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Abstract We consider the comparison of multigrid

methods for parabolic partial differential equations that

allow space-time concurrency. With current trends in

computer architectures leading towards systems with

more, but not faster, processors, space-time concur-

rency is crucial for speeding up time-integration sim-

ulations. In contrast, traditional time-integration tech-

niques impose serious limitations on parallel perfor-

mance due to the sequential nature of the time-stepping

approach, allowing spatial concurrency only. This pa-

per considers the three basic options of multigrid al-

gorithms on space-time grids that allow parallelism in

space and time: coarsening in space and time, semi-

coarsening in the spatial dimensions, and semicoarsen-

ing in the temporal dimension. We develop parallel soft-

ware and performance models to study the three meth-
ods at scales of up to 16K cores and introduce an ex-
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tension of one of them for handling multistep time inte-

gration. We then discuss advantages and disadvantages

of the different approaches and their benefit compared

to traditional space-parallel algorithms with sequential

time stepping on modern architectures.

Keywords Multigrid Methods · Space-time dis-

cretizations · Parallel-in-time integration

1 Introduction

The numerical solution of linear systems arising from

the discretization of partial differential equations

(PDEs) with evolutionary behavior, such as parabolic

(space-time) problems, hyperbolic problems, and equa-

tions with time-like variables is of interest in many ap-

plications including fluid flow, magnetohydrodynamics,

compressible flow, and charged particle transport. Cur-

rent trends in supercomputing leading towards com-

puters with more, but not faster, processors induce a

change in the development of algorithms for these type

of problems. Instead of exploiting increasing clock

speeds, faster time-to-solution must come from increas-

ing concurrency, driving the development of time-

parallel and full space-time methods.

In contrast to classical time-integration techniques

based on a time-stepping approach, i.e., solving sequen-

tially for one time step after the other, time-parallel and

space-time methods allow simultaneous solution across

multiple time steps. As a consequence, these methods

enable exploitation of substantially more computational

resources than standard space-parallel methods with se-

quential time stepping. While classical time-stepping

has optimal algorithmic scalability, with best possible

complexity when using a scalable solver for each time
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step, space-time-parallel methods introduce more com-

putations and/or memory usage to allow the use of

vastly more parallel resources. In other words, space-

time parallel methods remain algorithmically optimal,

but with larger constant factors. Their use provides a

speedup over traditional time-stepping when sufficient

parallel resources are available to amortize their in-

creased cost.

Research on parallel-in-time integration started

about 50 years ago with the seminal work of Nievergelt

in 1964 [38]. Since then, various approaches have been

explored, including direct methods such as [10, 21, 34,

37,41], as well as iterative approaches based on multiple

shooting, domain decomposition, waveform relaxation,

and multigrid including [4,9,11,12,18,22,25–29,32,33,

35,36,43–47]. A recent review of the extensive literature

in this area is [17].

There are now many available parallel-in-time meth-

ods that allow for faster time-to-solution in comparison

with classical time-stepping approaches, given enough

computational resources. However, a comparison of the

different space-time-parallel approaches does not exist.

A comprehensive comparison of all proposed parallel-in-

time methods is a far greater task than could be covered

in a single manuscript; here, we focus on representa-

tive approaches of multigrid type on space-time grids,

including both semicoarsening approaches and those

that coarsen in both space and time. More specifically,

we compare space-time multigrid with point-wise relax-

ation (STMG) [27], space-time multigrid with block re-

laxation (STMG-BR) [18], space-time concurrent

multigrid waveform relaxation with cyclic reduction

(WRMG-CR) [28], and multigrid-reduction-in-time

(MGRIT) [12] for time discretizations using backward

differences of order k (BDF-k).

The goal of our comparison is not to simply de-

termine the algorithm with the fastest time-to-solution

for a given problem. Instead, we aim at determining

advantages and disadvantages of the methods based on

comparison parameters such as robustness, intrusive-

ness, storage requirements, and parallel performance.

We recognize that there is no perfect method, since

there are necessarily trade-offs between time-to-solution

for a particular problem, robustness, intrusiveness, and

storage requirements. One important aspect is the ef-

fort one has to put into implementing the methods

when aiming at adding parallelism to an existing time-

stepping code. While MGRIT is a non-intrusive ap-

proach that, similarly to time stepping, uses an exist-

ing time propagator to integrate from one time to the

next, both STMG methods and WRMG-CR are inva-

sive approaches. On the other hand, the latter three

approaches have better algorithmic complexities than

the MGRIT algorithm. In this paper, we are interested

in answering the question of how much of a perfor-

mance penalty one might pay in using a non-intrusive

approach, such as MGRIT, in contrast with more ef-

ficient approaches like STMG and WRMG-CR. Addi-

tionally, we demonstrate the benefit compared to clas-

sical space-parallel time-stepping algorithms in a given

parallel environment.

This paper is organized as follows. In Section 2,

we review the three multigrid methods with space-time

concurrency, STMG (both the point-wise and the block

relaxation version), WRMG-CR, and MGRIT, includ-

ing a new description of the use of MGRIT for multistep

time integration. In Section 3, we construct a simple

model for the comparison. We introduce a parabolic

test problem, derive parallel performance models, and

discuss parallel implementations as well as storage re-

quirements of the three methods. Section 4 starts with

weak scaling studies, followed by strong scaling studies

comparing the three multigrid methods both with one

another and with a parallel algorithm with sequential

time stepping. Additionally, we include a discussion of

insights from the parallel models as well as an overview

of current research in the XBraid project [2] to incor-

porate some of the more intrusive, but highly efficient,

aspects of methods like STMG. Conclusions are pre-

sented in Section 5.

2 Multigrid on space-time grids

The naive approach of applying multigrid with stan-

dard components, i.e., point relaxation and full coars-
ening, for solving parabolic (space-time) problems typ-

ically leads to poor multigrid performance (see, e.g.

[27]). In this section, we describe three multigrid algo-

rithms that represent the most basic choices for multi-

grid methods on space-time grids which offer good per-

formance, allowing parallelism in space and time. For a

given parabolic problem, the methods assume different

discretization approaches using either a point-wise dis-

cretization of the whole space-time domain or a semidis-

cretization of the spatial domain. However, for a given

discretization in both space and time, all methods solve

the same (block-scaled) resulting system of equations.

2.1 Space-time multigrid

The space-time multigrid methods proposed in [18, 27]

treat the whole of the space-time problem simultane-

ously. The methods use either point or block smoothers

and employ parameter-dependent coarsening strategies
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that choose either semicoarsening in time or in space or

full space-time coarsening at each level of the hierarchy.

Let Σ = Ω × [0, T ] be a space-time domain and

consider a time-dependent parabolic PDE of the form

ut + L(u) = b (1)

in Σ, subject to boundary conditions in space and an

initial condition in time. Furthermore, L denotes an el-

liptic operator and u = u(x, t) and b = b(x, t) are func-

tions of a spatial point, x ∈ Ω, and time, t ∈ [0, T ]. We

discretize (1) by choosing appropriate discrete spatial

and temporal domains. The resulting discrete problem

is typically anisotropic due to different mesh sizes used

for discretizing the spatial and temporal domains. Con-

sider, for example, discretizing the heat equation in one

space dimension and in the time interval [0, T ] on a rect-

angular space-time mesh with constant spacing ∆x and

∆t, respectively. If we use central finite differences for

discretizing the spatial derivatives and backward Eu-

ler (also, first-order backward differentiation formula

(BDF1)) for the time derivative, the coefficient matrix

of the resulting linear system depends on the parameter

λ = ∆t/(∆x)2, which can be considered as a measure

of the degree of anisotropy in the discrete operator.

Analogously to anisotropic elliptic problems, in the

parabolic case, there are also two standard approaches

for deriving a multigrid method to treat the anisotropy:

the strategy is to either change the smoother to line or

block relaxation, ensuring smoothing in the direction

of strong coupling, or to change the coarsening strat-

egy, using coarsening only in the direction where point

smoothing is successful. STMG follows the second ap-

proach, while STMG-BR is mainly driven by the first
approach. The STMG method uses a colored point-wise

Gauss-Seidel relaxation, based on partitioning the dis-

crete space-time domain into points of different ‘color’

with respect to all dimensions of the problem. That is,

time is treated simply as any other dimension of the

problem. For the block-relaxation version of STMG,

STMG-BR, damped block Jacobi in time relaxation is

used (implemented by using a spatial V-cycle indepen-

dently on each time-line of the solution).

Relaxation is accelerated using a coarse-grid correc-

tion based on an adaptive parameter-dependent coars-

ening strategy. More precisely, depending on the de-

gree of anisotropy of the discretization stencil, λ (e.g.,

λ = ∆t/(∆x)2 in our previous example), in STMG, ei-

ther semicoarsening in space or in time is chosen while

in the block-relaxation version, either full space-time

coarsening or semicoarsening in time is used. The choice

for the coarsening strategy is based on a selected pa-

rameter, λcrit, which can be chosen, for example, us-

ing Fourier analysis, as was done for the heat equa-

tion [27], applying the two-grid methods using either

semicoarsening in space (when λ ≥ λcrit) or in time

(when λ < λcrit). Thus, a hierarchy of coarse grids is

created, where going from one level to the next coarser

level, the number of points is reduced either only in the

spatial dimensions or only in the temporal dimension if

the point-wise relaxation version is used. In the case of

block relaxation, the number of points is reduced either

in all dimensions or only in the temporal dimension.

Rediscretization is used to create the discrete opera-

tor on each level, and the intergrid transfer operators

are adapted to the grid hierarchy. In the case of space-

coarsening, interpolation and restriction operators are

the standard ones used for isotropic elliptic problems.

For time-coarsening, interpolation and restriction are

only forward in time, transferring no information back-

ward in time.

Summing up, assuming a discretization on a rectan-

gular space-time grid with Nx points in each spatial di-

mension and Nt points in the time interval, we consider

a hierarchy of space-time meshes, Σl, l = 0, 1, . . . , L =

log2(NxNt). Let Alu
(l) = g(l) be the discrete problem

on each grid level and λl the degree of anisotropy of the

discretization stencil defining Al. Then, with Px, Rx, Pt,

and Rt denoting interpolation and restriction operators

for space-coarsening and time-coarsening, respectively,

and for a given parameter λcrit, the STMG(-BR) V -

cycle algorithm for solving a linear parabolic problem

can be written as follows:

STMG(-BR) (l)
if l is the coarsest level, L then

Solve the coarse-grid system ALu(L) = g(L).
else

Relax on Alu(l) = g(l).
if λl < λcrit then

Compute and restrict the residual using
restriction in time,
g(l+1) = Rt(g(l) −Alu(l)).

else
Compute and restrict the residual using
restriction in space(-time),
g(l+1) = (Rt)Rx(g(l) −Alu(l)).

end
Solve on next level: STMG(l + 1).
if λl < λcrit then

Correct using interpolation in time,
u(l) ← u(l) + Ptu(l+1).

else
Correct using interpolation in space(-time),
u(l) ← u(l) + Px(Pt)u(l+1).

end

Relax on Alu(l) = g(l).
end

Note that STMG algorithms of other cycling types such

as F - or W -cycles can be defined, which are of par-
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ticular interest for improving the overall convergence

rates [27].

