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We present a novel meshless tsunami propagation and inundation model. We discretize
the nonlinear shallow-water equations using a well-balanced scheme relying on radial basis
function based finite differences. The inundation model relies on radial basis function gener-
ated extrapolation from the wet points closest to the wet–dry interface into the dry region.
Numerical results against standard one- and two-dimensional benchmarks are presented.

1 Introduction

The shallow-water equations are a simplified, albeit important, model in geophysical fluid me-
chanics, playing a central role in both atmospheric and ocean sciences. In ocean dynamics, the
shallow-water equations govern the evolution of long waves and, thus, are a particularly suitable
model for tsunami propagation [21,23,28,37]. An important characterization of a tsunami event
is the involvement of vastly different scales, with wave propagation happening over thousands
of kilometers in the open ocean and inundation taking place on coastlines with diverse features
on the scale of just a few meters. This presence of vastly different scales has justified the exten-
sive use of unstructured meshes and adaptive mesh refinement for the numerical solution of the
shallow-water equations [23,28].

Current numerical methodologies for the solution of the shallow-water equations for tsunami
modeling include finite-difference methods [21, 37, 39], finite-volume methods [28], and finite-
element and discontinuous Galerkin methods [23, 41]. The application of so-called meshless
methods to the problem of tsunami modeling has received considerably less attention.

One primary appeal of general meshless methods is that they do not rely on a predefined
topologically connected mesh but, rather, operate on an (in principle) arbitrary collection of
nodes where the numerical solution of the model problem is sought. For this reason, meshless
methods are, by design, suitable for problems that benefit from variable spatial resolution.
Several meshless methods have been proposed already for the shallow-water equations, such as
those based on smoothed particle hydrodynamics [9, 43] or radial basis functions [5, 10, 11, 24].
To the best of our knowledge, the shallow-water equations with variable bottom topography
have not been considered extensively within the general meshless methodology, as it is quite
challenging to preserve the inherent balance between the bottom topography source term and
the flux term in the momentum equations. For a review on these difficulties and possible
solutions, we refer to [5, 43].

The purpose of this paper is to develop a meshless tsunami model based on radial basis func-
tions generated finite differences (RBF-FD). The RBF-FD method was first introduced in [40]
and has since seen an extensive development both theoretically and with regards to different
fields of applications, in particular in the geosciences [12]. This method has methodology simi-
lar to classical finite differences, yet it can be used on both arbitrary nodal layouts and general
smooth embedded manifolds [34], such as on the sphere [10]. This makes RBF-FD a natural
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method for both far- and near-field simulations of tsunamis. Moreover, we demonstrate in this
paper that RBF-based extrapolation is also a suitable method for the simulation of tsunami
inundation.

The further organization of the paper is the following. In Section 2, we present the shallow-
water equations and discuss the well-balanced meshless RBF-FD methodology employed for
discretizing them. Section 3 is devoted to the description of the RBF-based inundation algo-
rithm. In Section 4, we present the results of various standard benchmark tests for the one- and
two-dimensional shallow-water equations aiming at assessing the quality of the newly proposed
method. The conclusions of the paper as well as a discussion of necessary further developments
are found in Section 5.

2 Well-balanced meshless discretization
of the shallow-water equations

In this section, we introduce the shallow-water equations and describe a well-balanced meshless
method for their discretization.

2.1 The shallow-water equations

We consider the following generalized 2-dimensional conservation law

ρt + Fx + Gy = S. (1)

In order to define shallow-water equations, we specify (following [33]): ρ = (h, hu, hv)T is the
transport vector of total mass and horizontal momentum, F = (hu, hu2 + gh2/2, huv)T and
G = (hv, huv, hv2 + gh2/2)T are the associated flux vectors, and S = (0,−ghbx,−ghby)T is the
source term. The height of a constant density water column is denoted by h = h(t, x, y), the two-
dimensional, vertically averaged fluid velocity is denoted by (u, v)T = (u(t, x, y), v(t, x, y))T, the
sea bottom topography is b = b(x, y), and g is the gravitational constant. For the sake of brevity,
we use subscripts to denote the partial derivatives with respect to t, x and y, i.e. ht = ∂h/∂t,
etc.

We point out that the form of the shallow-water equations used here does not include any
bottom friction, although such friction terms can be introduced with the aim of obtaining more
accurate inundation results [25]. Here, we present mostly canonical benchmarks, which are
typically tested without the use of bottom friction and, so, we also exclude this in our model.
The inclusion of bottom friction as well as the application to more elaborate test cases will be
the subject of future investigations.

