Consider the function f (x) = x2 where the domain is the set
of all complex numbers C. Determine f (3i) and f (i + 2).

Solution. We simply evaluate

f (3i) = (3i)2
= 9i2

= −9

and
f (i + 2) = (i + 2)2

= i2
+ 4i + 4 = 3 + 3i. �

However, this becomes more difficult when considering transcendental
functions. For instance, how can we interpret e3i?

One way to obtain some insight into this topic is via power series.
The Maclaurin series we’ve established work equally well for complex
domains, so we can write

eix
=

∞
∑

k=0

(ix)k

k!
.

But now observe that i0 = 1, i1 = i, i2 = −1, i3 = −i, and then the pattern
repeats ad infinitum. With this in mind, we can split the Maclaurin series
up into the sum of two series, one for even values of k (when ik is real) and
one for odd values of k (when ik is imaginary):

∞
∑

k=0
k even

(ix)k

k!
+

∞
∑

k=0
k odd

(ix)k

k!
=

∞
∑

k=0
k=2n

ikxk

k!
+

∞
∑

k=0
k=2n+1

ikxk

k!

=

∞
∑

n=0

i2nx2n

(2n)!
+

∞
∑

n=0

i2n+1x2n+1

(2n + 1)!

=

∞
∑

n=0

(−1)nx2n

(2n)!
+ i

∞
∑

n=0

(−1)nx2n+1

(2n + 1)!
.
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7 4 �Math 2000: Power Series and Euler’s Formula

But the two series we’ve obtained are simply the Maclaurin series for cosine
and sine, respectively. In other words,

eix
= cos(x) + i sin(x). (1.3)

Equation (1.3) is known as Euler’s formula.
Using Euler’s formula, observe that

e−ix
= cos(−x) + i sin(−x) = cos(x) − i sin(x).

This is because cosine is an even function, so cos(−x) = cos(x) for all x,
while sine is an odd function, so sin(−x) = − sin(x) for all x.

More generally, for any real number b,

eibx
= cos(bx) + i sin(bx).

Now we can think of any complex number z = α + iβ as having an
equivalent representation

z = α + iβ = r cos(θ) + ir sin(θ) = r[cos(θ) + i sin(θ)] = reiθ,

where r is the modulus and θ is the argument. Thus complex numbers
can be written in a polar form (r, θ), where the conversion is analogous to
Cartesian coordinates. Specifically,

α = r cos(θ) and β = r sin(θ)

while

r =
√

α2 + β2 and θ = arctan

(

β

α

)

.

Example 4.2. Find the complex number z with polar coordinates
(

2, 3π
4

)

.

Solution. Since r = 2 and θ = 3π
4

, we have

α = 2 cos
(

3π

4

)

= −
√

2 and β = 2 sin
(

3π

4

)

=

√
2.

Thus z = −
√

2 +
√

2i . �
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Example 4.3. Express z = 3 − 3i in polar coordinates.

Solution. We have

r =
√

32 + (−3)2 = 3
√

2 and θ = arctan
(−3

3

)

= −π
4

so the polar coordinates of z are
(

3
√

2,−π
4

)

. The relationship between z

and its polar form is illustrated in Figure 1.2. �

✲

✻

z = 3 − 3i

.....................................................................................................................................................................................................................

...........................................................

-π4

3
√

2
•

Figure 1.2: The complex number z = 3 − 3i related to its modulus r = 3
√

2
and its argument θ = −π

4
.

Because it provides a way to define complex numbers without resorting
to a sum, Euler’s formula can make some tasks easier. For example, we
can use the laws of exponents for multiplying, rather than the cumbersome
expansion we encountered in Example 2.2. To see why this should be,
consider two complex numbers

z1 = r1eiθ1 = r1[cos(θ1)+ i sin(θ1)] and z2 = r2eiθ2 = r2[cos(θ2)+ i sin(θ2)].

Furthermore, recall the trigonometric identities

sin(a + b) = sin(a) cos(b) + cos(a) sin(b)
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9 4 �Math 2000: Power Series and Euler’s Formula

and

cos(a + b) = cos(a) cos(b) − sin(a) sin(b).