Remark: While for one-step time-discretization meth-

ods, such as BDF1, usually a red-black ordering of the

grid points is sufficient for the point-relaxation ver-

sion, for multi-step time discretizations, more colors

are needed. As a consequence, the amount of paral-

lelism decreases with relaxation performed on points of

one color at a time. Alternatively, a two-color ordering

could be used in combination with a Jacobi-like in time

approach, i.e., a backward ordering of the grid points

in time.

2.2 Multigrid waveform relaxation

Waveform relaxation methods are based on applying

standard iterative methods to systems of time-dependent

ordinary differential equations (ODEs). Waveform re-

laxation, used in combination with either multigrid [33,

46] or domain decomposition [5, 19] ideas to treat the

spatial problem expands the applicability of standard

iterative methods to include time-dependent PDEs.

Multigrid waveform relaxation (WRMG) [33] combines

red-black zebra-in-time line relaxation with a semicoars-

ening strategy, using coarsening only in the spatial di-

mension.

For solving parabolic problems as given in (1), in

contrast to STMG described above, the WRMG algo-

rithm uses a method of lines approximation, discretiz-

ing only the spatial domain, Ω. Thus, a semidiscrete

problem is generated, i.e., the PDE is first transformed

to a system of time-dependent ODEs of the form

d

dt
u(t) +Q(u(t)) = b(t), u(0) = g0, t ∈ [0, T ], (2)

where u(t) and b(t) are vector functions of time, t ∈
[0, T ] (i.e., the semidiscrete analogues of the functions u

and b in (1)), with (d/dt)u(t) denoting the time deriva-

tive of the vector u(t), and where Q is the discrete

approximation of the operator L in (1). In the lin-

ear case, considered in the remainder of this section,

function Q(·) corresponds to a matrix-vector product.

The idea of waveform (time-line) relaxation [31] is to

apply a standard iterative method such as Jacobi or

Gauss-Seidel to the ODE system (2). Therefore, let

Q = D − L − U be the splitting of the matrix into

its diagonal, strictly lower, and strictly upper triangu-

lar parts; note that D,L, and U may be functions of

time. Then, one step of a Gauss-Seidel-like method for

(2) is given by

d

dt
u(new)(t) + (D − L)u(new)(t) = Uu(old)(t) + b(t), (3)

u(new)(0) = g0, t ∈ [0, T ],

with u(old) and u(new) denoting known and to be up-

dated solution values, respectively. That is, one step

of the method involves solving Ns linear, scalar ODEs,

where Ns is the number of variables in the discrete spa-

tial domain (e.g., Ns = N2
x if discretizing on a regular

square mesh in 2D). Furthermore, if Q is a standard

finite difference stencil and a red-black ordering of the

underlying grid points is used, the ODE system decou-

ples, i.e., each ODE can be integrated separately and

in parallel with the ODEs at grid points of the same

color.

The performance of Gauss-Seidel waveform relax-

ation is accelerated by a coarse-grid correction proce-

dure based on semicoarsening in the spatial dimensions.

More precisely, discrete operators are defined on a hi-

erarchy of spatial meshes and standard interpolation

and restriction operators as used for isotropic elliptic

problems (e.g., full-weighting restriction and bilinear

interpolation for 2D problems), allowing the transfer

between levels in the multigrid hierarchy. Parallelism

in this algorithm, however, is limited to spatial par-

allelism. Space-time concurrent WRMG enables paral-

lelism across time, i.e., parallel-in-time integration of

the scalar ODEs in (3) that make up the kernel of

WRMG. While in the method described in [46] only

some time parallelism was introduced by using pipelin-

ing or the partition method, WRMG with cyclic re-

duction (WRMG-CR) [28] enables full time parallelism

within WRMG.

The use of cyclic reduction within waveform relax-

ation is motivated by the connection of multistep meth-

ods to recurrence relations. Therefore, let ti = iδt,

i = 0, 1, . . . , Nt, be a temporal grid with constant spac-

ing δt = T/Nt, and for i = 1, . . . , Nt, let un,i be an ap-

proximation to un(ti), with the subscript n = 1, . . . , Ns
indicating that we consider one ODE of the system.

Then, a general k-step time discretization method for

a linear, scalar ODE, e.g., one component of the ODE

systems in (2) or (3), with solution variable un and ini-

tial condition un(0) = g0 is given by

un,0 = g0 (4)

un,i =

min{i,k}∑
s=1

a
(n)
i,i−sun,i−s + gn,i, i = 1, 2, . . . , Nt.

That is, the solution, un,i, at time ti depends on solution-

independent terms, gn,i, e.g., related to boundary con-

ditions or source terms or connections to different spa-

tial points, as well as on the solution at the previous k

time steps, except at the beginning, where the method

builds up from a one-step method involving only the ini-

tial condition at time zero. Thus, the time discretization

method (4) is equivalent to a linear system of equations
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with lower triangular structured coefficient matrix, or,

equivalently, to a linear recurrence relation of order k.

Note that in the case of constant-coefficients, i.e., in

the case that coefficients a
(n)
i,i−s are time-independent,

we have a
(n)
i,i−s = a

(n)
µ,s with µ = i for each i < k and

µ = k otherwise. In practice, coefficients a
(n)
µ,s are inde-

pendent of n; however, they may not be, e.g., if using

different time discretizations across the spatial domain.

Considering this connection to linear recurrences and

the fact that linear recurrences can be parallelized effi-

ciently using a cyclic reduction approach [8,23,30], mo-

tivates using cyclic reduction for integrating the ODEs

in (3) and, thus, introducing temporal parallelism in

WRMG.

Altogether, assuming a discrete spatial domain with

Nx points in each spatial dimension, WRMG-CR uses

a hierarchy of spatial meshes, Ωl, l = 0, 1, . . . , L =

log2(Nx). Let d
dtu

(l) + Qlu
(l) = b(l), u(l)(0) = g

(l)
0 be

the ODE system on level l, where Ql represents a time-

independent spatial discretization on the mesh Ωl. Fur-

thermore, for l = 0, 1, . . . , L, let Alu
(l) = g(l) be the

equivalent linear system of equations for a given linear

multistep time discretization method. Note that the lin-

ear systems are of the form

Alu
(l) ≡ (I

N
(l)
s
⊗ J +Ql ⊗ INt)u(l) = g(l),

where I
N

(l)
s

and INt are identity matrices on the discrete

spatial and temporal domains, respectively, and J is

the (lower-triangular) matrix describing the discretiza-

tion in time. With Px and Rx denoting the interpola-

tion and restriction operators (also used in STMG for

space-coarsening), the WRMG-CR V -cycle algorithm
for solving (2) can be written as follows:

WRMG-CR (l)
if l is the coarsest level, L then

Solve the coarse-grid system ALu(L) = g(L).
else

1. Relax on d
dt
u(l) +Qlu(l) = b(l), u(l)(0) = g

(l)
0

using red-black Gauss-Seidel waveform relaxation
with cyclic reduction, i.e., solve Alu(l) = g(l) for
A in red-black block ordering with respect to
spatial variables and using cyclic reduction for
solving along time lines.

2. Compute and restrict the residual using
restriction in space, g(l+1) = Rx(g(l) −Alu(l)).

3. Solve on the next level: WRMG-CR(l + 1).

4. Correct using interpolation in space,
u(l) ← u(l) + Pxu(l+1).

5. Relax on d
dt
u(l) +Qlu(l) = b(l), u(l)(0) = g

(l)
0

using red-black Gauss-Seidel waveform relaxation
with cyclic reduction.

end

Other cycling types can be defined and have been stud-

ied, e.g., [28] discusses the use of full multigrid (FMG).

Remark: While we focus on the use of cyclic reduc-

tion, which is very efficient for the case of a single-

step time discretization (k = 1), it is clear that any

algorithm with good parallel efficiency can be used to

solve the banded lower-triangular linear systems in the

waveform relaxation step. In particular, for multistep

methods (k ≥ 2), it is computationally more efficient

to use the recursive doubling method [24] instead of

cyclic reduction (see [28]), but block cyclic reduction

(as explained below for multigrid-reduction-in-time) or

residual-correction strategies could also be used.

2.3 Multigrid-reduction-in-time

The multigrid-reduction-in-time (MGRIT) algorithm

[12] is based on applying multigrid reduction techniques

[39,40] to time integration, and can be seen as a multi-

level extension of the two-level parareal algorithm [32].

The method uses block smoothers for relaxation and

employs a semicoarsening strategy that, in contrast to

WRMG, coarsens only in the temporal dimension. To

describe the MGRIT algorithm, we consider a system

of ODEs of the form

u′(t) = f(t, u(t)), u(0) = g0, t ∈ [0, T ]. (5)

Note that (5) is a more general form of (2). We choose

the form (5) to underline that we do not assume a

specific discretization of the spatial domain, allowing

a component-wise viewpoint of the ODE system as in

the WRMG approach, but consider the discrete spa-

tial domain as a whole. Instead, we choose a discretiza-

tion of the time interval. For ease of presentation, we

first review the MGRIT algorithm for one-step time

discretization methods as introduced in [12]. We then

explain how to recast multistep methods as block single-

step methods, which is the basis for extending MGRIT

to multistep methods.

Denoting the temporal grid with constant spacing

δt = T/Nt again by ti = iδt, i = 0, 1, . . . , Nt, we now

let ui be an approximation to u(ti) for i = 1, . . . , Nt.

Then, in the case that f is a linear function of u(t),

the solution to (5) is defined via time-stepping, which

can also be represented as a forward solve of the linear

system, written in block form as

Au ≡


I

−Φδt I
. . .

. . .

−Φδt I



u0
u1
...

uNt

 =


g0
g1
...

gNt

 ≡ g, (6)
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where Φδt represents the time-stepping operator that

takes a solution at time ti to that at time ti+1, along

with a time-dependent forcing term gi. Hence, in the

time dimension, this forward solve is completely sequen-

tial.