2.2 RBF-FD discretization

We discretize (1) using the RBF-FD method. Radial basis function based discretizations have
seen a rapid development over the past 20 years, both for the global formulation (which is akin
to the pseudospectral method [16]) and for the local RBF-FD formulation, see e.g. [12, 13] for
recent reviews. The RBF methodology has also already been used for solving the shallow-water
equations, both in planar geometry and on the surface of the sphere [10,11,24,42,44].

The discretization of the partial derivative operators in (1) within the framework of the RBF
method proceeds as follows. Consider a set of N nodes, xi ∈ R2, covering the spatial domain Ω ⊆
R2 such that no two points coincide. Given the values of the field functions f ∈ {h, u, v} at
those nodes, i.e. fj = f(xj), we approximate the action of a linear differential operator L on f
at xi by

Lf |x=xi ≈
N∑
j=1

wLijfj . (2)
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In other words, the action of L on f at xi is approximated as a weighted linear sum of the values
of f at the N nodes xj . Within the context of RBF methods, the weights wLij are found by
enforcing (2) to be exact when evaluated for radial basis functions φk(x) = φ(||x−xk||) centered
at xk, i.e.

Lφk(xi) =
N∑
j=1

wLijφk(xj), k = 1, . . . , N, (3)

which constitutes a linear system for wLij , 1 ≤ j ≤ N , at each node xi. In the RBF-FD
method, one assumes that only points close to the node xi contribute to the approximation
of the derivative at xi and, thus, most of the N weights wLij vanish. In practice, this is done
by determining the n nearest neighbors of xi, where typically n � N . Solving the resulting
(small) linear system (3) at each node xi allows one to compose the (sparse) differentiation
matrix WL = (wLij), such that the action of the linear differential operator L on the field

functions f at all nodal points x = (x1, . . . ,xN )T can be approximated as Lf ≈ WLf , where
f = (f(x1), . . . , f(xN ))T. In the following, we have L ∈ {∂/∂x, ∂/∂y}. Note that it is also
customary to include certain low-degree polynomials while solving (3), as with a pure RBF
basis it is not possible to obtain the correct derivatives of constants, linear functions, etc. For
further details, see e.g. [4, 12,15].

Several RBFs are typically used, with the multiquadric, φ(r) =
√

1 + (εr)2, and the Gaussian
RBF, φ(r) = exp(−(εr)2) being amongst the most popular choices. The parameter ε is called
the shape parameter as it governs the flatness of the RBF. In the following we will work with
the Gaussian RBF, since for hyperbolic PDEs the RBF-FD method typically requires the use of
hyperdiffusion for stabilization which is most easily accomplished using the Gaussian RBF [14].

When implementing a numerical scheme for the shallow-water equations for ocean model-
ing, the presence of a nonflat sea bottom topography generally presents a challenge for both
meshbased and meshless numerical schemes. More specifically, preserving the so-called lake at
rest solution is a nontrivial, but crucial endeavor, since the violation of the lake at rest solu-
tion typically leads to the stimulation of spurious numerical waves that can render the correct
simulation of the actual physical waves extremely challenging. There has been a considerable
body of literature devoted to the construction of so-called well-balanced numerical schemes for
the shallow-water equations, which are schemes that can preserve the lake at rest solution nu-
merically, see [2, 20,26,27,41,43] for some examples for such well-balanced schemes.

Most recently, in [5], a unifying strategy was proposed for developing general well-balanced
meshbased and meshless schemes which is in particular suitable for the RBF-FD methodology.
For the sake of completeness of the present exposition, we briefly review the key idea of [5] here
for the case of the one-dimensional form of the shallow-water equations,

ht + (hu)x = 0, (hu)t +

(
hu2 +

1

2
gh2

)
x

= −ghbx.

The two-dimensional case is treated analogously by enforcing the well-balanced condition given
below for both the x- and y-derivatives.

