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LOCAL FOURIER ANALYSIS OF SPACE-TIME RELAXATION AND
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Abstract. We consider numerical methods for generalized diffusion equations that are moti-
vated by the transport problems arising in electron beam radiation therapy planning. While Monte
Carlo methods are typically used for simulations of the forward-peaked scattering behavior of electron
beams, rough calculations suggest that grid-based discretizations can provide more efficient simula-
tions if the discretizations can be made sufficiently accurate, and optimal solvers can be found for
the resulting linear systems. The multigrid method for model two-dimensional transport problems
presented in [C. Börgers and S. MacLachlan, J. Comput. Phys., 229 (2010), pp. 2914–2931] shows
the necessary optimal scaling with some dependence on the choice of scattering kernel. In order
to understand this behavior, local Fourier analysis can be applied to the two-grid cycle. Using this
approach, expressions for the error-propagation operators of the coarse-grid correction and relaxation
steps, projected onto the fine-grid harmonic spaces, can be found. In this paper, we consider easier
problems of the form of generalized diffusion problems in space-time that are analogous to model
two-dimensional transport problems. We present local Fourier analysis results for these space-time
model problems and compare with convergence factors of Börgers and MacLachlan. Since one of
our model problems is the diffusion equation itself, we also compare to convergence factors for the
diffusion equation of [S. Vandewalle and G. Horton, Computing, 54 (1995), pp. 317–330]. The results
presented here show that local Fourier analysis does not offer its usual predictivity of the conver-
gence behavior of the diffusion equation and the generalized diffusion equations until we consider
unrealistically long time intervals.
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1. Introduction. Beams of charged particles penetrating matter are of interest
in many fields, such as cancer therapy using electrons [12, 13], electron microscopy [19],
and interstellar radiation theory [11]. Typically, these beams are modeled by Monte
Carlo simulations. However, a rough theoretical complexity estimate presented in [5]
suggests that deterministic, grid-based methods can provide more efficient simulations
if the discretizations can be made sufficiently accurate and if optimal solvers can be
found for the resulting linear systems. Depending on the type of application, different
parameter choices are used to model the problem mathematically. In this paper,
we focus on parameter choices motivated by the electron-beam cancer therapy dose-
calculation problem introduced in [12, 13], which implies forward-peaked scattering.

Mathematically, a particle beam, or a configuration of several such beams, is
modeled by a boundary value problem for a Boltzmann equation [16]. Applied to
electron-beam cancer therapy planning, the equation is assumed to be linear,

1

c

∂f

∂t
+ v · ∇f + σt(x, E)f −Ksf = 0,(1.1a)

f(x,v, E, t0) = f0(x,v, E),(1.1b)

f(x,v, E, t) = g(x,v, E, t) for x ∈ ∂Ω,(1.1c)
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LFA OF SPACE-TIME RELAXATION AND MULTIGRID SCHEMES S251

where x ∈ Ω for a given domain, Ω, denotes the particle position, unit vector v is the
particle direction, E is energy, t denotes time, and f = f(x,v, E, t) is the phase space
density, i. e., the number of particles per unit (x,v)-volume. Furthermore, c is the
particle speed, σt is the probability of interaction per unit of distance traveled with
σt = (λ)−1 for mean free path λ > 0, and Ks is the scattering kernel. Thus, equation
(1.1a) describes how the phase space density evolves in time. In particular, the term v·
∇f represents the movement of particles, and σt(x, E)f−Ksf describes the scattering,
i. e., particles collide with probability σt and get a new direction according to Ks. In
electron-beam cancer therapy, the main interest is in time-independent problems, as
the transient phase is quite short compared to the total exposure time. Thus, in the
computational solution of the linear Boltzmann equation, there are six independent
variables: position and velocity in three dimensions (described by direction, v, and
energy, E).

There are several properties of charged-particle transport which cause difficulties
with the accuracy of discretizations and make it hard to find a solution of the dis-
cretized linear Boltzmann equation [15, section 3.2]. Therefore, Monte Carlo methods
are typically used for simulations of the forward-peaked scattering behavior of elec-
tron beams in radiation therapy. More precisely, the Monte Carlo technique simulates
the random trajectories of individual particles by using their probability distributions
[20]. Grid-based discretizations of the linear Boltzmann equation, (1.1a), however,
may provide more efficient simulations if optimal solvers can be found for the result-
ing linear systems [5]. In the case of mono-energetic linear particle transport in two
space dimensions, such algorithms are proposed in [4] and [3]. For high-resolution cal-
culations, the angular multigrid method from [3] is substantially more efficient than
the angular domain decomposition method from [4].

In order to extend these results to three-dimensional transport, a better under-
standing of the results from [3] is necessary. In this paper, we perform local Fourier
analysis (LFA), also called local mode analysis, of the multigrid and relaxation meth-
ods whose numerical results are presented in [3]. LFA was originally proposed by
Brandt [6] and allows estimated predictions of the convergence behavior of multigrid
methods when exact predictions by means of rigorous Fourier analysis (model problem
analysis) are no longer possible [8, 21, 22]. For many applications, LFA is predictive,
i. e., theoretical convergence factors correspond excellently to experimentally mea-
sured ones [23]. Numerical results presented in this paper, however, will show that for
the class of generalized diffusion problems, LFA does not offer its usual predictivity un-
til we consider unrealistically long time intervals. This result is consistent with those
observed in the substantial literature concerning the use of block circulant with circu-
lant block (BCCB) preconditioners for block Toeplitz with Toeplitz block (BTTB) ma-
trices [9]. In particular, typical theoretical results for BCCB preconditioners for BTTB
matrices apply only asymptotically, bounding the number of eigenvalues away from
unity only as the matrix size goes to infinity [9, 14], even in the non-Hermitian case
relevant here. We note that this result does not imply that LFA is “wrong” as a theory,
just that it is, in essence, an asymptotic theory and that we are not interested in the
asymptotic regime for these problems. As “Flatland” transport is a far too simplified
model, extension of the algorithms from [3] (or [4]) to full three-dimensional transport
is critical for these approaches to lead to practical benefit. The analysis presented here
represents a first step to that extension. A second step, underway in [10], extends this
analysis to a setting that is more directly applicable to three-dimensional transport.

This paper is organized as follows. First, in section 2, we review the model
problem of [4] describing steady-state mono-energetic linear transport in two space
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S252 S. FRIEDHOFF, S. MACLACHLAN, AND C. BÖRGERS

dimensions and the angular multigrid method of [3] for this model problem, including
experimentally measured convergence factors. In section 3, we introduce generalized
diffusion problems as a simple subclass of the model problem and describe different
space-time relaxation schemes and a two-grid method that corresponds to a two-grid
version of the angular multigrid method considered in section 2. Section 4 starts with
a review of rigorous, and local, Fourier analysis followed by details of considering
LFA to analyze the performance of the space-time relaxation schemes and the two-
grid method. Finally, in section 5, we present Fourier analysis results for the space-
time relaxation schemes and two-grid method applied to space-time model problems,
followed by a discussion in section 6.

2. Transport in Flatland. In the following, we will review the model problem
of [4] and the angular multigrid method of [3] for this model problem.

2.1. The model problem. We consider mono-energetic linear particle trans-
port in two space dimensions. More precisely, we consider particle transport in “Flat-
land” [1], i. e., in a fictitious two-dimensional world, which is simpler than the pro-
jection of three-dimensional particle transport into a plane. We consider the motion
of particles in a domain, Ω ⊆ R

2, and assume that all particles move at the same
constant speed c > 0. The path of each particle results from collisions with the
background at random times, causing random directional changes. Since all particles
move at the same constant speed, we can characterize the path by two quantities, the
distance between two collisions, λ > 0, and the change of direction, η, caused by each
collision; see Figure 2.1.