MGRIT enables parallelism in the solution process

by replacing the sequential solve with an optimal multi-

grid reduction method using a hierarchy of coarse tem-

poral grids. For simplicity, we only describe the two-

level MGRIT algorithm; the multilevel scheme results

from applying the two-level method recursively. The

coarse temporal grid, or the set of C-points, is derived

from the original (fine) temporal grid by considering

only every m-th temporal point, where m > 1 is an inte-

ger. That is, the coarse temporal grid consists of Nt/m

points, denoted by Tj = j∆T, j = 0, 1, . . . , Nt/m, with

constant spacing ∆T = mδt; the remaining temporal

points define the set of F -points.

The MGRIT algorithm uses the block smoother FCF -

relaxation, which consists of three sweeps: F -relaxation,

then C-relaxation, and again F -relaxation. F -relaxation

updates the unknowns at F -points by propagating the

values of C-points at times Tj across a coarse-scale time

interval, (Tj , Tj+1), for each j = 0, 1, . . . , Nt/m − 1.

Note that within each coarse-scale time interval, these

updates are sequential, but there are no dependencies

across coarse time intervals, enabling parallelism. C-

relaxation updates the unknowns at C-points analo-

gously, using the values at neighboring F -points. The

intergrid transfer operators of MGRIT are injection,

RI , and ‘ideal’ interpolation, P , with ‘ideal’ interpo-

lation corresponding to injection from the coarse grid

to the fine grid, followed by F -relaxation with a zero

right-hand side. The coarse-grid system, A∆u∆ = g∆,

is of the same form as the fine-grid system (6), with Φδt
replaced by the coarse-scale time integrator Φ∆T that

takes a solution u∆,j at time Tj to that at time Tj+1,

along with consistently restricted forcing terms g∆,j .

The two-level MGRIT algorithm can then be written

as follows:

Two-level MGRIT

1. Relax on Au = g using FCF -relaxation.

2. Compute and restrict the residual using injection,
g∆ = RI(g −Au).

3. Solve the coarse-grid system A∆u∆ = g∆.

4. Correct using ‘ideal’ interpolation, u← u+ Pu∆.

Multilevel schemes of various multigrid cycling types

such as V -, W -, and F -cycles can be defined by apply-

ing the two-level method recursively to the system in

Step 3. Indeed, it is for this reason that FCF -relaxation

is used, in contrast to the two-level algorithm, for which

F -relaxation alone yields a scalable solution algorithm.

When using F -relaxation in the two-level algorithm, the

resulting approach can be viewed as a parareal-type al-

gorithm [12,14,15,20,32].

Remark: For nonlinear functions f , the full approx-

imation storage (FAS) approach [7] can be used to ex-

tend the MGRIT algorithm [14].

2.3.1 MGRIT for multistep time integration

Consider the system of ODEs in (5) on a temporal grid

with time points ti, i = 0, 1, . . . , Nt as before, but con-

sider the general setting of non-uniform spacing given

by τi = ti−ti−1 (in the scheme considered here, this will

be the setting on coarse time grids). As before, let ui
be an approximation to u(ti) for i = 1, . . . , Nt, where

u0 = g0 is the initial condition at time zero. Then,

a general k-step time discretization method for (5) is

given by

ui = Φ
(µ)
i (ui−1, ui−2, . . . , ui−µ) + gi

:=

µ=min{i,k}∑
s=1

Φ
(µ,s)
i (ui−s) + gi, i = 1, . . . , Nt, (7)

where, analogously to (4), the solution, ui, at time ti
depends on solution-independent terms, gi, as well as

on the solution at the previous k time steps, except

at the beginning, where the method builds up from a

one-step method involving only the initial condition at

time zero. Note that from a time-stepping perspective,
the key is the time-stepping operator, Φ

(µ)
i , that takes

a solution at times ti−1, ti−2, . . . , ti−µ to that at time ti
along with a time-dependent forcing term gi with µ = i

for each i < k and µ = k otherwise.

Extending the MGRIT algorithm described above

to this multistep time discretization setting is based on

the idea of recasting the multistep method (7) as a block

one-step method. This idea is the key to keeping the

MGRIT approach non-intrusive so that only the time-

stepping operator, Φ
(µ)
i , is needed. The approach works

in both the linear and nonlinear case; for simplicity, we

consider the linear case and describe it in detail.

The idea is to group unknowns into k-tuples to de-

fine new vector variables

wn = (ukn, ukn+1, . . . , ukn+k−1)T ,

n = 0, 1, . . . , (Nt + 1)/k − 1, then rewrite the method

as a one-step method in terms of the wn. For example,



Multigrid methods with space-time concurrency 7

in the BDF2 case in Figure 1, we have

wn =

[
u2n
u2n+1

]
=

[
Φ
(µ)
2n (u2n−1, u2n−2) + g2n

Φ
(µ)
2n+1(Φ

(µ)
2n (u2n−1, u2n−2) + g2n, u2n−1) + g2n+1

]

= Ψn(

[
u2n−2
u2n−1

]
) +

[
g2n
g2n+1

]
= Ψn(wn−1) + gn. (8)

In the linear case, it is easy to see that the step function

Ψn is a block 2 × 2 matrix (k × k for general BDF-k)

composed from the Φ
(µ,s)
i matrices in (7). In addition,

the method yields the same lower bi-diagonal form as

(6) with the Ψn matrices on the lower diagonal. Imple-

menting this method in XBraid [2] is straightforward

because the step function in (8) just involves making

calls to the original BDF2 method, whether in the lin-

ear setting or the nonlinear setting. Note that if the

u2n result in (8) is saved, it can be used to compute the

u2n+1 result, hence only two spatial solves are required

to compute a step, whereas a verbatim implementation

of the block matrix approach in the linear case would

require many more spatial solves.

All of this generalizes straightforwardly to the BDF-

k setting. Note that, even if we begin with a uniformly

spaced grid (as here), this method leads to coarse grids

with time steps (between and within tuples) that vary

dramatically. In the BDF2 case considered later, this

does not cause stability problems. Research is ongoing

for the higher order cases, where stability may be more

of an issue.

3 Cost estimates

In investigating the differences between the three time-

parallel methods, it is useful to construct a simple model

for the comparison. In the model, we consider a diffu-

sion problem in two space dimensions discretized on a

rectangular space-time grid and distributed in a domain-

partitioned manner across a given processor grid.

3.1 The parabolic test problem

Consider the diffusion equation in two space dimen-

sions,

ut−∆u = b(x, y, t), (x, y) ∈ Ω = [0, π]2, t ∈ [0, T ], (9)

with the forcing term (motived by the test problem in

[42]),

b(x, y, t) = − sin(x) sin(y) (sin(t)− 2 cos(t)) , (10)

(x, y) ∈ Ω, t ∈ [0, T ],

and subject to the initial condition,

u(x, y, 0) = g0(x, y) = sin(x) sin(y), (x, y) ∈ Ω, (11)

and homogeneous Dirichlet boundary conditions,

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T ]. (12)

The problem is discretized on a uniform rectangular

space-time grid consisting of an equal number of inter-

vals in both spatial dimensions using the spatial mesh

sizes ∆x = π/Nx and ∆y = π/Nx, respectively, and Nt
time intervals with a time step size δt = T/Nt, where

Nx and Nt are positive integers and T denotes the fi-

nal time. Let uj,k,i be an approximation to u(xj , yk, ti),

j, k = 0, 1, . . . , Nx, i = 0, 1, . . . , Nt, at the grid points

(xj , yk, ti) with xj = j∆x, yk = k∆y, and ti = iδt. Us-

ing central finite differences for discretizing the spatial

derivatives and first- (BDF1) or second-order (BDF2)

backward differences for the time discretization, we ob-

tain a linear system in the unknowns uj,k,i. The BDF1

discretization can be written in time-based stencil no-

tation as[
− 1
δtI ( 1

δtI +M) 0
]
,

where M can be written in space-based stencil notation

as

M =

 −ay
−ax 2(ax + ay) −ax

−ay

 ,
with ax = 1/(∆x)2 and ay = 1/(∆y)2.

For the BDF2 discretization, we use the variably

spaced grid with spacing τi introduced in Section 2.3.1

since we need it to discretize the coarse grids. In time-
based stencil notation, we have at time point ti[

r2i
τi(1+ri)

I − (1+ri)
τi

I ( (1+2ri)
τi(1+ri)

I +M) 0 0
]
,

where ri = τi/τi−1.

3.2 Parallel implementation

For the implementation of the three multigrid meth-

ods on a distributed memory computer, we assume a

domain-decomposition approach. That is, the space-

time domain consisting of N2
x×Nt points is distributed

evenly across a logical P 2
x ×Pt processor grid such that

each processor holds an n2x × nt subgrid. The distribu-

tions on coarser grids are in the usual multigrid fashion

through their parent fine grids.

The STMG and WRMG-CR methods were imple-

mented in hypre [1] and for the MGRIT algorithm, we

use the XBraid library [2]. The XBraid package is an
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Fig. 1: Schematic view of the action of F -relaxation in one coarse-scale time interval for a two-step time discretiza-

tion method and coarsening by a factor of four; ◦ represent F -points and � represent C-points. The action of

F -relaxation on the individual F -points are distinguished by using different line styles.

implementation of the MGRIT algorithm based on an

FAS approach to accommodate nonlinear problems in

addition to linear problems. From the XBraid perspec-

tive, the time integrator, Φ, is a user-provided black-box

routine; the library only provides time-parallelism. To

save on memory, only solution values at C-points are

stored. Note that the systems approach for the multi-

step case does not increase MGRIT storage. For BDF2,

for example, the number of C-point time pairs is half

of the number of C-points when considering single time

points. We implemented STMG and WRMG-CR as

semicoarsening algorithms, i.e., spatial coarsening is first

done in the x-direction and then in the y-direction on

the next coarser grid level. Relaxation is only performed

on grid levels of full coarsening, i.e., on every second

grid level, skipping intermediate semi-coarsened levels.

While this approach has larger memory requirements

(see Section 3.3), it allows savings in communication

compared with implementing the two methods with full

spatial coarsening. For cyclic reduction within WRMG-

CR, we use the cyclic reduction solver from hypre, which

is implemented as a 1D multigrid method. The spa-

tial problems of the time integrator, Φ, in the MGRIT

algorithm are solved using the parallel semicoarsening

multigrid algorithm PFMG [3,13], as included in hypre.

For comparison to the classical time-stepping approach,

we also implemented a parallel algorithm with sequen-

tial time stepping, using the same time integrator as in

the implementation of MGRIT. In modelling the time

integrator as well as for the experiments in Section 4,

we assume PFMG V (1, 1)-cycles with red-black Gauss-

Seidel relaxation.

Remark 1: For the point-relaxation version of STMG,

a four-color scheme would be needed in case of the

BDF2 time discretization. However, for simplicity of

implementation, we use a two-color scheme as in the

case of the BDF1 discretization with the difference that

updating of grid points is from high t-values to low t-

values, i.e., backward ordering of the grid points in time.