As u = 0 in the lake at rest solution, any well-balanced discretization has to preserve the
identity

1

2
∂xh

2 = −h∂xb, (4)

numerically in the case that h + b = c, for c = const. It is found in [5] that this is in general
only possible if one discretizes the balance equation (4), at each point xi, so that

1

2

(
Df

xh
2
)
i

= −hi (Ds
x(c− h))i ,
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for any mesh function, h, and constant, c, where Df
x and Ds

x are the discrete approximations to
the spatial first derivative operators in the flux and source terms of the shallow-water equations,
respectively, and hi =

∑n
j=1mijhj is a specific, consistent average (meaning that

∑n
j=1mij = 1)

of the total water height h over the stencil of xi.
As noted in [5], the above equality implies that

(Ds
xc)i = 0,

1

2

(
Df

xh
2
)
i

= hi (Ds
xh)i , (5)

must hold at all nodes xi. The first condition requires the consistent (exact) derivative of
constants by the derivative operator Ds

x (which in our case of RBF-FD based derivatives requires
the inclusion of zero-degree polynomials in the basis), and the second condition can be satisfied
provided we interpret Df

xh
2 as a bilinear form, i.e.(

1

2
Df

xh
2

)
i

=
1

2
hTW f

i h.

This procedure defines a third order differentiation tensor, Wf , with the matrix W f
i being its

ith slice.
For the approximation of the source derivative, Ds

x, we write

(Ds
xh)i = (ws

i)
Th,

where ws
i = (W s

ij)16j6n is the ith row of the associated differentiation matrix W s. In a similar
manner, we can write mi = (mij)16j6n for the ith row of the averaging matrix M. The second
condition of (5) then naturally translates to

1

2
hTW f

i h = (mT
i h)((ws

i)
Th),

for all i, which (taking W f
i to be symmetric) requires that

W f
i = mi (ws

i)
T + ws

im
T
i , (6)

holds at all nodes xi.
Practically speaking, one is thus free to choose the averaging matrix M and the derivative

matrix Ws
x corresponding to the derivative approximation used in the source term and then

Eq. (6) prescribes how to choose the weights in the flux derivative Df
xh

2, given through the
derivative tensor Wf , so as to obtain a well-balanced scheme for the shallow-water equations.
For a more in-depth discussion and results regarding the consistency of the resulting discrete
derivative operators, consult [5].

We use the RBF-FD method for discretizing the two-dimensional shallow-water equations (1),
invoking condition (6) to guarantee that the resulting meshless scheme will be well-balanced.
For the time-stepping, the second-order explicit midpoint scheme is used. It is pointed out
in [14] that the application of the RBF-FD method to purely convective PDEs is prone to
numerical instability as the eigenvalues of the associated derivative matrices tend to scatter to
the complex right-half plane. As a remedy, the inclusion of hyperdiffusion was proposed, which
we have included in our discretization as well. In other words, instead of solving the shallow-
water equations (1), we solve ρt + Fx + Gy = S̃, where S̃ is a modified source term of the form
S̃ = S + D, where

D = (−1)`+1ν∆` (0, hu, hv)T , ` > 1

with ν being the diffusion parameter and ∆ = ∂2/∂x2 + ∂2/∂y2 being the two-dimensional
Laplacian operator. If the underlying RBF is the Gaussian RBF, then ∆`φ(r) = ε2`p`(r)φ(r),
with p`(r) being computable through the recurrence relation

p0(r) = 1, p1(r) = 4(εr)2−4, p`+1(r) = 4((εr)2−2`−1)p`(r)−16`2p`−1(r), ` > 1. (7)
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The polynomials p`(r) are related to the Laguerre orthogonal polynomials, see [14] for further
details. Below, we use ` = 2, unless otherwise noted.

To summarize, we present below the algorithm used at every time step. The initialization
phase of the algorithm uses the RBF-FD methodology to define the averaging matrix, M, source
derivative, Ws

i , as well as the discrete approximation of the hyperdiffusion operator, D. Addi-
tionally, we precompute bdx and bdy , the RBF-FD derivatives of the bottom topography function,

b(x, y). In the algorithm below, we use Dd
x and Dd

y to denote the discrete derivative operators of

the well-balanced scheme, with the discrete hyperdiffusion operator, Dd
∆2 , computed using (7).

At each node, i, we store unknowns hi, (hu)i, and (hv)i; the products and ratios of vectors h,
hu, and hv given in the algorithm below are computed componentwise. We note that the use of
the inundation algorithm presented below ensures that no division by zero is ever performed. In
what follows, at each time step, we make use of the natural partitioning of the set of all nodes,
X = {xi}Ni=1, into sets of wet and dry points,

Xwet = {xi ∈ X : hi > δ}, Xdry = X\Xwet,

where δ ∈ R is a user-defined (small) positive parameter. We note that this partitioning is
updated after every stage of the time-step, but we supress superscripts or subscripts denoting
the time-step and stage to simplify notation.