We assume that the intercollision distances are independent of each other and
exponentially distributed with expectation λ > 0, called the mean free path. Di-
rectional changes caused by collisions are characterized by their scattering angle, η.
We also assume that the scattering angles are independent of each other and of λ
with probability density function p : (−π, π] → R. Since scattering is assumed to
be forward-peaked, p(η) should be a continuous function that attains its maximum
around η = 0. Furthermore, particles should have no preferences for scattering to
the right over scattering to the left or vice versa; thus, p(η) should be an even func-
tion. Taking into account all these properties, the graph of p qualitatively looks like
a sharply peaked Gaussian.

The model problem describing steady-state mono-energetic linear particle trans-
port in Flatland, applied to electron-beam radiation therapy, is a special case of the
continuous linear Boltzmann transport equation, (1.1a). Considering two space di-
mensions only, we have

v = (cos(θ), sin(θ))T for − π < θ ≤ π.

Furthermore, we assume that all interactions result in scattering with probability

λ

η

Fig. 2.1. Sketch of a particle path.
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density p(η),

[Ksf ](θ) =
1

λ
p ∗ f =

1

λ

∫ π

−π

p(η)f(x, θ − η) dη.

Note that by constructing the model scattering kernel Ks with the convolution kernel
p derived above, we have a scattering kernel that is qualitatively similar to realistic
three-dimensional scattering kernels for charged-particle transport.

With our simplifying assumptions, the continuous Boltzmann transport equation
becomes

cos(θ)fx + sin(θ)fy = Qf,(2.1a)

where the collision operator, Q, is defined by

Qf =
1

λ
(p ∗ f − f) =

1

λ

[∫ π

−π

p(η)f(θ − η) dη − f(θ)

]
.(2.1b)

We supplement the transport equation (2.1a) with inflow boundary conditions.
That is, on parts of the boundary where the direction given by (cos(θ), sin(θ))T points
into the domain, the value of f(x, θ) is prescribed.

2.2. Discretization. As derived in [4], the idea of angular discretization is to
think of the collision operator Q on the right-hand side of the transport equation
(2.1a) coming from an integral scattering term defined by the Fourier coefficients of
p. Expressing the scattering operator, Qf , in terms of the Fourier coefficients of p
and f , it is straightforward to verify that

Qf(θ) =
p ∗ f − f

λ
=

∞∑
n=−∞

p̂n − 1

λ
f̂n exp(−inθ),

where the Fourier coefficients are defined by

p̂n =

∫ π

−π

exp(inη)p(η) dη and f̂n =
1

2π

∫ π

−π

exp(inτ)f(τ) dτ.

We choose a positive integer, nθ, divisible by 2 for simplicity, and define Δθ = (2π)/nθ.
The discretization of Q is an operator, QΔθ, that maps the space of 2π-periodic
functions defined on the grid

Γnθ
=
{
θl = lΔθ : − nθ

2
+ 1 ≤ l ≤ nθ

2

}
into itself. The result of angular discretization is

(2.2) (QΔθf )l =
1

nθ

nθ
2∑

n=−nθ
2 +1

nθ
2∑

m=−nθ
2 +1

p̂n − 1

λ
cos(n(θl − θm))f(θm).

This form of the equation shows that QΔθ is circulant for any choice of p(η).
For the spatial discretization, we use first- or second-order upstream differencing,

that is, in the direction opposite to the direction vector (cos(θl), sin(θl))
T , based on
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S254 S. FRIEDHOFF, S. MACLACHLAN, AND C. BÖRGERS

a uniform two-dimensional spatial grid with mesh size Δs = 1
ns
. These methods are

based on the one-sided difference formulas

ϕ′(s) =
ϕ(s)− ϕ(s−Δs)

Δs
+O(Δs) or

ϕ′(s) =
1.5ϕ(s)− 2ϕ(s−Δs) + 0.5ϕ(s− 2Δs)

Δs
+O(Δs2).

For each of fx and fy, we choose the signs of Δs (independently for the x- and
y-derivatives) based on the signs of (cos(θl), sin(θl))

T .

2.3. The Fokker–Planck limit. The Fokker–Planck limit describes the case
that collisions become infinitely frequent and infinitesimally weak, i. e., forward-
peaked in such a way that the two effects balance each other. In this limit, the
linear Boltzmann equation becomes the Fokker–Planck equation.

Expanding f(θ−η) in a Taylor series around η = 0 including terms of up to order
two only,

f(θ − η) ≈ f(θ)− ηfθ(θ) +
η2

2
fθθ(θ),

and in the case that collisions are strongly forward-peaked, i. e., p(η) is small every-
where except near η = 0, we have

Qf =
1

λ
(p ∗ f − f)(θ) =

1

λ

[∫ π

−π

p(η)f(θ − η) dη − f(θ)

]

≈ 1

λ

[∫ π

−π

p(η)

(
f(θ)− ηfθ(θ) +

η2

2
fθθ(θ)

)
dη − f(θ)

]
= κfθθ(θ),

where the angular diffusion coefficient, κ, is defined by

(2.3) κ =
1

2λ

∫ π

−π

η2p(η) dη.

Thus, we expect that Qf is “close” to κfθθ and the transport equation (2.1a) becomes

(2.4) cos(θ)fx + sin(θ)fy = κfθθ,

the so-called Fokker–Planck equation. This calculation was made rigorous in [4].
For the discretization of the second derivative with respect to θ on the right-hand

side of the Fokker–Planck equation (2.4), we use standard second-order three-point
finite differences.

2.4. Choice of parameters. A reasonable choice for the probability density, p,
that mimics realistic three-dimensional scattering kernels as far as possible in Flatland
is

(2.5) p(η) =
C

(2(1− cos(η)) + ε2)q/2

with the constant C > 0 chosen such that the integral of p is equal to one [4].
Proposition 2 of [4] shows that for this choice of p(η), in the limit as ε → 0, the
collisions become infinitesimally weak if and only if q ≥ 1, and the Fokker–Planck
limit is valid if and only if q ≥ 3. Thus, for q ≥ 3, the transport equation (2.1a) can
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be reasonably approximated by the Fokker–Planck equation (2.4) with κ defined as
in (2.3). The borderline case, q = 3 in (2.5), defines screened Rutherford scattering in
Flatland. In this case, convergence is logarithmic [4]. In three space dimensions, the
screened Rutherford scattering cross section [25] has the precisely analogous properties
[2, Appendix]. A scattering kernel that does not satisfy the conditions for the Fokker–
Planck limit to be valid is the Henyey–Greenstein kernel, which is defined by q = 2. In
this case, in the limit as ε → 0, one obtains a pseudodifferential operator proportional
to −√−∂2/∂θ2. In this and some other regards, (2.5) with q = 2 resembles the
Henyey–Greenstein scattering cross section [11]; see [18, 4].

2.5. The angular multigrid method. Since the transport equation (2.1a)
is elliptic in the θ-direction but advective in the x- and y-directions, the angular
multigrid method described in [3] combines relaxation sweeps ordered parallel to the
(x, y) plane with coarse-grid correction over the θ-direction. The discretization of the
transport equation (2.1a) that we wish to solve can briefly be represented as

(2.6)
(
cos(θl)∂

Δs
x + sin(θl)∂

Δs
y

)
f = QΔθf.