Thus, point-relaxation is Gauss-Seidel-like in space and

Jacobi-like in time. The results in Section 4 show that

this reduction in implementation effort is an acceptable

parallel performance tradeoff.

Remark 2: For the block-relaxation version of STMG,

there are three changes to be made to closely match

the algorithm proposed in [18]: First, instead of semi-

coarsening in space, full space-time coarsening is ap-

plied. Secondly, interpolation is backward in time in-

stead of forward in time and, thirdly, the key compo-

nent of the STMG variant is a damped block Jacobi

in time smoother. Similarly to STMG and WRMG-

CR, we implemented full space-time coarsening in a

semicoarsening fashion, i. e., coarsening is done in three

steps: first in the x-direction, then in the y-direction on

the next coarser grid level and finally in the t-direction

on the next coarser grid level. Relaxation is only per-

formed on grid levels of full coarsening. For the damped

block Jacobi in time relaxation, a single spatial V -cycle

is applied to each time slice. We use PFMG V (1, 1)-

cycles with red-black Gauss-Seidel relaxation for the

spatial V -cycles. Note that this block-relaxation vari-

ant of STMG is similar to but differs from the method

proposed in [18]. In [18], a standard finite element dis-

cretization in space and a discontinuous Galerkin ap-

proximation in time is used. Therefore, spatial inter-

polation and restriction are transposes of each other

as opposed to transposes of each other up to a con-

stant in the finite-difference setting of this paper. Tem-

poral interpolation and restriction come from the finite-

element in time basis, which gives restriction forward

in time and interpolation backward in time when using

piecewise constant-in-time elements corresponding to a

BDF1 discretization used in this paper.

Remark 3: In the case of a two-step time discretiza-

tion method like BDF2, waveform relaxation requires

solving linear systems where the system matrix, A, has

two subdiagonals. For simplicity of implementation, we

approximate these solves by a splitting method with

iteration matrix E = I −M−1A, where A = M − N
with M containing the diagonal and first subdiagonal

of A and where N has only entries on the second sub-

diagonal, corresponding to the entries on the second
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subdiagonal of −A. Since M is bidiagonal we can apply

standard cyclic reduction.

However, the use of the splitting method has a pro-

found effect on the robustness of the waveform relax-

ation method with respect to the discretization grid,

restricting the use of this implementation of WRMG-

CR for BDF2 to a limited choice of grids. When dis-

cretizing the test problem on a regular space-time grid

with spatial grid size ∆x in both spatial dimensions

and time step δt, the coefficient matrix of the linear

system within waveform relaxation with cyclic reduc-

tion arising from a BDF2 time discretization depends

on the parameter λ = δt/(∆x)2. The norm of the it-

eration matrix of the splitting method, E, is less than

one provided that λ > 1/4. Figure 2 shows error re-

duction factors for the splitting method applied to a

linear system with 128 unknowns for different values of

λ. Results show that for values of λ larger than 1/4, the

method converges with good error reduction in all iter-

ation steps. However, for λ < 1/4, error reduction rates

are greater than one in the first iterations before con-

vergence in later iterations. Thus, the method converges

asymptotically, but one or a few iterations are not suit-

able for a robust approximation within the waveform

relaxation method. For the BDF2 time discretization,

we therefore do not include WRMG-CR in weak and

strong parallel scaling studies in Section 4. Note that a

block version of cyclic reduction can be useful to avoid

this issue (see Remark at the end of Section 2.2).

3.3 Storage requirements

In all of the algorithms, we essentially solve a linear sys-

tem, Ax = b, where the system matrix A is described

by a stencil. Thus, considering a constant-coefficient

setting, storage for the matrix A is negligible and we

only estimate storage requirements for the solution vec-

tor. Since STMG(-BR) and WRMG require storing the

whole space-time grid, whereas for MGRIT only solu-

tion values at C-points are stored, on the fine grid, this

requires about N2
xNt or N2

xNt/m storage locations, re-

spectively, where m denotes the positive coarsening fac-

tor in the MGRIT approach. Taking the grid hierar-

chy of cyclic reduction (1D multigrid in time) within

WRMG into account increases the storage requirement

by a factor of about two, leading to a storage require-

ment of about 2N2
xNt storage locations on the fine grid

for WRMG-CR. In STMG(-BR) and WRMG-CR, the

coarse grids are defined by coarsening by a factor of

two in a spatial direction and/or in the time direction

per grid level, while in MGRIT, coarsening by the fac-

tor m, only in the time direction is used. Thus, the

ratio of the number of grid points from one grid level

to the next coarser grid is given by two in STMG(-BR)

and WRMG-CR and by m in MGRIT. This leads to a

total storage requirement of about 2N2
xNt for STMG(-

BR) and about 4N2
xNt (taking storage for cyclic reduc-

tion into account) for WRMG-CR. For the MGRIT ap-

proach, the total storage requirement is about

N2
xNt/(m− 1).

Note that implementing STMG(-BR) and WRMG-

CR as full (spatial) coarsening methods, i.e., coars-

ening in both spatial dimensions or in all dimensions

from one grid level to the next coarser grid, instead

of the implemented semicoarsening approaches, addi-

tional savings can be gained. In particular, the ratio of

the number of grid points from one grid level to the

next coarser grid is given by four or eight, respectively,

instead of two. This reduces the total storage require-

ment of WRMG-CR to about (8/3)N2
xNt. The storage

requirement of STMG and STMG-BR is bounded by

the extreme cases of coarsening only in space or full

coarsening, respectively, and coarsening only in time.

Thus, implemented with full (spatial) coarsening, the

total storage requirement of STMG and STMG-BR is

bounded below by (4/3)N2
xNt or (8/7)N2

xNt, respec-

tively, and above by 2N2
xNt. Assuming the initial pa-

rameter λ is within a factor two of λcrit, coarsening in

STMG and STMG-BR alternates between semicoarsen-

ing in space or full coarsening, respectively, and semi-

coarsening in time, yielding an expected total storage

requirement of (10/7)N2
xNt or (6/5)N2

xNt, respectively.

3.4 Performance models

In this section, we derive performance models for esti-

mating the parallel complexities of STMG, STMG-BR,

WRMG-CR, MGRIT, and a space-parallel algorithm

with sequential time stepping applied to the test prob-

lem; the resulting formulas will be discussed in Section

4.4. In the models, we assume that the total time of a

parallel algorithm consists of two terms, one related to

communication and one to computation,

Ttotal = Tcomm + Tcomp.

Standard communication and computation models use

the three machine-dependent parameters α, β, and γ.

The parameter α represents latency cost per message, β

is the inverse bandwidth cost, i.e., the cost per amount

of data sent, and γ is the flop rate of the machine.

“Small” ratios α/β and α/γ represent computation-

dominant machines, while “large” ratios characterize

communication-dominant machines. On future archi-

tectures, the parameters are expected to be most likely

in the more communication-dominant regime; a specific
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Fig. 2: Error reduction factors per iteration for a splitting method applied to the linear system within waveform

relaxation with cyclic reduction arising from a BDF2 time discretization using 128 time steps for different values

of λ = δt/(∆x)2.

parameter set will be considered in Section 4.4. In the

models, we assume that the time to access n doubles

from non-local memory is

Tcomm = α+ nβ, (13)

and the time to perform n floating-point operations is

Tcomp = nγ, (14)

3.4.1 STMG models

As the STMG methods employ parameter-dependent

coarsening strategies, for the point-relaxation version,

we derive performance models for the extreme cases of

coarsening only in space and coarsening only in time.

For the block-relaxation version, we model the perfor-

mance only for the case of semicoarsening in time in

terms of units of PFMG V (1, 1)-cycles used within re-

laxation. The derived model gives an upper bound for

the performance of STMG-BR; including spatial coars-

ening in the model would go beyond the scope of this

paper.

For the point-relaxation version, consider perform-

ing a two-color point relaxation, where each processor

has a subgrid of size n2x×nt. The time for one relaxation

sweep per color can roughly be modeled as a function

of the stencil size of the fine- and coarse-grid opera-

tors. Since the coarse-grid operators are formed by re-

discretization, the stencil size, A (A = 6 for BDF1 and

A = 7 for BDF2), is constant. Denoting the number of

neighbors in the spatial and temporal dimensions by Ax
and At, respectively, the time for one relaxation sweep

per color on level l (l = 0 is finest) can be modeled as

TS
(1/2)

l ≈ (A− 1)α+
((

2−lnxnt/2
)
Ax +

(
4−ln2x/2

)
At
)
β

+
(
4−ln2xnt/2

)
(2A− 1)γ,

in the case of semicoarsening in space and as

TS
(1/2)

l ≈ (A− 1)α+
((
nx2−lnt/2

)
Ax +

(
n2x/2

)
At
)
β

+
(
n2x2−lnt/2

)
(2A− 1)γ,

in the case of semicoarsening in time. Summing over

the two colors and the number of space or time levels,

Lx = log2(Nx) or Lt = log2(Nt), respectively, yields

TSSTMG−x ≈ 2(A− 1)Lxα+
(
2Axnxnt + (4/3)Atn

2
x

)
β

+ (4/3)(2A− 1)n2xntγ,

in the case of semicoarsening in space and

TSSTMG−t ≈ 2(A− 1)Ltα+
(
2Axnxnt +AtLtn

2
x

)
β

+ 2(2A− 1)n2xntγ,

in the case of semicoarsening in time. The time for the

residual computation within the STMG algorithm is

roughly the same as the time for relaxation.

The time for restriction and interpolation can be

modeled as a function of the stencil size of the intergrid

transfer operators, Px and Pt, for spatial and tempo-

ral semicoarsening, respectively. Note that interpola-

tion and restriction in space only requires communica-

tion with neighbors in the spatial dimensions, whereas

communication with neighbors in only the temporal di-

mension is needed in the case of temporal semicoarsen-

ing. On level l, the time for interpolation and restriction

can be modeled as

TPl ≈ TRl ≈ (Px − 1)
(
α+ 2−lnxntβ

)
+ (2Px − 1)2−ln2xntγ/2

and

TPl ≈ TRl ≈ (Pt− 1)
(
α+ n2xβ

)
+ (2Pt− 1)2−ln2xntγ/2,
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respectively, where the factor of 1/2 in the computa-

tion term is due to the fact that restriction is only

computed from C-points and interpolation is only to

F -points. Summing over the number of space or time

levels, 2Lx (due to the semicoarsening implementation)

or Lt, respectively, yields

TPSTMG−x ≈ TRSTMG−x ≈ (Px − 1)2Lxα+ 2(Px − 1)nxntβ

+ (2Px − 1)n2xntγ,

in the case of semicoarsening in space and

TPSTMG−t ≈ TRSTMG−t ≈ (Pt − 1)Ltα+ (Pt − 1)Ltn
2
xβ

+ (2Pt − 1)n2xntγ,

in the case of semicoarsening in time. Note that Px = 3

and Pt = 2 in the algorithm.