For every timestep:

Compute first stage of explicit midpoint rule:
Compute hu2 = h · (huh )2, hv2 = h · (hvh )2, hvu = h · hvh ·

hu
h and h̄ = Mh, then set

(hx)i = (h̄)i · (Dd
xh)i and (hy)i = (h̄)i · (Dd

yh)i for all nodes xi ∈ Xwet.

h̃ = h− ∆t

2

(
Dd

x(hu) + Dd
y(hv)

)
h̃u = hu− ∆t

2

(
Dd

x(hu2) + ghx + Dd
y(hvu) + gh̄bdx − ηDd

∆2(hu)
)

h̃v = hv − ∆t

2

(
Dd

y(hv2) + ghy + Dd
x(hvu) + gh̄bdy − ηDd

∆2(hv)
)

Apply boundary conditions.

Apply inundation algorithm.

Compute second stage of explicit midpoint method:

Compute h̃u2 = h̃ · ( h̃u
h̃

)2, h̃v2 = h̃ · ( h̃v
h̃

)2, h̃vu = h̃ · h̃v
h̃
· h̃u

h̃
and h̃ = Mh̃, then set

(h̃x)i = (h̃)i · (Dd
xh̃)i and (h̃y)i = (h̃)i · (Dd

y h̃)i for all nodes xi ∈ Xwet.

h← h−∆t
(
Dd

x(h̃u) + Dd
y(h̃v)

)
hu← hu−∆t

(
Dd

x(h̃u2) + gh̃x + Dd
y(h̃vu) + gh̃bdx − ηDd

∆2(h̃u)
)

hv ← hv −∆t
(

Dd
y(h̃v2) + gh̃y + Dd

x(h̃vu) + gh̃bdy − ηDd
∆2(h̃v)

)
Apply boundary conditions.

Apply inundation algorithm.

We note that, since the scheme is explicit, this allows a very efficient implementation of the
time-stepping using only sparse matrix multiplications with M and Ws

i , along with componen-
twise vector operations. Furthermore, the fine-scale parallelism of these operations allows a
natural avenue for parallelization, on both classical compute clusters and modern manycore and
accelerated architectures.

5



3 Meshless inundation algorithm

Of particular importance in a tsunami model is the treatment of the wet–dry interface when
the incoming wave hits the coastline. Several algorithms have been proposed to deal with this
moving boundary condition in numerical models that solve the governing equations in the strong
form (for associated results for the governing equations in the weak form, consult, e.g. [3,7,41]).
In [38], the authors use a finite-difference model with variable grid spacing near the boundary
that ensures existence of a shoreline boundary point on the surface of the beach at all times.
Similarly, in [31], based on the earlier work of [35] for the shallow-water equations, a finite-
difference model for the nonlinear Boussinesq equations with fixed grid spacing was used that
handles the moving boundary by employing (one-dimensional) linear extrapolation of the wave
run-up from the last wet points to the first dry points on the beach. This idea was re-considered
in [19] where true two-dimensional bilinear extrapolation was used to compute the run-up in a
two-dimensional finite-difference model for the Boussinesq equations.

Since our numerical scheme is based on the RBF methodology using the strong form of
the shallow-water equations, it is natural to use RBFs also for the inundation model. This
is, in particular, justified as (multiquadric) RBFs were originally proposed by Hardy for two-
dimensional scattered data interpolation [22] and later found by Franke to be the most accurate
of all the 29 methods tested in [18]. Of further interest are the studies carried out in [17] where
the authors investigated the Runge phenomenon in the context of RBF interpolation. It has been
found that the Runge phenomenon can be controlled by a suitable choice of the shape parameter
in the RBF (with spatially varying shape parameters most favorable) and non-equally chosen
data points, typically much better than the Runge phenomenon can be controlled in standard
polynomial interpolation.

In light of the favorable performance of RBF-based interpolation schemes, we propose to use
the extrapolation technique of [19, 31, 35] but instead of using polynomial-based extrapolation,
we use RBF-based extrapolation. We again make use of the partitioning of the set of all nodes,
X, into wet and dry points, as X = Xwet ∪ Xdry, with Xwet = {xi ∈ X : hi > δ}. Since the
shallow-water equations are not defined at the dry points (where hi is too small or negative), we
need to extrapolate the wet values to the dry points to have a numerical solution defined at all
points X. The advantage of this procedure is that then the same derivative approximation can
be invoked at all points, even those close to the wet–dry interface, where some of the nearest
neighbors on which the RBF derivatives are defined will be dry points.