Here, f = (fj,k,l)0≤j,k≤ns, −nθ/2+1≤l≤nθ/2, the symbols ∂Δs
x and ∂Δs

y denote upstream

discretization of the partial derivatives with respect to x and y, and QΔθ denotes the
spectral discretization of the collision operator Q (see section 2.2) or the three-point
discretization of the Fokker–Planck operator κ∂2/∂θ2. Equation (2.6) is supplemented
with discrete inflow boundary conditions [3, section 4.1]. Denoting the mesh width of
the nth angular grid by ΔΘ = 2nΔθ, and the number of angles that belong to this
grid by nΘ = nθ/2

n, the points of the nth angular grid are given by

Θl = lΔΘ, −nΘ

2
+ 1 ≤ l ≤ nΘ

2
.

The auxiliary equations solved on coarser grids are of the form

(2.7)
(
cos(Θl)∂

Δs
x + sin(Θl)∂

Δs
y

)
f = QΔΘf +R,

where R denotes residuals transferred from the next finer grid. Equation (2.7) is
supplemented with zero inflow boundary conditions. In the multigrid cycle, we use
red-black plane-relaxations on the finest grid (where R is zero and the inflow boundary
values are typically nonzero) as well as on the coarser grids (where R is typically
nonzero and the inflow boundary values are zero). We use the following red-black or
odd-even ordering of the angular grid points in the relaxation scheme:

l = −nΘ

2
+ 1,−nΘ

2
+ 3, . . . ,

nΘ

2
− 1, −nΘ

2
+ 2,−nΘ

2
+ 4, . . . ,

nΘ

2
.

For each fixed l, we sweep over the spatial grid points in the downstream direction,
that is, in the direction of the direction vector (cos(Θl), sin(Θl))

T . In other words,
we associate a plane of (x, y) values with each Θl and perform a red-black relaxation
sweep over these planes, with downstream ordering within each plane.

Results of the performance of this relaxation method [3, section 7.2] are measured
by the factor ρν by which the sum of the squares of residuals is reduced in the
νth iteration. The average convergence factor over k successive cycles is simply the
geometric mean of ρν , ρν+1, . . . , ρν+k−1. As our test problem, we consider a broad
beam in which the mean direction of incoming particles is not aligned with the grid
[3, section 5.2]. The type of scattering is specified by the parameters q, λ, and κ, not
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Table 1

Average convergence factors per iteration in first 24 relaxation iterations for the test problem
[3, section 5.2], screened Rutherford scattering, discretized using second-order upstream differencing
in space, reproduced from [3, Table 3].

nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.304 0.662 0.953 0.977 0.988
ns = 64 0.299 0.652 0.943 0.971 0.984
ns = 128 0.294 0.642 0.930 0.963 0.977
ns = 256 0.290 0.633 0.917 0.951 0.969
ns = 512 0.286 0.624 0.903 0.938 0.958

Table 2

Average convergence factors per iteration in first 12 relaxation iterations for the test problem
[3, section 5.2], Henyey–Greenstein scattering, discretized using second-order upstream differencing
in space, reproduced from [3, Table 4].

nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.057 0.057 0.115 0.254 0.467
ns = 64 0.059 0.059 0.111 0.245 0.448
ns = 128 0.061 0.061 0.107 0.238 0.433
ns = 256 0.062 0.062 0.104 0.231 0.420
ns = 512 0.064 0.065 0.101 0.224 0.407

the less intuitive parameter ε in (2.5). Note that ε can be calculated, using (2.3) and
(2.5), from q, λ, and κ. Table 1, taken from [3, Table 3], shows the averaged per-cycle
convergence factors for the Flatland analog of screened Rutherford scattering (q = 3 in
(2.5)) with κ = 0.1 and λ = 1/20, 000, using second-order upstream differencing. For
fixed ns, the measured factors increase significantly with nθ. For fixed nθ, however,
it appears that the factors can be bounded independently of ns. Using first-order
upstream differencing in space gives similar results.

Table 2, taken from [3, Table 4], presents the averaged per-cycle convergence
factors for relaxation alone for Henyey–Greenstein scattering (q = 2 in (2.5)). Here,
in contrast to the results in Table 1, we see that for small- and moderate-sized grids,
relaxation performs very well. However, for nθ = 1024 and ns = 32, an additional
result not included in Table 2, we see continued degradation in the convergence factor
to 0.793.

Since the convergence of the above red-black relaxation method deteriorates as nθ

increases, it is natural to attempt to accelerate the method using coarse-grid correc-
tion. As mentioned earlier, given the fact that the transport equation (2.1a) is elliptic
in the θ-direction and advective in the x- and y-directions, we coarsen only in the
θ-direction. This semicoarsening strategy is also consistent with the above numerical
results, since these suggest that coarsening in space is not necessary. The intergrid
transfer operators must account for the treatment of tangential-to-inflow boundary
conditions but are otherwise the standard ones used for semicoarsening. Periodic lin-
ear interpolation, full-weighting restriction, and rediscretization to get the coarse-grid
operators are used [3, sections 8.1, 8.2].

A rough calculation [3, section 9.1.1] shows that a V(0, 1)-cycle costs about the
same as four relaxation sweeps on the finest grid. We call ρ1/4 for averaged con-
vergence factor ρ the effective averaged convergence factor, which can be compared
directly with the convergence factors in Table 1, for instance. Table 3 shows effec-
tive convergence factors for V(0, 1)-cycles applied to the transport equation where the
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Table 3

Effective convergence factors, i. e., fourth roots of convergence factors, per iteration in first 24
V(0, 1)-cycles for the test problem, screened Rutherford scattering, discretized using second-order
upstream differencing, the three-point discretization of the Fokker–Planck operator, and effective
convergence factors per iteration in first 12 V(0, 1)-cycles with Henyey–Greenstein scattering, taken
from [3, Tables 5, 11, 12].

nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.698 0.702 0.701 0.706 0.714

Screened Rutherford ns = 64 0.701 0.707 0.705 0.706 0.712
scattering ns = 128 0.703 0.708 0.714 0.706 0.710

ns = 256 0.706 0.708 0.715 0.708 0.711
ns = 512 0.708 0.709 0.726 0.712 0.711

ns = 32 0.699 0.699 0.702 0.709 0.718
Fokker–Planck ns = 64 0.702 0.702 0.703 0.708 0.716

operator ns = 128 0.704 0.704 0.705 0.708 0.714
ns = 256 0.705 0.707 0.707 0.708 0.713
ns = 512 0.708 0.709 0.724 0.709 0.713

ns = 32 0.489 0.497 0.547 0.570 0.588
Henyey–Greenstein ns = 64 0.493 0.496 0.543 0.567 0.586

scattering ns = 128 0.496 0.497 0.539 0.563 0.582
ns = 256 0.500 0.500 0.535 0.559 0.578
ns = 512 0.503 0.505 0.531 0.555 0.574

right-hand side is the screened Rutherford scattering operator, the Fokker–Planck op-
erator, or the Henyey–Greenstein scattering operator, respectively [3, Tables 5,11,12].

Most notably, we see scalable performance in Table 3, i. e., effective convergence
factors that do not degrade as ns and nθ increase. Convergence for the Fokker–Planck
equation is nearly identical to convergence for the transport equation with screened
Rutherford scattering. For Henyey–Greenstein scattering, it is quite difficult for the
coarse-grid correction to improve efficency compared to the very fast convergence of
relaxation sweeps alone. Considering nθ = 1024 and ns = 32 (not included in Tables 2
and 3), continued degradation in the convergence factors of relaxation alone is seen,
while stabilization is seen in the effective convergence factor for the multigrid V(0, 1)
cycle (with ρ1/4 = 0.582); however, it must be noted that such grid sizes are unlikely
to be relevant given the spectral accuracy of the discretization in nθ.