The time of one V (ν1, ν2)-cycle of the STMG algo-

rithm with point-wise relaxation can then be modeled

as

(ν1 + ν2 + 1)TSSTMG−x + 2TPSTMG−x

≤ TSTMG ≤ (ν1 + ν2 + 1)TSSTMG−t + 2TPSTMG−t.

For the block-relaxation version, the time for one

relaxation sweep on level l can be modeled as

TSl ≈ T res
l + 2−lntTPFMG,

where T res
l denotes the time for the residual computa-

tion and TPFMG is the time for one PFMG V (1, 1)-

cycle. Summing over the number of time levels, Lt,

yields

TSSTMG-BR−t ≈ TSSTMG−t + 2ntTPFMG,

where we make use of the facts that the residual compu-

tation is the same as in the point-relaxation version and

that the time for the residual computation is roughly

the same as the time for point-relaxation. Using the in-

terpolation and restriction models derived above, the

time of one V (ν1, ν2)-cycle of the STMG-BR algorithm

can then be modeled as

TSTMG-BR ≤ 3TSSTMG−t+(ν1+ν2)2ntTPFMG+2TPSTMG−t.

3.4.2 WRMG-CR model

The main difference between WRMG-CR and STMG

with coarsening only in space is the smoother. The

STMG algorithm uses point smoothing, whereas

WRMG-CR uses (time-) line relaxation on a spatial

subdomain. Consider performing a two-color waveform

relaxation where each processor has a subgrid of size

σxn
2
x×nt, 0 < σx ≤ 1. In one sweep of a two-color wave-

form relaxation, for each color, a processor must calcu-

late the right-hand side for the line solves and perform

the line solves (i.e., solving a bidiagonal linear system

as described in Remark 3 in Section 3.2) using cyclic

reduction. Modeling the cyclic reduction algorithm as

a 1D multigrid method requires two communications

and six floating-point operations per half the number

of points per grid level. Summing over the number of

cyclic reduction levels, Lt = log2(Nt), the time of the

line solves within waveform relaxation can be modeled

as

TCR(σx) ≈ 2Ltα+ 2Ltσxn
2
xβ + 6σxn

2
xntγ.

Calculating the right-hand side for the line solves re-

quires communications with Ax neighbors in space and

At neighbors in time, where Ax + At = A − 2 with

A denoting the (constant) stencil size of the fine- and

coarse-grid operators. Note that we consider a 2-point

stencil for the cyclic reduction solves. The time for one

two-color waveform relaxation sweep on level l can then

roughly be modeled as

TSl ≈ 2(Ax +At)α+
(
2−lnxntAx + 4−ln2xAt

)
β

+ 4−ln2xnt · 2(Ax +At)γ + 2TCR(2−2l−1).

Summing over the number of grid levels, Lx = log2(Nx),

yields

TSWRMG ≈ 2(Ax +At)Lxα+
(
2Axnxnt + (4/3)Atn

2
x

)
β

+ (4/3)2(Ax +At)n
2
xntγ +

Lx∑
l=0

2TCR(2−2l−1)

≈ 2(Ax +At + 2Lt)Lxα

+
(
2Axnxnt + (4/3)(At + 2Lt)n

2
x

)
β

+ (8/3)(Ax +At + 3)n2xntγ.

The time for the residual computation, interpola-

tion, and restriction is the same as these times within

the STMG algorithm with semicoarsening only in space

and, thus, the time of one V (ν1, ν2)-cycle of WRMG-

CR can be modeled as

TWRMG ≈ (ν1 + ν2)TSWRMG + TSSTMG−x + 2TPSTMG−x.

3.4.3 MGRIT model

Due to the non-intrusive approach of the MGRIT al-

gorithm, it is natural to derive performance models in

terms of units of spatial solves [12]. A full parallel per-

formance model based on the standard communication

and computation models (13) and (14) can then be eas-

ily developed for a given solver. Assuming that PFMG
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V (1, 1)-cycles are used for the spatial solves, such a

model was derived in [12] which is generalized for a

BDF-k time discretization method as follows: Consider

solving the spatial problems within relaxation and re-

striction on the finest grid to high accuracy requiring

ν
(0)
x PFMG iterations. Spatial solves within relaxation

and restriction on coarse grids as well as within inter-

polation on all grids are approximated by ν
(l)
x PFMG

iterations. Furthermore, assume that each processor has

a subgrid of size n2x × nt. Since restriction and interpo-

lation correspond to C- or F -relaxation, respectively,

the time per processor for the spatial solves can be ap-

proximately modeled as(
k · 2ν(0)x +

kν
(l)
x (m+ 1)

(m− 1)

)
ntTPFMG

+
2k2(3m− 1)

(m− 1)
ntn

2
xγ,

where m > 0 denotes the coarsening factor, TPFMG is

the time of one PFMG V (1, 1)-cycle and the γ-term

represents the time for computing the right-hand side

of the spatial problems. Each F - or C- relaxation sweep

requires at most one parallel communication of the local

spatial problem (of size kn2
x) and, thus, the time of one

V (1, 0)-cycle of MGRIT is given by

TMGRIT ≈ 5Lt(α+ kn2
xβ)

+

(
k · 2ν(0)x +

kν
(l)
x (m+ 1)

(m− 1)

)
ntTPFMG

+
2k2(3m− 1)

(m− 1)
ntn

2
xγ,

where Lt = logm(Nt) denotes the number of time levels

in the MGRIT hierarchy.

3.4.4 Time-stepping model

Sequential time stepping requires computing the right-

hand side of the spatial problem and solving the spatial

problem at each time step. Thus, the time for sequential

time stepping can be modeled as

Tts ≈ Nt
(
ν(ts)x TPFMG + 2kn2

xγ
)
,

where ν
(ts)
x is the number of PFMG iterations for one

spatial solve.

4 Parallel results

In this section, we consider weak and strong parallel

scaling properties of the three multigrid methods. Fur-

thermore, we are interested in the benefit of the meth-

ods compared to sequential time stepping. We apply

the three multigrid methods and a parallel algorithm

with sequential time stepping to the test problem on

the space-time domain [0, π]2× [0, T ]. On the finest grid

of all methods, the initial condition is used as the initial

guess for t = 0, and a random initial guess for all other

times to ensure that we do not use any knowledge of the

right-hand side that could affect convergence. Further-

more, in the case of BDF2 for the time discretization,

we use the discrete solution of the BDF1 scheme for the

first time step t = δt. Coarsening in STMG is performed

until a grid consisting of only one variable is reached or

until a grid with one time step is reached when con-

sidering the block-relaxation version; semicoarsening in

WRMG-CR and MGRIT stops at three points in each

spatial dimension or three time steps, respectively. The

convergence tolerance is based on the absolute space-

time residual norm and chosen to be 10−6, measured

in the discrete L2-norm unless otherwise specified. We

have checked that, for all algorithms, the fixed space-

time residual norm for our stopping criterion is suffi-

cient to achieve discretization error for the problems

that we consider.

Numerical results in this section are generated on

Vulcan, a Blue Gene/Q system at Lawrence Livermore

National Laboratory consisting of 24,576 nodes, with

sixteen 1.6 GHz PowerPC A2 cores per node and a 5D

Torus interconnect.

Notation The space-time grid size and the final time,

T , of the time interval uniquely define the step sizes of

the discretization using the relationships ∆x = ∆y =

π/Nx and δt = T/Nt. To facilitate readability, only the

space-time grid size and final time are specified in the

caption of tables and figures, and the following labels

are used

FirstOrder2D(T = ·) test problem with BDF1 time dis-

cretization;

SecondOrder2D(T = ·) test problem with BDF2 time

discretization.

4.1 Challenges of a fair comparison

Having implemented STMG, STMG-BR, and WRMG-

CR in hypre and MGRIT using XBraid and hypre en-

sures a similar implementation complexity as all imple-

mentations use C and Message Passing Interface (MPI).

However, even with this basis, several parameter spaces

of both the algorithms themselves and the paralleliza-

tion make a fair comparison of the three methods chal-

lenging. In terms of algorithmic parameters, many choices

must be made for each method such as the type of

multigrid cycling scheme (e.g., V -cycle vs. F -cycle),
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the coarsening strategy (e.g., the choice of the param-

eter, λcrit, determining the coarsening direction in the

STMG approaches or the coarsening factor, m, in the

MGRIT algorithm), and the relaxation scheme (e.g.,

the number of pre- and post-relaxation steps in STMG,

STMG-BR, and WRMG-CR or the solver and accu-

racy for the spatial problems of the time integrator, Φ,

in MGRIT). Additionally, for the parallel implementa-

tion, the number of processors and their arrangement

on a processor grid, i.e., the amount of parallelism in

each direction, must be chosen. Since the processor dis-

tribution determines the ratio of computation vs. com-

munication on and across processors, one arrangement

of the processors can lead to completely different par-

allel performance than another arrangement. Note that

the processor distribution can be restricted by memory

requirements of the algorithms.

There is, of course, a very large parameter space

for each of these algorithms, considering V -, F -, and

W -cycle variants, number of relaxation sweeps, and so

forth. In this study, we consider a subset of these pos-

sibilities, informed based on experiences with these al-

gorithms reported in the literature, the need for finite

effort within implementation, and general practice and

experience with multigrid in a parallel environment.

Thus, we consider only V -cycle algorithms, known to

offer better parallel scaling than F - or W -cycles, even

though it is known that F -cycles are needed for algo-

rithmic scalability of STMG [27]. To ensure convergence

of WRMG-CR using the splitting method within relax-

ation in the case of BDF2 for the time discretization,

the parameter λ = δt/(∆x)2 must be greater than 1/4

on all grid levels where relaxation is performed (see

Remark 3 in Section 3.2). Since only the spatial grid

size, ∆x, increases by a factor of two per grid level

in the multigrid hierarchy, λ decreases by a factor of

four per grid level. As a consequence, the implementa-

tion of WRMG-CR using the splitting method within

relaxation is not suitable for meaningful strong and

weak parallel scaling studies. Consider, for example, the

test problem SecondOrder2D(T = 4π), discretized on a

652×65 space-time grid. Then, λ is greater than 1/4 on

all grid levels where relaxation is performed. In Figure

3, we plot the accuracy of the approximation, maxi ‖ei‖,
i.e., the maximum of the errors to the discrete solution

of SecondOrder2D(T = 4π) at each time step, measured

in the discrete L2-norm as a function of the compute

time. The linear-log scaling of the axes shows typical

multigrid convergence. However, if we were to use this

example for a proper domain-refinement weak scaling

study, on 8 processors (i.e., consistent refinement by

a factor of two in each dimension), we have to con-

sider a uniform grid of ∆x = ∆y = π/128 and 129

points in time. Then, the condition on λ is not fulfilled

on all grid levels in the multigrid hierarchy where re-

laxation is performed and, thus, one iteration of the

splitting method within relaxation is not sufficient for

convergence. Instead, for V (1, 1)-cycles for example, we

need 30 iterations of the splitting method to get reason-

able convergence, which is prohibitively costly. For the

BDF2 time discretization, we therefore do not include

WRMG-CR in weak and strong parallel scaling studies.