For each dry point immediately neighboring a wet point we find its ne nearest wet points
through which we define an RBF interpolant. Once the RBF interpolant based on the wet
points is defined, we use it to extrapolate the field functions u, v and h + b to the dry point
under consideration. We found experimentally that the multiquadric RBF basis augmented
with first degree polynomials (i.e. constants and the monomimals x and y) is most suitable for
the extrapolation procedure. Note that in order to preserve the lake at rest solution in the
presence of dry points it is necessary to extrapolate h + b, not h alone, to the dry points. The
extrapolation is done by the following algorithm:

for each xdry ∈ Xdry immediately neighboring a wet point

find {xwet
j1
, . . . ,xwet

jnn
} nearest neighbours of xdry

k in Xwet

extrapolate h(xdry), hu(xdry), hv(xdry):
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for f ∈ {h, hu, hv} solve the linear system for w
φ(r1,1) φ(r1,nn) 1 (xwet

j1
)T

...
. . .

...
...

φ(rnn,1) φ(rnn,nn) 1 (xwet
jnn

)T

1 . . . 1 0 0
xwet
j1

. . . xwet
jnn

0 0




w1
...

wnn

wnn+1

wnn+2

 =


f(xwet

j1
)

...
f(xwet

jnn
)

0
0

 with ri,l = ‖xwet
ji −xwet

jl
‖

Set f(xdry) =
nn∑
i=1

wiφ(ri) + wnn+1 + wnn+2 · xdry

Here, we note that the coefficient wnn+2 has the same dimension as xdry.

4 Numerical simulations

Having described the meshless discretization of the shallow-water equations (1) and the asso-
ciated inundation model, we now proceed to present the results of several classical benchmark
tests for both the one-dimensional and two-dimensional form of the shallow-water equations.

4.1 One-dimensional benchmarks

We repeat here some of the one-dimensional tests carried out in [41]. In all experiments we
compute the RBF-FD approximation Ds

x, obtained from the procedure outlined in Section 2.2.
The RBF used is the Gaussian RBF with shape parameter ε = 0.1/∆x, where ∆x is the (uniform)
nodal spacing. Eq. (3) is solved based on the three nearest neighbors of each nodal point (which
includes each node itself). The averaging matrix M needed for (6) is obtained from a normalized
Gaussian filter over the three nearest neighbors of each node. With this, each time step of the
explicit midpoint scheme can be implemented with O(1) work per spatial mesh point.

4.1.1 Lake at rest solution

It was shown in [5] that the numerical scheme based on a discretization that respects (5)–(6) is
well-balanced. Since there the shallow-water equations were considered without an inundation
model, we carry out a test case where part of the domain is initially dry, so as to check that the
discretization remains well-balanced in the presence of wet–dry interfaces.

Specifically, we consider the domain Ω = [0, 1], with the smooth bottom topography

bs =

 a
exp(−0.5/(r2

m − r2))

exp(−0.5/r2
m)

if r < rm

0 otherwise
, (8)

where we set r = |x − 0.5|, a = 1.2 and rm = 0.4. We use h = max(0, 1 − b(x)) and u = 0 as
initial conditions. A total of N = 50 (regularly spaced) grid points were used, the time step is
∆t = 0.002 and the final integration time is t = 20. The extrapolation tolerance is δ = 0.0025
with the three nearest neighbors being used for the extrapolation. The shape parameter for the
RBF extrapolation is εe = 20. Since realistic bathymetry is usually not smooth, in a second
experiment, we add some noise on top of the smooth bottom topography bs. In particular, we
consider a noisy bathymetry of the form

bn = bs +

3∑
j=1

aj sin(16jπx+ pj),
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where a = (0.1, 0.2, 0.3) and p = (1.6, 3.2, 0.5). Reflecting boundary conditions were used
for both experiments. The results of the two numerical experiments are depicted in Figures 1
and 2, which demonstrate that the extrapolating boundary conditions preserve the well-balanced
properties of the meshless RBF-FD discretization.

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

h+
b

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

h+
b

Figure 1. Final surface elevation for the lake at rest solution with smooth (left) and noisy (right) bottom
topography; bathymetry (dashed), surface elevation (solid) and interpolated nodes (solid with points).