In summary, the red-black relaxation scheme as well as the angular multigrid
method show good performance with some dependence on the choice of scattering
kernel. Considering the extensions of these approaches to three-dimensional trans-
port, it is clear that a deeper understanding of this performance would be beneficial
in developing efficient algorithms for the different possible discretizations of the five-
dimensional Boltzmann equation that describes transport in three spatial dimensions
with two angular dimensions. As is well known in the multigrid literature, LFA often
provides simple and accurate predictions of the performance of relaxation and multi-
grid methods, even when these methods are complicated, such as those discussed here
[23]. Thus, we now ask if LFA can help us to understand the behavior of the numeri-
cal results discussed above. To answer this question, we consider generalized diffusion
problems as a simple subclass of the model two-dimensional transport problems (sec-
tion 3) and apply LFA to these problems (section 4).

3. Model problems in space-time. Fixing θ = θ0 on the left-hand side of the
transport equation (2.1a) or the Fokker–Planck equation (2.4), respectively, we get

cos(θ0)fx + sin(θ0)fy = Qf or cos(θ0)fx + sin(θ0)fy = κfθθ.
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For θ0 = 0, this reduces to

(3.1) fx = Qf or fx = κfθθ.

It is natural in this case to think of x being time and θ being space. Writing “t”
instead of “x” and “x” instead of “θ”, in (3.1) we get a generalized diffusion equation
for scattering operator Q,

(3.2) ut = Qu,

and the diffusion equation itself in the Fokker–Planck limit,

(3.3) ut = κuxx, κ > 0.

To make the model problems analogous to the transport problems of primary interest,
we prescribe u at t = 0 and impose the periodicity condition

u(x± 2π) ≡ u(x).

3.1. Discretization. We discretize our model problems using a spatial mesh
size Δx = 2π/nx and a time step size Δt = T/nt, where nx and nt are positive
integers and T denotes the final time. The discretization results in a linear system of
the form

(3.4) Au = (Inx ⊗ Jnt −Qnx ⊗ Int)u = fIC ,

where fIC represents the discretized initial condition, in the unknowns ul,j, l =
−nx

2 + 1, . . . , nx

2 , and j = 1, . . . , nt. We use first- (BDF1) or second-order (BDF2)
backward differences for the time discretization, leading to

Jnt =
1

Δt

⎡⎢⎢⎢⎢⎢⎣
1
−1 1

−1 1
−1 1

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦ or Jnt =
1

Δt

⎡⎢⎢⎢⎢⎢⎣
1.5
−2 1.5
0.5 −2 1.5

0.5 −2 1.5
. . .

. . .

⎤⎥⎥⎥⎥⎥⎦ .

As in section 2.2, the idea of spatial discretization for (3.2) is to think of Qnx coming
from an integral scattering term defined by the Fourier coefficients of the probability
density function p,

Qnx =

⎡⎢⎢⎢⎢⎢⎢⎣

q0 q1 · · · qnx/2 q−nx/2+1 · · · q−2 q−1

q−1 q0 q1 · · · qnx/2 q−nx/2+1 · · · q−2

...
. . .

. . .
. . .

. . .
...

...
...

q1 · · · qnx/2 q−nx/2+1 · · · · · · q−1 q0

⎤⎥⎥⎥⎥⎥⎥⎦
with

qm =
1

nx

nx/2∑
n=−nx/2+1

p̂n − 1

λ
cos(nmΔx); p̂n =

∫ π

−π

e−inη p(η) dη.
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In the case of the diffusion equation (3.3), Qnx comes from periodic central differences,

Qnx =
1

(Δx)2

⎡⎢⎢⎢⎢⎢⎣
−2κ κ κ
κ −2κ κ

. . .
. . .

. . .

κ −2κ κ
κ κ −2κ

⎤⎥⎥⎥⎥⎥⎦ .

In both cases, Qnx is circulant.

3.2. The two-grid method. We are interested in a two-level algorithm of the
multigrid type that combines red-black zebra line-relaxations with lines parallel to
the time axis with a semicoarsening strategy using coarsening only in the spatial
dimension. The relaxation scheme corresponds to the waveform relaxation discussed
by Vandewalle and Horton in [24], and it is analogous to the relaxation used in the
angular multigrid method of [3].

To describe our method, we consider two space-time grids, Ωh and ΩH . The
subscript h represents the pair (Δx,Δt), where Δx denotes the spatial mesh size and
Δt is the time increment. The grid ΩH is derived from Ωh by doubling the mesh size
in the space dimension only, i. e., H represents the pair (2Δx,Δt). We assume that
grid points are in the order of increasing time and from left to right in space, and we
permute A into a red-black block ordering by first considering all unknowns at red
grid points, (j1Δx, j2Δt) with j1 odd, and then all unknowns at black grid points,
(j1Δx, j2Δt) with j1 even. Then, the iteration (error-propagation) operator for the
red-black relaxation on the fine grid, Ωh, can be written in the form

SRB = SBLACKSRED = (I −MBA)(I −MRA)

with

A =

[
ARR ARB

ABR ABB

]
, MR =

[
M−1

RR 0
0 0

]
, MB =

[
0 0
0 M−1

BB

]
.

Our interest is in three red-black schemes:
1. Red-black Jacobi in space-time, where

MRR = DRR and MBB = DBB

with DRR and DBB denoting the diagonals of ARR and ABB , respectively. A red
sweep updates the unknowns associated with each red grid point, assuming that all
other values, at all other space-time grid points, are frozen as they were at the be-
ginning of the half sweep. A black sweep updates the black space-time grid points
analogously.

2. Red-black Jacobi in space, Gauss–Seidel in time, where

MRR = DRR − Ltime
RR and MBB = DBB − Ltime

BB

with DRR and DBB as above and where −Ltime
RR and −Ltime

BB are the strictly lower
triangular parts of ARR and ABB, respectively, associated with time connections only.
A half sweep over the red space-time grid points updates the unknowns associated
with each red grid point, assuming that all values at the same time step are frozen as
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they were at the beginning of the half sweep, but values at previous time steps are
already updated.

3. Red-black Gauss–Seidel in space-time, where

MRR = DRR − LRR and MBB = DBB − LBB

with −LRR and −LBB denoting the strictly lower triangular parts of ARR and ABB,
respectively. A red sweep updates the unknowns associated with each red grid point,
assuming that all values at previous time steps and values associated with red grid
points at the same time step and to the left in space are already updated.

We use standard geometric coarse-grid correction in the x-direction, using periodic
linear interpolation, P , full-weighting restriction, R = 1

2P
T , and rediscretization to

get the coarse-grid operator, Ac. Our two-level algorithm may be represented by the
two-grid iteration matrix,

(3.5) M = SRB(I − P (Ac)−1RA)SRB.

4. Two-grid analysis. We consider solving the linear system of equations (3.4)
by the two-grid method described in section 3.2. The convergence of this iterative
method can be analyzed by studying the iteration matrix, M , given in (3.5). In
[22], rigorous Fourier analysis (model problem analysis) was introduced, which allows
exact predictions of the convergence behavior for a certain class of model problems
and a certain class of multigrid algorithms. The convergence behavior of problems
and methods which do not belong to this class may be estimated by applying LFA,
which was introduced by Brandt [6]. The word “local” in LFA refers to the fact that
boundary conditions and variations in coefficients are neglected.

In section 4.1, we review the ideas behind rigorous Fourier two-grid analysis and
discuss how it can be applied to our model problems described in section 3. Section 4.2
is devoted to a review of the ideas of LFA, and in section 5, we present results of this
method applied to our model problems.