The block-relaxation version of STMG is also included

only for the BDF1 time discretization to match one of

the settings of [18] as close as possible with the setting

of this paper.

4.2 Weak parallel scaling

We apply several variants of the three multigrid schemes

to the test problem. For both time discretization

schemes, we look at computation time and iteration

counts to demonstrate good parallel scaling. In Section

4.3, a subset of this set of variants is then considered

for the comparison to sequential time stepping.

Figure 4 shows weak parallel scaling results for sev-

eral multigrid variants applied to the test problem with

BDF1 time discretization on various space-time domains.

For the test problem on the space-time domain [0, π]2×
[0, π2/64] shown at the top of the figure, for example,

the problem size per processor is fixed at (roughly) 129

points in each spatial direction and 257 points in the

temporal direction. For proper domain-refinement, we

quadruple the number of points in time when doubling

the number of points in space. Thus, on one proces-

sor, we use a uniform grid of ∆x = ∆y = π/128 and

257 points in time while, on 4096 processors, we use

a uniform grid of ∆x = ∆y = π/1024 and 16,385

points in time; in the bottom row of Figure 4, domain-

refinements of different space-time domains are consid-

ered. Note that due to the large memory requirements

of our implementation of STMG-BR, we were not able

to run the larger weak scaling study at the top of Figure

4 on our current parallel machine. Shown are results for

STMG and WRMG-CR variants with one pre- and one

post-smoothing step and with two pre- and one post-

smoothing step, as well as STMG-BR with two pre-

and two post-smoothing steps. The parameter λcrit de-

termining the coarsening direction in STMG is chosen

to be λcrit = 0.6 or λcrit =
√

2/3 in the block-relaxation

version based on the Fourier analysis results in [18,27].

Here, λ = 1 on the finest grid for all three space-time

domains, so semicoarsening in space or full space-time

coarsening is chosen in STMG or STMG-BR, respec-

tively, to define the first coarse grid. Thus, considering

(roughly) 65 points in each spatial dimension and 129
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Fig. 3: Accuracy of the approximation to the solution of SecondOrder2D(T = 4π) on a 652 × 65 space-time grid

using WRMG-CR V (1, 1)- and V (2, 1)-cycles and using one iteration of the splitting method within relaxation on

a single processor; each � and � represents one iteration of the V (1, 1)- or V (2, 1)-scheme, respectively.

points in the temporal direction on one processor, for

example, the space-time grid on the first coarse level

consists of (roughly) 33 points in each spatial direc-

tion and 129 points in the temporal direction for both

STMG and WRMG-CR and (roughly) 33 points in each

spatial direction and 65 points in the temporal direction

when using STMG-BR; coarse-grid operators are based

on rediscretization. For MGRIT, we consider standard

FCF -relaxation and a non-uniform coarsening strategy

in the temporal direction that coarsens by factors of 16

until fewer than 16 temporal points are left on each

processor, then coarsens by factors of 2; details of the

benefits of this coarsening strategy are described in [12].

On one processor and a space-time grid (roughly) of size

652 × 129, for example, the space-time grid on the first

coarse level is (roughly) of size 652×9. Furthermore, we

limit computational work of the spatial solves by lim-

iting the number of PFMG iterations on the fine grid

to a maximum of 9 iterations and to a maximum of

2 iterations on coarse grids. Additionally, we consider

MGRIT with spatial coarsening, denoted MGRIT-SC

in the figure, with space-coarsening using standard bi-

linear interpolation and restriction operators performed

on grid levels with CFL-number δt/(∆x)2 > 2. The

spatial coarsening thus balances the temporal coarsen-

ing. On the first coarse grid, each spatial dimension is

coarsened by a factor of four to match the factor of 16

temporal coarsening, yielding a per processor problem

size of 172 × 9 for the above example.

The time curves in Figure 4 show good parallel scal-

ing for all methods. More precisely, in the weak scaling

study shown at the top of the figure, the overall com-

pute time of both STMG variants and MGRIT with

spatial coarsening increases by a factor of about 1.3

over 4096-way parallelism, by a factor of about 1.6 when

using MGRIT without spatial coarsening and by a fac-

tor of about 1.8 for both WRMG-CR variants. Com-

paring the total time-to-solution of the different ap-

proaches with one another, in all three scaling stud-

ies, the point-wise version of STMG is fastest, followed

by the WRMG-CR variants which are about a factor

of two to three times slower. For STMG-BR and the

two MGRIT variants, runtimes behave differently in

the different weak parallel scaling studies. Interestingly,

STMG-BR is slower than MGRIT-SC in the 1293 case,

but faster than both MGRIT variants for the 652×129

case. We believe that this is because communication

costs dominate for these relatively small per proces-

sor spatial problem sizes. Given the exceptionally fast

MGRIT space-time coarsening factor (256 on the first

level), this likely makes MGRIT-SC significantly more

communication bound on coarse levels than STMG-BR,

which has an overall initial coarsening factor of eight.

Thus, MGRIT-SC may be able to better “hide” the ex-

tra operations needed for the larger problem size and

thus enjoy a scaling advantage over STMG-BR when

moving between these two problem sizes.

Table 1 details the results of the weak scaling study

on the top in Figure 4 with timings split up into timings

of the setup and solve phases of the algorithms. While

the timings of the solve phase show good parallel scal-

ing for all methods with only a slight increase for larger

processor counts, due to the increase in the number of

multigrid levels and corresponding communication la-

tency costs, this is not the case for the timings of the

setup phase. For MGRIT, the setup time is about con-

stant across the number of processors and negligible

compared to the solve time. However, for STMG and

particularly for WRMG-CR, setup times increase with

the number of processors. This is a known implemen-
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Fig. 4: Weak parallel scaling: time to solve FirstOrder2D(T = π2/64) (top), FirstOrder2D(T = π2/32) (bottom

left), and FirstOrder2D(T = π2/128) (bottom right) using STMG, WRMG, and MGRIT variants; MGRIT-SC

indicates MGRIT with spatial coarsening. The problem size per processor is about 1292 × 257 (top), 652 × 129

(bottom left) or 1293 (bottom right).

tation inefficiency in hypre that is expected to be fixed

at some point in the future and does not need further

exploration here, in particular because the added time

does not greatly change the overall comparison between

these approaches. Results further show that iteration

counts are largely independent of the problem size.

The situation is a bit different for the BDF2 time

discretization. Table 2 shows weak scaling results for

solving SecondOrder2D(T = 2π− δt) using STMG and

MGRIT with timings split up into setup and solve times

as well as iteration counts. Note that considering a

second-order time discretization, matching the accu-

racy of the spatial discretization, for proper weak scal-

ing we increase the number of processors by factors

of eight, as opposed to factors of 16 in the one-step

case considered in Figure 4. Here, on one processor,

we use a uniform grid of ∆x = ∆y = π/128 and 257

points in time while, on 4096 processors, we use a uni-

form grid of ∆x = ∆y = π/1024 and 2049 points in

time. We consider STMG V -cycles with two pre- and

one post-smoothing step and parameter λcrit = 0.555;

V (1, 1)-cycles do not show reasonable convergence. For

MGRIT, V -cycles with FCF -relaxation and the non-

uniform coarsening strategy described above are used.

We limit the computational cost of the spatial solves

to at most 9 PFMG iterations on the fine grid and to

at most 4 iterations on all coarse grids. Note that the

spatial problems are more difficult to solve than in the

one-step case since on the finest grid, the time-step size

is of the same order as the spatial grid size and, thus, a

higher accuracy of the spatial solves on coarse grids is

needed. Additional spatial coarsening in MGRIT is not

considered as the CFL-number stays balanced. Table 2

shows that for MGRIT, compute times increase in the

beginning but stagnate at higher processor counts. Al-

though stagnation is observed at larger processor counts

than in the one-step case, the overall compute time in-

creases by a factor of about 1.6 (the same as in the

one-step case) over 4096-way parallelism. Furthermore,

Table 2 shows that iteration counts are again indepen-

dent of the problem size.

For the STMG method, however, compute times in-

crease by a factor of about 2.4 over 4096-way paral-

lelism and iteration counts do not appear to be per-

fectly bounded independently of the problem size. The

increase in iteration counts indicates that the imple-

mentation is not robust with respect to the discretiza-

tion grid which is consistent with results in [27]. For

a robust implementation, F -cycles have to be consid-

ered; however, this implementation effort would go be-

yond the scope of this paper and the factor of 1.5 in

iterations with V -cycles almost certainly outweighs the
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Table 1: Weak parallel scaling: setup and solve times and number of iterations for solving FirstOrder2D(T = π2/64)

using STMG, WRMG, and MGRIT variants. The problem size per processor is about 1292 × 257.

number of processors, P = 1 16 256 4096

STMG 0.63 s 2.17 s 2.95 s 3.21 s

Tsetup WRMG-CR 2.13 s 4.59 s 6.17 s 7.78 s

MGRIT 0.13 s 0.14 s 0.14 s 0.14 s

STMG V (1, 1) 14.42 s 18.75 s 16.64 s 17.06 s

STMG V (2, 1) 16.06 s 21.06 s 21.66 s 18.83 s

WRMG-CR V (1, 1) 25.13 s 39.51 s 39.44 s 41.53 s

Tsolve WRMG-CR V (2, 1) 29.08 s 46.13 s 45.75 s 48.36 s

MGRIT 107.21 s 163.78 s 167.10 s 171.97 s

MGRIT w/ sc. 94.82 s 124.33 s 125.09 s 126.71 s

STMG V (1, 1) 7 7 6 7

STMG V (2, 1) 6 6 6 5

WRMG-CR V (1, 1) 5 5 5 5

iter WRMG-CR V (2, 1) 4 4 4 4

MGRIT 5 6 6 6

MGRIT w/ sc. 5 5 5 5

Table 2: Weak parallel scaling: setup and solve times and number of iterations for solving SecondOrder2D(T =

2π − δt) using STMG and MGRIT. The problem size per processor is about 1292 × 257.

number of processors, P = 1 8 64 512 4096

Tsetup STMG 0.57 s 1.92 s 3.71 s 4.17 s 4.53 s

MGRIT 0.13 s 0.14 s 0.14 s 0.14 s 0.14 s

Tsolve STMG V (2, 1) 33.66 s 42.00 s 62.52 s 63.08 s 76.90 s

MGRIT 162.17 s 209.29 s 236.31 s 250.35 s 261.49 s

iter STMG V (2, 1) 14 16 19 19 23

MGRIT 4 4 4 4 4

worse parallel scalability expected to be seen with F -
cycles.