Figure 2. l∞-error time series for the surface elevation (left) and momentum (right) for the lake at rest solution;
smooth bathymetry (solid), noisy bathymetry (dashed).

4.1.2 Oscillatory flow in a parabolic basin

We consider the oscillatory flow in a parabolic basin, which is described by the following exact
solution first reported in [36]. The domain for this problem is Ω = [−5000, 5000] with parabolic
bottom topography b = h0(x/a)2, where a = 3000 and h0 = 10. The initial conditions are
chosen so that the exact solution to the shallow-water equations for this benchmark is

ha(t, x) = h0 −
B2

4g
(1 + cos 2ωt)− Bx

2a

√
8h0

g
cos(ωt), ua(t, x) =

Baω√
2h0g

sinωt

where ω =
√

2gh0/a and B = 5.
In the first experiment we useN = 200 equally spaced nodes and integrate the one-dimensional

shallow-water equations up to t = 3000 using the time step ∆t = 1. The extrapolation param-
eter is set to δ = 0.01. Since the water surface never reaches the boundaries of the domain, no
specific boundary conditions have to be imposed. Snapshots of the numerical solution and the
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exact solution at times t = 0, t = 1000, t = 2000 and t = 3000 are depicted in Figure 3. The
associated time series of the l∞ relative height and mass errors are shown in Figure 4.
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Figure 3. Snapshots of the numerical solution (solid line) and analytical solution (dotted line) of the surface
elevation for the parabolic bowl bathymetry (dashed line) at times t = 0, t = 1000, t = 2000 and t = 3000.
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Figure 4. l∞-error time series for the relative surface elevation error (left) and relative mass error (right).

Note that although our numerical scheme does not preserve mass by construction, the relative
change in the total mass over time is small, bounded and oscillatory only. That is, no spurious
trend in the mass is introduced by the numerical scheme and the inundation model.

To numerically verify the convergence of the numerical solution, we next carry out a sequence
of numerical integrations using N ∈ {200, 400, 800, 1600} equally spaced points. The time steps
are halved each time the number of nodes is doubled. The final integration time is again t = 3000.
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In Table 1, we record the maximum l∞-errors (relative height error, relative mass error, absolute
momentum error), occurred over the integration period. The table shows also the experimental

convergence rate ‖ec‖‖ef‖ , where ec is the error of the coarse and ef of the fine grid. Similar data is

shown in Table 2, for the l2 norm; we note that both measures of the error show similar overall
convergence, but the l2 norm shows steadier convergence rates than the maximum norm data in
Table 1.

Table 1. Convergence study for the oscillatory flow in a parabolic basin.

N ||h− ha||∞/||ha||∞ ‖ec‖
‖ef‖ ||M −M0||∞/||M0||∞ ‖ec‖

‖ef‖ ||hu− (hu)a||∞ ‖ec‖
‖ef‖

200 1.1 · 10−3 6.1 · 10−5 5.9 · 10−2

400 3.3 · 10−4 3.33 1.7 · 10−5 3.59 3.4 · 10−2 1.74

800 7.2 · 10−5 4.58 6.9 · 10−6 2.46 5.2 · 10−3 6.54

1600 3.9 · 10−5 1.85 2.6 · 10−6 2.65 4.9 · 10−3 1.06

Table 2. Convergence study for the oscillatory flow in a parabolic basin.

N ||h− ha||2/||ha||2 ‖ec‖
‖ef‖ ||M −M0||2/||M0||2 ‖ec‖

‖ef‖ ||hu− (hu)a||2 ‖ec‖
‖ef‖

200 6.1 · 10−4 6.1 · 10−5 3.9 · 10−1

400 1.5 · 10−4 4.07 1.6 · 10−5 3.81 1.4 · 10−1 2.79

800 3.8 · 10−5 3.95 6.8 · 10−6 2.35 5.1 · 10−2 2.75

1600 1.1 · 10−5 3.45 2.6 · 10−6 2.61 2.1 · 10−2 2.43

4.1.3 Tsunami run-up on a sloping beach

The run-up of waves on a sloping beach is a classical test case for numerical schemes for the
shallow-water equations within the area of tsunami modeling. As in the case of the parabolic
bowl, there exists an analytical solution for this test case, which was first found in the seminal
paper [8].