Then

z1z2 = r1[cos(θ1) + i sin(θ1)] · r2[cos(θ2) + i sin(θ2)]

= r1r2[cos(θ1) cos(θ2) − sin(θ1) sin(θ2) + i cos(θ1) sin(θ2)

+ i sin(θ1) cos(θ2)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

= r1r2ei(θ1+θ2)

= r1eiθ1 · r2eiθ2 .

Example 4.4. Multiply (−
√

2 +
√

2i)(3 − 3i).

Solution. We have already shown that −
√

2 +
√

2i = 2ei 3π
4 and 3 − 3i =

3
√

2e−iπ4 . So we could write

(−
√

2 +
√

2i)(3 − 3i) = 2ei 3π
4 · 3
√

2e−iπ4

= 6
√

2eiπ2

= 6
√

2i.

Alternatively, we could use the approach of Example 2.2 and expand:

(−
√

2 +
√

2i)(3 − 3i) = −3
√

2 + 3
√

2 + 3
√

2i + 3
√

2i

= 6
√

2i. �

In this example, the use of Euler’s formula may seem to be of negli-
gible benefit — indeed, if we hadn’t already found the polar form of the
two complex numbers, it would really be more work than our earlier ap-
proach. But the utility of Euler’s formula can be seen in more substantial
calculations.

Example 4.5. Evaluate (3 − 3i)6.

Solution. In this kind of calculation, multiplying by expanding becomes

extremely time-consuming. But, if we again recall that 3 − 3i = 3
√

2e−iπ4 ,
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then we can use Euler’s formula to simply write

(3 − 3i)6
=

(

3
√

2e−iπ4
)6

= 36 · 23 · e−i 3π
2

= 5832e−i 3π
2

= 5832i. �

The result that
(eiθ)n

= einθ (1.4)

is known as DeMoivre’s Theorem.

5 Math 2050: Complex Numbers and Vectors

The components of a vector can just as easily be complex numbers as real
numbers. In this case, the space of vectors with n complex components is
denoted by Cn. Similarly, scalars can be generalised to include complex
numbers as well as real numbers.

Most of the properties we have defined for real vectors apply equally
to complex vectors. However, the definition of the dot product as the sum
of the products of the components poses a problem. Recall that, for a real
vector v, we have ‖v‖ =

√
v · v. If the same definition of the dot product

applied to complex vectors then we could consider v =

[

i
1

]

and write

‖v‖ =
√

i2 + 12 =

√
−1 + 1 =

√
0 = 0.

Unfortunately, this contradicts our instinct that any non-zero vector should
have a non-zero length. At the same time, we don’t want to redefine the dot
product for complex vectors in a way that’s inconsistent with real vectors.

With this in mind, the complex dot product of vectors v =





















v1
...

vn





















and

w =





















w1
...

wn





















in Cn is defined to be

v ·w = v1w1 + · · · + vnwn.
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11 5 �Math 2050: Complex Numbers and Vectors

If the components of the vectors are real then this reduces back to our orig-
inal definition of the dot product, since a real number is its own complex

conjugate. Now if v =

[

i
1

]

then

‖v‖ =
√

i · i + 1 · 1 =
√
−i · i + 1 · 1 =

√
1 + 1 =

√
2.

We can also return to the way we plotted complex numbers in the
complex plane. Observe that a complex number z = α + iβ can be thought

of in the same terms as a vector

[

α
β

]

in R2. Thus, another way to justify

many of the properties of complex numbers is to think of them in terms of
vectors. For instance, the process of complex addition can be interpreted as
an analogue of the Parallelogram Rule for vector addition; see Figure 1.3.

✲

✻

z = α + iβ

w = γ + iδ

z + w = (α + γ) + i(β + δ)

..............................
..............................

...............................
...............................

..............................
...............................

........................

...............................................................................................................................................................

........
.........
.........
.........
........
.........
.........
.........
.........
........
.........
.........
.......

•

•
•

Figure 1.3: Complex addition interpreted via the Parallelogram Rule.
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