4.3 Strong parallel scaling

The above results show that the three multigrid meth-

ods obtain good weak parallel scalability, particularly

for the BDF1 time discretization. Now, we focus on the

performance of these methods compared with one an-

other and to traditional space-parallel algorithms with

sequential time stepping.

Figure 5 shows compute times for solving

FirstOrder2D(T = π2) on a 1282 × 16,384 space-time

grid using a subset of the set of STMG, STMG-BR,

WRMG-CR, and MGRIT variants considered in the

weak parallel scaling study in Figure 4 and a space-

parallel algorithm with sequential time stepping. For

the time-stepping approach, the spatial domain is dis-

tributed evenly such that each processor’s subdomain

is approximately a square in space. When using 16 pro-

cessors, for example, each processor owns a square of
approximately 32× 32. Since considering 16 processors

for distributing the spatial domain appears to be an ef-

ficient use of computational resources with respect to

benefits in runtime, for the space-time approaches, we

parallelize over 16 processors in the spatial dimensions,

with increasing numbers of processors in the tempo-

ral dimension. That is, with Pt denoting the number of

processors used for temporal parallelism, the space-time

domain is distributed across 16Pt processors such that

each processor owns a space-time hypercube of approx-

imately 322 × 16,384/Pt. Note that due to the storage

requirements of STMG, STMG-BR, and WRMG-CR,

at least eight processors for temporal parallelism must

be used in order to avoid memory issues in the given

parallel computational environment. For MGRIT, even

Pt = 1 would be possible, but the required compute

time is much larger than for any of the other meth-

ods, due to the computational overhead inherent in the

MGRIT approach; thus, Figure 5 only presents results

for MGRIT with Pt ≥ 4. Additionally, since on the one
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hand, the spatial problem size of 1282 points is rea-

sonably small in terms of storage requirements and, on

the other hand, the number of time steps is sufficiently

large, we also include results for the methods with time-

only parallelism (dashed lines in Figure 5).

Results demonstrate the large computational over-

head of the MGRIT approach in contrast with STMG,

WRMG-CR, and traditional time stepping. However,

this extra work can be effectively parallelized at very

large scales with excellent strong parallel scalability.

While on smaller numbers of processors, MGRIT is

slower than time stepping we see good speedup at higher

processor counts particularly when considering space-

time parallelism. For example, considering 64 proces-

sors, the space-parallel algorithm with sequential time

stepping is faster than the space-time-concurrent MGRIT

algorithm by a factor of about nine or by a factor of

about seven when considering MGRIT with spatial coars-

ening. Increasing the number of processors to 16,384,

however, MGRIT is faster with a speedup of up to a

factor of about 30 compared to sequential time step-

ping with 16 processors used for spatial parallelism.

The benefit of using MGRIT over the time stepping

approach can be extended to include benefit at smaller

processor counts by changing the space-time processor

decomposition. For example, considering 64 processors,

time stepping with space-only parallelism is fastest, but

the factor in comparison with MGRIT can be decreased

from nine or seven when considering MGRIT without

or with spatial coarsening, respectively, to a factor of

about 1.6 or 1.2, respectively, when using MGRIT with

time-only parallelism. Thus, for this problem, changing

from space-time concurrency to time-only parallelism

in the MGRIT algorithm leads to faster runtimes by

up to a factor of 5.8. At 1024 processors, time-parallel

MGRIT without or with spatial coarsening is faster

with a speedup of a factor of about 8.5 or 16 com-

pared to 16-way space-parallel time stepping. However,

the scalability of MGRIT with time-only parallelism is

limited by the temporal problem size, analogously to

the limits placed by the spatial problem size on sequen-

tial time stepping. Here, for 1024-way temporal par-

allelism, the number of time steps per processor is 16

corresponding to the coarsening factor and, thus, time-

parallel MGRIT has exhausted the available temporal

parallelism and cannot scale to a larger number of pro-

cessors. Changing the coarsening factor from 16 to two

allows pushing the scalability limit to larger processor

counts and leads to a speedup of up to a factor of about

53. Note, however, that this algorithmic choice should

only be made for MGRIT with spatial coarsening since

the cost of solving the spatial problems of the time inte-

grator, Φ, in the MGRIT algorithm dominates for small

numbers of local time steps arising at high levels of tem-

poral parallelism.

With STMG and WRMG-CR, we can benefit over

the time stepping approach at even smaller scales. Con-

sidering 128 processors, i.e., adding eight-way tempo-

ral parallelism to 16-way spatial parallelism, STMG

is already faster than 16-way space-parallel time step-

ping, with a speedup of a factor of about seven. For

WRMG-CR, the speedup is about a factor of two. Us-

ing all 128 processors for temporal parallelism leads to

faster runtimes, with a speedup of a factor of about 11

for STMG and of four for WRMG-CR. Increasing the

number of processors to 16,384 results in a speedup,

measured relative to the time for time stepping with

16-way spatial parallelism, of up to a factor of 33 for

WRMG-CR and of 325 for STMG. Scaling properties

of the two approaches are excellent at the beginning,

with poorer scaling at larger processor counts, espe-

cially for time-only parallelism and for the WRMG-

CR method. For higher levels of temporal parallelism,

the number of time steps per processor is small and

cyclic reduction becomes problematic which can be ex-

plained by the performance models developed in Sec-

tion 3.4, as will be discussed in Section 4.4. For the

block-relaxation version of STMG, compute times have

very similar qualitative properties as STMG with point

relaxation, but quantitatively, the block-relaxation ver-

sion differs significantly from the point-relaxation ver-

sion with slower runtimes of a factor of about seven

when considering space-time concurrency and of about

six for time-only parallelism. Considering 128 proces-

sors, space-time parallel STMG-BR is about as fast as

16-way space-parallel time stepping while with time-

only parallelism STMG-BR is already twice as fast as

space-parallel time stepping. Increasing the number of

processors to 16,384 results in a speedup of up to a fac-

tor of about 53. Furthermore, note that for this prob-

lem, runtimes of MGRIT with spatial coarsening and

factor-2 coarsening in time are similar to those of STMG

with block relaxation when considering time-only paral-

lelism underlining the similarities of the two approaches.

Figure 6 details “effective” parallel efficiencies, i.e.,

parallel efficiencies relative to sequential time stepping

on a single processor, for the space-time-parallel variant

of each time-integration approach considered in Figure

5 as well as for STMG-BR and MGRIT with time-

only parallelism. For both STMG variants, the num-

bers are very steady out to 2048 cores, and then de-

spite modest degradation, better than the other meth-

ods for large processor counts out to 16K processors.

For WRMG-CR, the numbers are less steady, but still

acceptable relative to time-stepping. For space-time-

concurrent MGRIT, the effective efficiencies are small,
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Fig. 5: Strong parallel scaling: total time to solve FirstOrder2D(T = π2) on a 1282 × 16,384 space-time grid using

space-parallel time-stepping, STMG, STMG-BR, WRMG-CR, and MGRIT. Solid lines are results for space-time

concurrent runs and dashed lines represent runtimes for time-only parallelism.

but almost perfectly steady out to 16K cores, demon-

strating its excellent strong scaling. Effective efficien-

cies of MGRIT with time-only parallelism are higher for

small processor counts, but demonstrate the scalability

limit when temporal parallelism has been exhausted.

In the case of the BDF2 time discretization, com-

pute times have very similar qualitative properties. Fig-

ure 7 shows compute times of a space-parallel algorithm

with sequential time stepping, as well as the STMG and

MGRIT variants considered in Figure 4 applied to Sec-

ondOrder2D(T = 4π − π/512) on a space-time grid of

size 5132×4096. Here, for STMG and MGRIT, we con-

sider adding temporal parallelism to two different levels

of spatial parallelism, i.e., we look at using 64 and 256

processors for distributing the spatial domain. If we de-

note the number of processors used for temporal paral-

lelism in the two multigrid schemes by Pt, when using

64-way parallelism in space, the space-time domain is

distributed across 64Pt processors such that each pro-

cessor owns a space-time hypercube of approximately

642 × 4096/Pt. Analogously, considering 256-way par-

allelism in space, the space-time domain is distributed

across 256Pt processors such that each processor owns a

space-time hypercube of approximately 322 × 4096/Pt.

The time curves show that the crossover point for which

it becomes beneficial to use MGRIT for this particular

problem and the speedup compared to time stepping

at large processor counts depends on the levels of spa-

tial and temporal parallelism. More precisely, for this

particular problem, for MGRIT to break even with se-

quential time stepping using a fixed level of spatial par-

allelism, we need to add about 16-way parallelism in

time. For 64-way parallelism in space, for example, we

need about 1024 processors for MGRIT to break even

with sequential time stepping. Increasing the number

of processors to 8192 results in a speedup of a factor

of seven compared to sequential time stepping with 64-

way parallelism. A similar comparison can be made for

256-way parallelism in space. Note that for MGRIT

with 64-way parallelism in space and 8192 processors

in total, the number of time-step pairs per processors

is 16 corresponding to the coarsening factor and, thus,

further increasing the number of processors is not ben-

eficial.

The dependency of compute times on the levels of

spatial and temporal parallelism is not as pronounced in

the STMG approach as in the MGRIT approach. While

for smaller numbers of processors it is slightly beneficial

to use fewer processors for spatial parallelism, on larger

processor counts compute times of both variants are

very similar. Comparing to the space-parallel algorithm

with sequential time stepping, the maximum speedup

of STMG is about a factor of 15 larger than that of

MGRIT.