Here, we follow [41] and consider the computational domain Ω = [−500, 50 000], with the
bottom topography being defined as b = 5000 − 0.1x. Since we will consider the solution at
times t = 160, t = 175 and t = 220, simple reflecting boundary conditions can be employed at
the right boundary since the reflected waves cannot travel to the sloping beach in that time.
We choose ∆x = 20 with a time step of ∆t = 0.025. The extrapolation parameter was set to
δ = 0.1. The initial condition, numerical solutions and exact solutions at the sampling times are
displayed in Figure 5, which demonstrates that the inundation process is correctly approximated
by the numerical model.

4.2 Two-dimensional benchmarks

We consider three two-dimensional benchmarks, again the lake at rest, but on a non-uniform
mesh, flow around a conical island, and the Monai Valley experiment. Again, the well-balanced
RBF-FD discretization described in Section 2.2 is used. The RBF-FD discretization again uses
the Gaussian RBF with shape parameter ε = 0.1/

√
∆x2 + ∆y2, where ∆x and ∆y are the

spacings in x- and y-direction. A total of nine nearest neighbors are used for the derivative ap-
proximation (which again includes each node as the center of the stencil itself), unless otherwise
indicated. A two-dimensional normalized Gaussian filter over these nine nearest neighbors is
used to construct the averaging matrix, M.
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Figure 5. Snapshots of the numerical solution (solid line) and analytical solution (dotted line) of the surface
elevation for the sloping beach bathymetry (dashed line). Top left shows the entire computational domain at time
t = 0, while the inundation area is shown for t = 160 (top right), t = 175 (lower left) and t = 220 (lower right).

4.2.1 Two-dimensional lake at rest

We repeat the smooth lake at rest test case in two dimensions but, in addition, we use a non-
uniform mesh. We consider the domain Ω = [0, 1]2 covered by n = 2500 nodes. To demonstrate
that our scheme is meshless, we start from a uniform 50 × 50 mesh of the unit square and
add (0.1∆xN (0, 1), 0.1∆yN (0, 1)) as a disturbance to the coordinates of each grid point, where
∆x = ∆y = 0.02 and N (0, 1) is a normally distributed random variable with zero mean and
variance one. We use reflecting boundary conditions. The bottom topography is given by

b(x, y) = bs(‖(x− 0.5, y − 0.5)‖2)

where bs is defined in Equation (8). Again we use h = max(0, 1 − b(x, y)) and u = 0 as initial
conditions. The time step is ∆t = 0.0015 and the final integration time is t = 20. The ex-
trapolation parameter is set to δ = 0.05. In this case, we use 25 neighbours for the derivative
approximation, to ensure sufficiently accurate approximations on the non-uniform mesh.

The initial surface elevation and node distribution can be seen in Figure 6. Figure 7 shows
the errors in the computed solution over time.

4.2.2 Flow around a conical island

The flow around a conical island is another classical benchmark test for tsunami models, following
the experimental study described in [6]; see also [29]. The experiment is an idealization of the
1992 Flores Island tsunami run-up on Babi Island. The setup of the experiment is a 25m long
and 30m wide basin with a flat ground. The border of the basin absorbs the incoming wave,
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Figure 6. Initial surface elevation for the lake at rest solution with smooth bottom topography (left); node
distribution for the two-dimensional lake at rest test case.

Figure 7. l∞-error time series for the surface elevation (left) and momentum (right) for the lake at rest solution.

therefore there are no reflections.
The origin of this conical island is located at x = 12.96m and y = 13.8m. In Figure 8, the setup,
shape and properties of the island can be seen. The initial water depth is h0 = 0.32m. The
y-axis is parallel to the wavemaker, which generates solitary waves. We will compare the data
of 4 of the 27 gauges originally used in the experiment, to measure the surface wave elevations.
The position of the four gauges are indicated in Figure 8.
We choose ∆x = 0.125,∆y = 0.14 and ∆t = 0.02. Then we simulate case A, with height-to-
depth ratio H = 0.04, and case C, with H = 0.18. The recorded water heights at gauges 6, 9,
16 and 22 can be seen in Figure 9. Figure 10 shows snapshots of the propagating wave for both
cases. The maximal horizontal run-up agrees well with the measured data of the experiment,
which can be seen in Figure 11.
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Figure 8. Setup of the experiment and properties of the conical island. Positions of the gauges: (9.36, 13.8)#6;
(10.72, 13.8)#9; (12.96, 11.53)#16; (15.2, 13.8)#22
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Figure 9. Comparison of measured (dashed) and simulated (solid) water elevation at the gauges for case A
(above) and case C (below) for the conical island.
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Figure 10. Image at the top shows the initial water elevation and the height of the island. Snapshots of the
computed solution (h + b) for the conical island test case at times t = 12 and t = 16 for case A (above) and at
times t = 10 and t = 14 for case C (below) for the conical island.
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Figure 11. Run-up for case A (left) and case C (right), measured data (♦) and computed solution (∗) for the
conical island example.