4.1. Rigorous Fourier analysis. For simple fine- and coarse-grid operators,
relaxation schemes, and intergrid transfer operators, the iteration matrix of the two-
grid method, M , becomes block-diagonal when the exponential Fourier basis is used
with low-dimensional (in our case, two-dimensional) nonzero blocks along the main
diagonal and zeros everywhere else, corresponding to small invariant subspaces of the
multigrid algorithm. “Rigorous Fourier analysis” means to analyze M by exploiting
this observation. More precisely, rigorous Fourier analysis for two-dimensional prob-
lems is based on the fact that block-circulant matrices with circulant blocks can be
diagonalized by the discrete set of Fourier modes,

(4.1)
ϕh(ωk) =

(
ϕh
j1,j2(ωk)

)
j1=−nx

2
+1,...,

nx
2

,

j2=−nt
2

+1,...,
nt
2

, ϕh
j1,j2(ωk) = e−iωkx j1 e−iωkt j2 (ωk ∈ Th),

where

Th =

{
ωk =

(
2πkx
nx

,
2πkt
nt

)
: kx = −nx

2
+ 1, . . . ,

nx

2
, kt = −nt

2
+ 1, . . . ,

nt

2

}
.
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In our case, using a first-order upwind (BDF1) discretization in time, we consider
A = Inx ⊗ Jnt −Qnx ⊗ Int ,

(4.2) A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ΔtInx −Qnx

− 1
ΔtInx

1
ΔtInx −Qnx

− 1
ΔtInx

1
ΔtInx −Qnx

. . .
. . .

− 1
ΔtInx

1
ΔtInx −Qnx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is only block-Toeplitz with circulant blocks (BTCB) and not BCCB. However,
by adding periodicity in time, i. e., considering a periodic space-time grid, we can
make a closely related BCCB operator,

Aper =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ΔtInx −Qnx − 1

ΔtInx

− 1
ΔtInx

1
ΔtInx −Qnx

− 1
ΔtInx

1
ΔtInx −Qnx

. . .
. . .

− 1
ΔtInx

1
ΔtInx −Qnx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This modification turns our temporal differential operator, Jnt , into a circulant op-
erator, Jper

nt
, where the Fourier ansatz (4.1) is valid. The analogous approach can be

used for the second-order upwind (BDF2) discretization in time.
It remains to analyze how relaxation and coarse-grid correction act on the Fourier

modes. The required calculations are identical with those for LFA, and we therefore
proceed to discussing LFA.

4.2. LFA. As opposed to rigorous Fourier analysis, LFA can be applied to prob-
lems involving noncirculant operators such as our original operator, A = Inx ⊗ Jnt −
Qnx ⊗ Int ; however, as the change in name implies, it is no longer strictly rigorous
[8, 21]. The objective of LFA is to determine the asymptotic convergence behav-
ior ignoring effects of boundaries. All considerations in the context of LFA for the
two-dimensional case are based on the infinite grid

Ωh =
{
(x, t) = (j1Δx, j2Δt) : (j1, j2) ∈ Z

2
}

and use the fact that any infinite-grid block-Toeplitz matrix with Toeplitz blocks can
be diagonalized by a set of continuous Fourier modes,

(4.3) ϕh(ω, x, t) = e−iωxx
Δx e−i

ωtt
Δt for ω ∈ (−π, π]2, (x, t) ∈ Ωh,

where each component of ω varies continuously in the interval (−π, π]. The use
of infinite-dimensional spaces and operators gives some technical simplifications in
the analysis. However, to get a predictive analysis tool based on the L2-norm of
the infinite-grid operator requires maximizing the LFA symbol over the continuos
parameter ω. Thus, in practice, LFA has to be taken from its infinite-grid setting,
and we maximize, instead, the symbol over a finite set of values of ω.
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The analysis of the two-grid iteration matrix, M , by means of LFA is as follows:
We start by extending the discrete operator, A, as well as relaxation and coarse-grid
correction operators to the infinite grid, Ωh, ignoring any boundary conditions. We
then use the continuous Fourier modes (4.3) to diagonalize the infinite-grid operator,
Ah, corresponding to the discrete operator, A. If Ac is also chosen so that it is a
BTTB operator, then it can also be diagonalized, now by coarse-grid Fourier modes,
i. e., with ωx replaced by 2ωx, in the factor-2 coarsening considered here. A discrete
set of diagonal terms is then chosen, corresponding to a discrete mesh in ω, needed
for the prediction of the performance of the two-grid method. More precisely, we
consider the discrete set of the Fourier modes (4.1). Using this Fourier ansatz, (4.2),
and properties of the Kronecker product, the LFA predicted eigenvalues of the fine-
grid operator, A = Inx ⊗ Jnt −Qnx ⊗ Int , are

λ(h,k) =
1

Δt

(
1− eiωkt

)− nx
2∑

m=−nx
2 +1

qm e−iωkxm

if BDF1 is used for discretizing in time, and

λ(h,k) =
1

Δt

(
3

2
− 2 eiωkt +

1

2
ei2ωkt

)
−

nx
2∑

m=−nx
2

+1

qm e−iωkxm

if we use BDF2 for discretizing in time. On the coarse grid, we have ωH
kx

= 2ωh
kx
,

yielding the LFA predicted eigenvalues of the coarse-grid operator, Ac,

λ(H,k) =
1

Δt

(
1− eiωkt

)− nx
4∑

m=−nx
4 +1

qcm e−i2ωkxm

for BDF1 in time, or

λ(H,k) =
1

Δt

(
3

2
− 2 eiωkt +

1

2
ei2ωkt

)
−

nx
4∑

m=−nx
4 +1

qcm e−i2ωkxm

for BDF2 in time.
For the intergrid transfer operators, R and P , the Fourier modes are no longer

eigenfunctions. Since we consider semicoarsening in space, the restriction operator,
R, maps two fine-grid functions, the Fourier harmonics, to one coarse-grid function.
More precisely, these two functions are associated with the frequencies

ωk ∈
(
−π

2
,
π

2

]
× (−π, π] and ω′

k = ωk − sign(ωkx)

[
π
0

]
(see Figure 4.1). It can be verified that the fine-grid harmonic spaces are left invari-
ant by the coarse-grid correction process [23]. As a result, we can use the continuous
Fourier modes to block-diagonalize the infinite-grid restriction and interpolation op-
erators. The size of these blocks is 2 × 2, reflecting the coupling of the two Fourier
harmonics. If rh is a fine-grid vector composed only of the two harmonic modes
ϕh(ωk) and ϕh(ω′

k),

rh = cωϕ
h(ωk) + cω′ϕh(ω′

k),
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−π −π
2

π
2 π

π

Fig. 4.1. For a given frequency ωk (◦ or �), the frequency ω′
k for which the corresponding

Fourier modes, ϕh(ωk) and ϕh(ω′
k), coincide on the coarse grid is marked by • and , respectively.

then, for full-weighting restriction, we obtain

Rrh =
(
cos2

(ωkx

2

)
cω + sin2

(ωkx

2

)
cω′

)
ϕH(2ωkx , ωkt).

Periodic linear interpolation maps the single coarse-grid mode ϕH(2ωkx , ωkt) to the
corresponding two fine-grid harmonics ϕh(ωk) and ϕh(ω′

k). More precisely, we obtain

PϕH(2ωkx , ωkt) = cos2
(ωkx

2

)
ϕh(ωk) + sin2

(ωkx

2

)
ϕh(ω′

k).