Figure 8 details “effective” parallel efficiencies, i.e.,

parallel efficiencies relative to sequential time stepping

on a single processor, for the time-integration

approaches considered in Figure 7. For both STMG and

MGRIT, numbers are about steady out to large proces-

sor counts. Comparing the two multigrid approaches,

the difference in effective parallel efficiencies diminishes

when going from the BDF1 to the BDF2 time dis-

cretization. More precisely, while in Figure 6, efficien-

cies for STMG are between 15 and 40% and for MGRIT

about 1%, in Figure 8, efficiencies for STMG are be-

tween 11 and 16% and for MGRIT between 1 and 3%.
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Fig. 6: Strong scaling efficiencies of sequential time-stepping, STMG, STMG-BR, WRMG-CR, and MGRIT applied

to FirstOrder2D(T = π2) on a 1282 × 16,384 space-time grid. For each method, parallel efficiency is measured

relative to time stepping on a single processor as T (1)/(P ·T (P )) · 100, where T (P ) is the wall-clock time required

for solution on P processors.
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Fig. 7: Strong parallel scaling: time to solve SecondOrder2D(T = 4π − π/512) on a 5132 × 4,096 space-time grid

using sequential time-stepping, STMG, and MGRIT.
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Fig. 8: Strong scaling efficiencies of sequential time-stepping, STMG, and MGRIT applied to SecondOrder2D(T =
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4.4 Insights from the parallel models

The above results demonstrate that the two intrusive

approaches show somewhat poorer parallel scalability

than the MGRIT algorithm. To better understand the

parallel scalability, we use the models developed in Sec-

tion 3.4. Based on data in [16, Table 2], we choose the

set of machine parameters given by

α = 1 µs, β = 0.74 ns/double, γ = 0.15 ns/flop, (15)

characterizing a modern communication-dominant ma-

chine. To define the parameter set, we have set α = 1 µs

and chosen β and γ such that the ratios α/β and α/γ

are equal to the maximum ratios from [16, Table 2]. Fig-

ure 9 shows predicted times to solve FirstOrder2D(T =

π2) on a 1282× 16,384 space-time grid using sequential

time stepping, STMG, STMG-BR, WRMG-CR, and

MGRIT. The parameters in the models are chosen as

in the strong parallel scaling study in Figure 5. Note

that for STMG, models for the extreme cases of coars-

ening only in space and of coarsening only in time are

used and that for STMG-BR, only the semicoarsening

in time case is modeled. Results show that predicted

time curves behave qualitatively very similar to exper-

imentally measured runtimes depicted in Figure 5.

The models also explain the somewhat poorer par-

allel scalability of STMG and WRMG-CR at higher

processor counts in this specific parallel scaling study.

For WRMG-CR, cyclic reduction becomes problematic

introducing an additional logarithmic factor in the com-

munication cost. More precisely, assuming that the space-

time grid of size N2
x × Nt is distributed evenly such

that each processor’s subdomain is approximately of

size n2x × nt, the β-term in the WRMG-CR-model of

νWRMG V (ν1, ν2)-cycles is given by

T
(WRMG)
β ≈ νWRMG [8(ν1 + ν2 + (5/2))nxnt

+ (4/3)((2 log2(Nt) + 1)

(ν1 + ν2) + 1)n2x
]
β.

If we fix nx as in the strong scaling study of the nu-

merical experiment, the second term is constant and

becomes dominant as nt decreases. Thus, we expect

poorer scalability when

nt <
((2 log2(Nt) + 1)(ν1 + ν2) + 1)

8 (ν1 + ν2 + (5/2))
nx.

For the problem considered in Figures 5 and 9 and one

pre- and one postrelaxation sweep within WRMG-CR,

the β-term causes loss in parallel scalability for nt <

2.19nx, which is the case for about 4096 processors and

higher processor counts. The loss in parallel scalability

for STMG at higher numbers of processors when fixing

nx can be similarly explained by considering the β-term

in the STMG model with temporal semicoarsening.

Having validated the models with experimental data,

we now use the models for estimating the parallel scal-

ability of the four time integration approaches on mod-

ern large-scale machines. In the models, we assume a

communication-dominant environment with machine pa-

rameters given in (15). We consider a domain refine-

ment of the problem in Figures 5 and 9, i.e., we consider

solving FirstOrder2D(T = π2) on a space-time grid of

size 10242×131,072 instead of on a 1282×16,384 space-

time grid. Analogously to the numerical experiment, for

the space-parallel algorithm with sequential time step-

ping, we assume that the spatial domain is evenly dis-

tributed such that each processor holds approximately

a square in space. For the space-parallel multigrid ap-

proaches, we add temporal parallelism to 64-way spatial

parallelism, as 64 processors are effectively utilized in

the time-stepping approach.

Figure 10 shows expected parallel scaling for solv-

ing FirstOrder2D(T = π2) on a 10242× 131,072 space-

time grid using the four time-integration approaches.

The models indicate a similar scaling behavior on large

numbers of processors as seen in numerical experiments

at small scale. We note that the expected good parallel

scalability of the three space-time-concurrent multigrid

approaches partially relies on the assumption of large

communication-to-computation ratios on modern large-

scale computers.

4.5 Potential improvements to XBraid

The purpose of this paper is to compare WRMG, STMG,

and MGRIT, as implemented in their “pure” forms, i.e.,

to compare the three parallel-in-time strategies that (1)

only semicoarsen in space, (2) only semicoarsen in time

and (3) coarsen in both space and time. Not surpris-

ingly, the most efficient solution is to coarsen in both

space and time (STMG). The slowest (at least for many

problem sizes) is to coarsen only in time (MGRIT).

To address this, current research in the XBraid

project is considering approaches for incorporating as-

pects of STMG into XBraid. This will allow XBraid to

be more intrusive, but to also achieve efficiencies closer

to those of STMG. The ultimate goal is to allow the user

to choose the level of intrusiveness that his/her appli-

cation can tolerate, and to enjoy the maximum benefit

of time parallelism for that application. In other words,

the more intrusive the chosen parallel-in-time imple-

mentation, the better the potential speedup.

One such improvement is faster residual computa-

tions. The computation of the residual from (6) requires
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Fig. 9: Predicted times to solve FirstOrder2D(T = π2) on a 1282 × 16,384 space-time grid using sequential time-

stepping, STMG, WRMG-CR, and MGRIT.
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Fig. 10: Predicted times to solve FirstOrder2D(T = π2) on a 10242 × 131,072 space-time grid using sequential

time-stepping, STMG, WRMG-CR, and MGRIT.

a matrix inversion for the application of Φδt at ev-
ery time point. In other words, the computation of the

residual is as expensive (in terms of FLOPS) as the en-

tire traditional time-stepping approach. The alternative

used by STMG is to form the residual based on the ma-

trix stencil [−I Φ−1δt ] rather than the MGRIT stencil

[−Φδt I]. Note that here the matrix Φ−1δt is sparse and

relatively cheap to evaluate, and as such, this alternate

residual has the potential to save significant compute

and messaging time. Taking the largest test case for

P = 4096 from Table 1, for example, the time spent

computing residuals in MGRIT is 21 seconds out of the

total time of 172 seconds. This change would largely

eliminate this cost.

Another example improvement is to allow for vari-

able storage in XBraid. Allowing for storage at every

time point allows for user-implemented point-wise re-

laxation, as in STMG. Current F (CF )-relaxation in-

volves expensive matrix inversions and therefore, cheap

point-wise relaxation could offer similar speedups as

those available from faster residual computations. Lastly,

full storage of every time point would allow for im-

proved initial guesses to the (non)linear solvers called

by implicit methods.

5 Conclusion

Current trends in computer architectures leading to-

wards systems with more, but not faster processors,

induce a change in the development of algorithms for

evolutionary problems. Instead of exploiting increasing

clock speeds, faster time-to-solution must come from in-

creasing concurrency, driving the development of algo-

rithms with space-time concurrency. Motivated by this

development, the comparison of three multigrid meth-

ods with space-time concurrency, STMG(-BR), WRMG-

CR, and MGRIT, is considered.

Parallel results show that all three multigrid meth-

ods with space-time concurrency considered in this pa-

per are effective solvers for diffusion problems. In the
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case where many more processors are available than

can be effectively utilized by sequential time-stepping,

performance of all multigrid methods with space-time

concurrency is better than that of space-parallel time

stepping. However, the crossover point at which it be-

comes beneficial to use one of the three multigrid meth-

ods differs significantly. While the invasive STMG and

WRMG-CR approaches are already faster than space-

parallel time stepping at small numbers of processors,

due to a large computational overhead, MGRIT and

STMG-BR require more processors to benefit over time

stepping. This result was confirmed both practically

and through the performance models. Changing from

space-time concurrency to time-only parallelism leads

to faster runtimes of all multigrid methods. The de-

crease in runtimes is particularly pronounced for the

MGRIT algorithms and allows shifting the crossover

point to a smaller number of processors for achieving

similar performance to STMG with block relaxation.

While STMG and WRMG-CR offer best speedup

over sequential time-stepping at small processor counts,

these intrusive approaches show poorer parallel scala-

bility than the MGRIT algorithm. The scalability of

STMG with block relaxation is better than that of the

point-relaxation version, but considering the slower run-

times of the block-relaxation version, STMG-BR does

not seem to give great benefit over STMG with point

relaxation, at least not as with the implementation used

for this paper. On the other hand, MGRIT offers some

key practical advantages. While the generalization to

problems in three space dimensions is straightforward

with the non-intrusive MGRIT approach, the effort for

a parallel implementation of the two intrusive approaches

STMG(-BR) and WRMG-CR is immense. Furthermore,

MGRIT allows for memory savings equal to the coars-

ening factor (here 16x), which is another appealing ad-

vantage over the two invasive approaches1. Since the

MGRIT algorithm offers a clear advantage in terms

of its nonintrusive nature, we believe further research

into performance improvements of MGRIT, particu-

larly adding intrusiveness (see Section 4.5), is warranted.

Extending the comparison presented in this paper to

include other time-dependent problems is exceedingly

difficult, due to the intrusiveness of STMG(-BR) and

WRMG-CR. Although benefits in runtime are likely

much smaller with the MGRIT approach, its non-

intrusiveness easily allows effective exploitation of sub-

stantially more computational resources than with space-

1 One possibility to save on memory in the waveform re-
laxation approach is to subdivide the time interval into a se-
quence of “windows” that are treated sequentially [46]. How-
ever, there is an apparent parallel performance tradeoff with
this reduction in storage requirement.

parallel time stepping. More concretely, since MGRIT

uses the same time-integration operator as algorithms

based on a time-stepping approach, problem-specific

time-integration operators are handled naturally. On

the other hand, it is not clear how to extend STMG

and WRMG-CR to other problem types in cases where

specific time-integration schemes are crucial for conver-

gence of time stepping.

Extending the comparison presented in this paper to

include other space-time parallel methods is also diffi-

cult, due to the complexities of generating fair compar-

isons for methods that may be best applied on certain

computational platforms or architectures, or for spe-

cific classes of problems. A natural next step in the

comparison presented here would be to consider the

parallel full approximation scheme in space and time

(PFASST) [11, 36], another popular method in the lit-

erature. PFASST uses a specific spectral deferred cor-

rection time integrator, but has recently been shown to

be equivalent to a multigrid method [6, 35]. Extending

the comparison presented in this paper to include the

PFASST algorithm is a subject of future work.
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