4.2.3 Monai Valley experiment

The Monai Valley experiment [32] is a model of the 1993 Okushiri tsunami, which caused
an extreme 32 meter run-up in the Monai Valley on Okushiri island. The purpose of this
experiment is to recreate the run-up in a 1/400 model of the relevant part of Okushiri island,
see also [30, Chapter 11] for further details.

We discretize the domain Ω = [0, 5.488] × [0, 3.402] with a regular mesh with step sizes
∆x = ∆y = 0.014. Reflective boundary conditions are employed everywhere except at x = 0,
where the incident wave is prescribed up to t = 22.5. For t > 22.5 we use open boundary
conditions at x = 0. Water levels are recorded at the three points (4.521, 1.196), (4.521, 1.696)
and (4.521, 2.196), which correspond to gauges 1, 2 and 3 of the experimental setup at which
points measurements of the water height are provided. We integrate the shallow-water equations
until t = 25, which is long enough to record the maximum run-up which occurs at approximately
t = 20 at the reference locations. The time step in the simulation was set to ∆t = 0.01. All
experimental data as well as the incident wave profile were obtained from [1].
The evolution is illustrated by four snapshots in Figure 12. The recorded water heights at the
gauges is in good accordance with the experimentally recorded values, see Figure 13.

5 Conclusions

In this paper, we have proposed a novel numerical procedure for solving the shallow-water equa-
tions, which is suitable for tsunami modeling. In particular, both the well-balanced numerical
scheme and the inundation algorithm are based on radial basis functions. This makes the model
truly meshless and, hence, capable of employing variable resolution as well as operating on
arbitrary coastal regions, without the need to use an underlying orthogonal mesh. First bench-
mark tests demonstrate the competitiveness of the proposed methodology both in the one- and
two-dimensional setting.

A main defining characteristic of tsunamis is that they occur on a multitude of spatial and
temporal scales, which can pose considerable challenges to numerical solvers for the shallow-
water equations. An advantage of the RBF methodology is that is can be easily adopted to both
arbitrary geometries (e.g. the plane and the sphere) and arbitrary nodal layouts, both features
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Figure 12. Image at the top shows the initial water elevation and the height of the valley. Snapshots of the
computed solution (h + b) for the Monai Valley test case at times t = 16.2 (top left) (time of maximal run-up),
t = 17 (top right), t = 18 (lower left) and t = 19 (lower right).

16



0 5 10 15 20 25
-0.05

0

0.05

0 5 10 15 20 25
-0.05

0

0.05

0 5 10 15 20 25
t

-0.05

0

0.05

G
au

ge
1

G
au

ge
2

G
au

ge
3

Figure 13. Gauges 1,2,3 for the Monai Valley test case.
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important for the far- and near-field modeling of tsunamis. While, in the present work, we have
concentrated on the near coast propagation of tsunamis as well as coastal inundation, in future
work we will combine the methodology proposed here with a global scale tsunami propagation
model. Suitable candidates for numerical models have already been proposed in [10, 11], which
we will adopt to be able to handle arbitrary sea bottom topographies.

With the exception of the two-dimensional lake at rest solutions, all other benchmark tests
were carried out on a regular, orthogonal mesh. This was done in order to facilitate comparison
with other numerical models for the same benchmark problems that are usually done on an
orthogonal mesh as well. A full demonstration of the meshless capabilities of the proposed
shallow-water discretization, as well as more complicated real-world tsunami simulations, is a
subject for future work.

One potential problem of the RBF-FD methodology as used in the present paper is that
the resulting schemes are not exactly mass conserving. While we have numerically verified
that the error in mass conservation is purely oscillatory (and showing no spurious growth or
decay), in order for the meshless methodology to be competitive with standard finite volume
or discontinuous Galerkin methods (which both typically preserve mass) it will be essential to
develop a meshless methodology that is conservative when applied to hyperbolic conservation
laws. We will consider this issue in future investigations.
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