In order to make a convergence prediction of the discussed two-grid method for our
model problems, it remains to analyze the three red-black relaxation schemes. Since
we use red-black relaxation, the Fourier modes are again no longer eigenfunctions
of the relaxation operators, but the harmonic spaces are left invariant under these
operators. As a result, we can use the continuous Fourier modes to block-diagonalize
the infinite-grid relaxation operators, and, by multiplying out the 2 × 2 blocks that
we get from relaxation and coarse-grid correction, we can block-diagonalize the two-
grid operator, M , as a whole. Then, we choose a discrete set of diagonal blocks,
corresponding to a discrete mesh in ω. The asymptotic convergence behavior of
the two-grid method can then be predicted by measuring the spectral radius of the
transformed two-grid operator over this discrete space. In the following, we discuss
how to find analytical expressions for the coefficients of the 2 × 2 diagonal blocks
for our three red-black relaxation schemes. Each of these methods consists of two
partial steps. In the first partial step, the red step, only values at red grid points,
(j1, j2) with j1 odd, are updated, while values at black grid points, (j1, j2) with j1
even, remain unchanged. The second step, the black step, then only updates values
at black grid points. Denoting the partial step relaxation operators by SRED and
SBLACK, the complete red-black relaxation operator, SRB, is given by their product,
SRB = SBLACKSRED. We present primarily results for BDF2 time discretization;
however, expressions for BDF1 time discretization are similar.

4.2.1. Red-black Jacobi in space-time. To analyze relaxation, we consider
the fine-grid mode ϕh = ϕh(ωk), and first express the value of (SREDϕh(ωk))j1,j2 at
each grid point (j1, j2). Applying Jacobi in space-time type relaxation to (3.4) of our
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discrete model problem, we have

(
SREDϕh

)
j1,j2

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
1
Δt − q0

[∑
m<0

qmϕh
j1+m,j2 +

∑
m>0

qmϕh
j1+m,j2

]
[
+

1

Δt
ϕh

j1,j2−1

]
if j1 odd,

ϕh
j1,j2 if j1 even

(4.4)

in the case of BDF1 time discretization, and

(
SREDϕh

)
j1,j2

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
3

2Δt − q0

[∑
m<0

qmϕh
j1+m,j2 +

∑
m>0

qmϕh
j1+m,j2

]
[
+

2

Δt
ϕh

j1,j2−1 −
1

2Δt
ϕh

j1,j2−2

]
if j1 odd,

ϕh
j1,j2 if j1 even

(4.5)

for BDF2 time discretization. We now make the ansatz that (SREDϕh)j1,j2 can be
written as a linear combination of the two Fourier harmonics,

(SREDϕh)j1,j2 = cω e−iωkx j1 e−iωkt j2 +cω′ e−iω′
kx

j1 e−iω′
kt

j2

=
(
cω + cω′ e−iπj1

)
e−iωkx j1 e−iωkt j2 .

Equating terms, we obtain cω′ = 1− cω and

cω =
1

2
+

1

2
(

1
Δt − q0

) [∑
m<0

qm e−iωkxm +
∑
m>0

qm e−iωkxm +
1

Δt
eiωkt

]

for BDF1 time discretization, and

cω =
1

2
+

1
3
Δt − 2q0

[∑
m<0

qm e−iωkxm +
∑
m>0

qm e−iωkxm +
2

Δt
eiωkt − 1

2Δt
ei2ωkt

]

for BDF2 time discretization. Analogously, we express the value of
(SBLACKϕh(ωk))j1,j2 at each grid point (j1, j2), i. e., equations (4.4) and (4.5) with
the expressions for j1 odd and j1 even interchanged, and make the ansatz that
(SBLACKϕh(ωk))j1,j2 can be written as a linear combination of the two Fourier har-
monics,

(SBLACKϕh)j1,j2 = dω e−iωkx j1 e−iωkt j2 +dω′ e−iω′
kx

j1 e−iω′
kt

j2

=
(
dω + dω′ e−iπj1

)
e−iωkx j1 e−iωkt j2 .

Equating terms again, we obtain dω = cω and dω′ = dω − 1.
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4.2.2. Red-black Jacobi in space, Gauss–Seidel in time. Applying Jacobi
in space and Gauss–Seidel in time type relaxation to (3.4) of our discrete model
problem, using BDF2 discretization in time, we have
(4.6)

(
SREDϕh

)
j1,j2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

2Δt − q0

[∑
m<0

qmϕh
j1+m,j2 +

∑
m>0

qmϕh
j1+m,j2

]
[
+

2

Δt

(
SREDϕh

)
j1,j2−1

− 1

2Δt

(
SREDϕh

)
j1,j2−2

]
if j1 odd,

ϕj1,j2 if j1 even.

The value of (SBLACKϕh(ωk))j1,j2 at each grid point (j1, j2) is given by (4.6) with
the expressions for j1 odd and j1 even interchanged. Analogously to section 4.2.1, we
make the ansatz

(SREDϕh)j1,j2 = cω e−iωkx j1 e−iωkt j2 +cω′ e−iω′
kx

j1 e−iω′
kt

j2 ,

(SBLACKϕh)j1,j2 = dω e−iωkx j1 e−iωkt j2 +dω′ e−iω′
kx

j1 e−iω′
kt

j2

to obtain

cω =

1+
1

3
2Δt − q0

[∑
m<0

qm e−iωkxm+
∑
m>0

qm e−iωkxm − 2

Δt
eiωkt +

1

2Δt
ei2ωkt

]

2− 1
3

2Δt − q0

[
4

Δt
eiωkt − 1

Δt
ei2ωkt

] ,

cω′ = 1− cω, dω = cω, and dω′ = dω − 1.

4.2.3. Red-black Gauss–Seidel in space-time. Applying Gauss–Seidel in
space-time type relaxation to (3.4) of our discrete model problem, using BDF2 dis-
cretization in time, we have
(4.7)

(
SREDϕh

)
j1,j2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

2Δt − q0

[∑
m<0

qm
(
SREDϕh

)
j1+m,j2

+
∑
m>0

qmϕj1+m,j2

]
[
+

2

Δt

(
SREDϕh

)
j1,j2−1

− 1

2Δt

(
SREDϕh

)
j1,j2−2

]
if j1 odd,

ϕj1,j2 if j1 even.

The value of (SBLACKϕh(ωk))j1,j2 at each grid point (j1, j2) is given by (4.7) with
the expressions for j1 odd and j1 even interchanged. Analogously to section 4.2.1, we
make the ansatz

(SREDϕh)j1,j2 = cω e−iωkx j1 e−iωkt j2 +cω′ e−iω′
kx

j1 e−iω′
kt

j2 ,

(SBLACKϕh)j1,j2 = dω e−iωkx j1 e−iωkt j2 +dω′ e−iω′
kx

j1 e−iω′
kt

j2
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to obtain

cω =

1 +
1

3
2Δt − q0

[∑
m>0

qm e−iωkxm −
∑
m<0

qm e−i(ωkx+π)m − 2

Δt
eiωkt +

1

2Δt
ei2ωkt

]

2− 1
3

2Δt − q0

[∑
m<0

qm

(
e−iωkxm +e−i(ωkx+π)m

)
+

4

Δt
eiωkt − 1

Δt
ei2ωkt

] ,

cω′ = 1− cω, dω = cω, and dω′ = dω − 1.

5. Numerical results. In this section, we present Fourier analysis results for
our three red-black relaxation schemes, two-grid (1, 1)-, and two-grid (0, 1)-cycles. In
sections 5.1 and 5.2, we consider the diffusion equation (3.3) with κ = 1. Because
of similarities to the exponential Fourier mode analysis for the multigrid waveform
relaxation method discussed by Vandewalle and Horton [24], in section 5.2 we compare
our two-grid (1, 1)-cycle predictions to convergence factors in [24]. Sections 5.3 and
5.4 are devoted to the generalized diffusion equation (3.2).

5.1. Fourier analysis for the diffusion equation. We report on tests of
eigenvalues of the iteration matrices of the different schemes. For each scheme, we
consider two cases, namely, a periodic space-time grid and a space-time grid which is
periodic in space only. On the periodic space-time grid, both our differential operators,
Qnx and Jper

nt
, are circulant and thus diagonizable by the discrete set of Fourier modes.

So, we expect LFA to be exact for Jacobi type relaxations, since it is rigorous, and
good for Gauss–Seidel type relaxations and the two-grid (1, 1)-cycles. Considering
a grid with periodicity in space only, the spatial differential operator, Qnx , is still
circulant, and thus diagonalizable. However, the temporal differential operator, Jnt ,
is only Toeplitz, and more precisely, in the case of BDF1 time discretization, a Jordan
block, and thus not diagonalizable. Therefore, we expect LFA to be good only for
large grids. The two questions that arise naturally are, what does “large” mean,
and, is convergence good enough to understand the results of the angular relaxation
scheme and the angular multigrid method for transport problems presented in [3]?
Since our discretization is spectrally accurate in nx, and the corresponding spatial
differential operator, Qnx , is circulant, very large values of nx are probably irrelevant.
Thus, in most of our calculations, we have fixed nx = 16, and only vary the number
of temporal grid points, nt, with fixed Δt = 1/16, by varying T in the definition of
nt, nt = T/Δt.

Figure 5.1 shows the eigenvalues in the complex plane for computations on space-
time grids of sizes 16 × 32 (T = 2), 16 × 256 (T = 16), and 16 × 2048 (T = 128),
respectively, for red-black Jacobi in space-time. The left plots present eigenvalues of
the LFA prediction, the middle and right plots show analytically computed eigenval-
ues, i. e., exact eigenvalues of the iteration matrix. More precisely, the middle plots
show results on periodic space-time grids and the right plots results on grids which
are periodic in space only. As expected, the LFA prediction matches the analytically
computed results on periodic space-time grids exactly, since the Fourier analysis is
rigorous on these grids. However, we have to move to a very large number of grid
points in the temporal direction to get a close prediction of results on a grid which is
periodic in space only. For realistic grid sizes, the LFA prediction does not capture
convergence very accurately.

Figures 5.2 and 5.3 present similar results to Figure 5.1 for red-black Gauss–
Seidel in space-time relaxation, which, for the diffusion equation, is equivalent to
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(a) Eigenvalues on a 16 × 32 space-time grid

(b) Eigenvalues on a 16 × 256 space-time grid

(c) Eigenvalues on a 16 × 2048 space-time grid

Fig. 5.1. Eigenvalues on a (a) 16×32 (T = 2), (b) 16×256 (T = 16), and (c) 16×2048 (T = 128)
space-time grid, Δt = 1/16 fixed, red-black Jacobi in space-time, BDF2 time discretization of the
diffusion equation with κ = 1. At left, eigenvalues predicted by LFA, in the middle, eigenvalues of
the analytically computed iteration matrix on a periodic space-time grid, and at right, analytically
computed eigenvalues on a grid which is periodic in space only.

red-black Jacobi in space, Gauss–Seidel in time relaxation, and two-grid (1, 1)-cycles
with Gauss–Seidel in space-time relaxation, respectively. Here, in contrast to the
results in Figure 5.1, we see that LFA is no longer rigorous for periodic space-time
grids. Again, LFA is only asymptotically accurate for results on a grid which is
periodic in space only, but not good for a small number of grid points in the temporal
direction. Furthermore, LFA has no hope of predicting the behavior of relaxation,
since it always predicts relaxation to have a spectral radius of one. Numerical results
for the diffusion equation discretized using BDF1 in time show the same limitations.

5.2. Comparison to [24]. Vandewalle and Horton have applied LFA to the
discrete-time version of the multigrid waveform relaxation method, presented in [17],
for the diffusion equation [24]. This multigrid method uses standard central differences
for the spatial operator and BDF1, BDF2, or Crank–Nicolson for the time discretiza-
tion. Furthermore, the standard smoother is a zebra Gauss–Seidel method, one of
the red-black relaxation schemes discussed in section 3.2. Coarse-grid correction is
based on semicoarsening, with coarsening in the spatial dimension only, and intergrid
transfer operators are linear interpolation and full-weighting restriction in the spatial
dimension.
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(a) Eigenvalues on a 16 × 32 space-time grid

(b) Eigenvalues on a 16 × 2048 space-time grid

Fig. 5.2. Results similar to those of Figure 5.1 for red-black Gauss–Seidel in space-time instead
of red-black Jacobi in space-time relaxation.

(a) Eigenvalues on a 16 × 32 space-time grid

(b) Eigenvalues on a 16 × 2048 space-time grid

Fig. 5.3. Results similar to those of Figure 5.1 for two-grid (1, 1)-cycles with red-black Gauss–
Seidel in space-time relaxation instead of red-black Jacobi in space-time relaxation only.

In [24], Vandewalle and Horton compare numerical results of two-grid (1, 1)-cycles
of the multigrid waveform relaxation method applied to the diffusion equation for
different mesh-aspect ratios, λh = Δt/(Δx)2, on a grid of size 128× 128. They report
convergence factors based on the two-norm of the residual, averaged over the first 30
iterations, or, in the case of fast convergence, over iterations up to the point where
the initial residual is reduced in norm by a factor of 10−10. Table 4 shows these
average convergence factors (taken from [24, Table 1]), ρ, as well as our computations
of the LFA predictions of spectral radii, ρLFA, and the spectral radii of the analytically
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Table 4

Average convergence factors per iteration (reported in [24]), ρ, LFA predictions of spectral radii,
ρLFA, and spectral radii of the analytically computed iteration matrix, ρanalytic, for the diffusion
equation with κ = 1, discretized using BDF1 or BDF2 in time, two-grid (1, 1)-cycles with red-black
Gauss–Seidel in space-time relaxation, 128 × 128-grid. Results are truncated after two digits past
the decimal point because this corresponds to the precision of the results in [24].

log2(λh) −6 −3 0 3 6 9
ρ 0.02 0.11 0.08 0.04 0.01 0.00

BDF1 ρLFA 0.06 0.14 0.09 0.04 0.01 0.00
ρanalytic 0.00 0.02 0.07 0.04 0.01 0.00

ρ 0.02 0.12 0.12 0.05 0.01 0.00
BDF2 ρLFA 0.07 0.16 0.14 0.06 0.01 0.00

ρanalytic 0.00 0.01 0.08 0.05 0.01 0.00

computed iteration matrix, ρanalytic, on 128× 128 space-time grids that are periodic
in space only, given to the same accuracy as in [24]. For these computations of the
spectral radii, we have fixed the spatial mesh size, Δx = (2π)/128, and computed the
time increment, Δt, from the expression Δt = λh(Δx)2 with λh given by the value
of log2(λh). For the analytic computations, this implicitly varies the final time, T , in
the expression Δt = T/128. For the LFA calculations, we have used enough points in
the time-Fourier direction to adequately resolve the LFA spectral radius; this issue is
explored more in Table 5.

Table 4 suggests that for small values of λh, corresponding to small time in-
crements, Δt, if Δx is fixed, LFA gives neither a good prediction for the numerical
convergence behavior nor for the analytical convergence behavior. However, for larger
values of λh, corresponding to large time increments, Δt, if Δx is fixed, LFA gives
a close prediction to both the numerical and analytical convergence behavior. Put
another way, for fixed spatial mesh size, Δx = (2π)/128, and fixed time increment,
Δt = 1/128, i. e., considering T = 1, we can compute the effective diffusion coefficient,
κ, from the expression κ = λh(Δx)2/Δt, and we can relate the accuracy of the LFA
prediction to physical transport parameters using (2.3). From this point of view, small
values of λh and, thus, small diffusion coefficients, κ, correspond to large mean free
paths, λ, in the Fokker–Planck limit, whereas larger values of λh correspond to large
diffusion coefficients, κ, and, thus, small mean free paths, λ, in the Fokker–Planck
limit. Table 4 suggests that for large mean free paths, λ, characterizing “thin” ma-
terial, LFA gives neither a good prediction for the numerical convergence behavior
nor for the analytical convergence behavior. However, for smaller mean free paths, λ,
characterizing “thick” material, LFA gives a close prediction to both the numerical
and analytical convergence behavior.

In the LFA results presented in Table 4, the number of points in the time-Fourier
direction required to attain an accurate LFA prediction depends strongly on λh. To
see this in more detail, Table 5 presents results for independently varying both the
time step and the number of points in the time and the time-Fourier directions. We
consider spectral radii of LFA predictions, ρLFA, and spectral radii of the analytically
computed iteration matrix, ρanalytic, for two-grid (1, 1)-cycles for the diffusion equation
with κ = 1, discretized using BDF2 in time, on nx × nt space-time grids, which are
periodic in space only, with fixed nx = 16.

For fixed time increment, Δt, the LFA predictions stabilize if we use 1/Δt grid
points in the time-Fourier direction. The reason for this is that the maximum of the
LFA-predicted attenuation factors occurs at a temporal wave number of approximately
2πΔt which is resolved when we have 1/Δt points in the time-Fourier direction, but
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Table 5

LFA predictions of spectral radii, ρLFA, and spectral radii of the analytically computed iteration
matrix, ρanalytic, for two-grid (1, 1)-cycles for the diffusion equation with κ = 1, discretized using
BDF2 in time, on nx × nt space-time grids, which are periodic in space only, nx = 16 fixed.

Δt = 1/16 Δt = 1/32 Δt = 1/64 Δt = 1/128 Δt = 1/256
nt = 16 1.57e-01 1.19e-01 3.78e-02 6.53e-03 8.97e-04
nt = 32 1.57e-01 1.59e-01 1.27e-01 4.16e-02 7.28e-03

ρLFA nt = 64 1.57e-01 1.59e-01 1.59e-01 1.28e-01 4.25e-02
nt = 128 1.57e-01 1.61e-01 1.59e-01 1.59e-01 1.29e-01
nt = 256 1.57e-01 1.61e-01 1.62e-01 1.59e-01 1.59e-01
nt = 512 1.57e-01 1.61e-01 1.62e-01 1.62e-01 1.59e-01
nt = 1024 1.57e-01 1.62e-01 1.62e-01 1.62e-01 1.62e-01

nt = 16 1.52e-02 4.18e-03 7.97e-04 1.28e-04 1.81e-05
nt = 32 2.05e-02 6.12e-03 1.15e-03 1.78e-04 2.52e-05

ρanalytic nt = 64 3.55e-02 1.18e-02 2.20e-03 3.31e-04 4.72e-05
nt = 128 5.52e-02 2.69e-02 5.93e-03 8.76e-04 1.21e-04
nt = 256 8.61e-02 5.02e-02 1.81e-02 2.91e-03 4.01e-04
nt = 512 1.15e-01 8.69e-02 4.40e-02 1.16e-02 1.59e-03
nt = 1024 1.35e-01 1.20e-01 8.38e-02 3.78e-02 8.28e-03

not fewer. Furthermore, Table 5 shows that there is a big discrepancy between the
analytic spectral radii and the LFA predictions if ntΔt is small. In other words,
we need an exceptionally large final time, T , before the LFA and analytic rates are
comparable. For example, Δt = 1/16 and nt = 1024 corresponds to T = 64, a time
period that is not interesting in practice since it is very long in comparison with the
diffusion time scale.

The results in Table 4 show similar behavior as a function of λh. For values of λh

with log2(λh) > 0, Δt > 0.02 and, so, about 50 points in the time-Fourier direction
should be sufficient for the LFA results to resolve the maximum attenuation factor
predicted. In Table 4, we use 128 points in the time-Fourier direction (for convenience
of matching the analytical computation), and see this to be the case. For λ = 1,
Δt = 0.0024, suggesting about 400 points are needed and, indeed, we find we need
at least 256 (for BDF2) or 512 (for BDF1) points to resolve the maximum predicted
attenuation factor. For negative log2(λh), 1/Δt seems to seriously overestimate the
number of points needed in the time-Fourier direction; however, these correspond to
unrealistically small time steps, so this behavior may not be of great interest. On
the other hand, comparing the LFA predictions with the numerical results from [24]
or the analytic computations, we see very good matches for λh with log2(λh) > 0,
which correspond to final times T > 1. For λh = 1 with 128 temporal grid points,
we have T = 0.3084 and see good (but not perfect) agreement between the LFA and
the computational and analytic results. For negative log2(λh), final times are small,
T < 0.04, and we see, as expected, poor predictions of true behavior.

5.3. Fourier analysis for model problems in space-time. In this subsec-
tion, we examine the dependence of the performance of the red-black relaxation
schemes and the two-grid (0, 1)-cycles for the generalized diffusion equation (3.2) on
the choice of scattering kernel. As in section 5.1, we consider the equation discretized
on a periodic space-time grid and on a space-time grid which is periodic in space
only. Again, fixing nx = 16 and varying the number of grid points in time, nt, only,
numerical experiments show that LFA is not good for small nt.

Figure 5.4 shows the eigenvalues in the complex plane for computations on a
16 × 2048 space-time grid for red-black Gauss–Seidel in space-time relaxation and
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(a) red-black Gauss-Seidel in space-time relaxation

(b) two-grid ( 0,1) -cycles with red-black Gauss-Seidel in space-time relaxation

Fig. 5.4. Eigenvalues on a 16 × 2048 space-time grid, (a) red-black Gauss–Seidel in space-
time relaxation, and (b) two-grid (0, 1)-cycles with red-black Gauss–Seidel in space-time relaxation,
Henyey–Greenstein scattering, BDF2 time discretization. At left, eigenvalues predicted by LFA, in
the middle, eigenvalues of the analytically computed iteration matrix on a periodic space-time grid,
and at right, analytically computed eigenvalues on a grid which is periodic in space only.

for two-grid (0, 1)-cycles with red-black Gauss–Seidel in space-time relaxation for the
generalized diffusion equation with the Henyey–Greenstein scattering operator (q = 2
in (2.5)), discretized using BDF2 in time. We see that, even on this large grid, LFA
does not capture the very fast convergence behavior of relaxation, and gives only a
poor prediction of two-grid (0, 1)-cycle results on a space-time grid which is periodic
in space only.

As seen in Figures 5.5 and 5.6, LFA gives a better prediction of results for the case
of spatial (but not temporal) periodicity for screened Rutherford scattering (q = 3
in (2.5)) than it does for Henyey–Greenstein scattering (q = 2 in (2.5)). However,
again, we need a very large number of grid points in the temporal direction. We also
want to note that, due to stronger red-to-black connections, for screened Rutherford
scattering, we see that results for red-black Jacobi in space, Gauss–Seidel in time
relaxation differ from results for red-black Gauss–Seidel in space-time relaxation.

5.4. Comparison to [3]. Our reason for considering generalized diffusion prob-
lems and applying LFA to these problems was to understand the results of the angular
multigrid method for transport problems, presented in [3] and reviewed in section 2.5.
In this subsection, we present LFA results for two-grid (0, 1)-cycles for the diffusion
equation (3.3) and the generalized diffusion equation (3.2). In section 5.3, we have
seen that LFA does not give good performance predictions on coarse time grids in
physical space. In this subsection, we analyze the dependence of LFA predictions on
the number of points in Fourier space by considering Fourier space-time grids of size
nx×(T/Δt). We want to emphasize that considering T/Δt points in the time-Fourier
direction is independent of the physical meaning of T as being the total integration
time in physical space. For our convenience only, we follow the rule that the number
of points in time-Fourier space is given by T/Δt, so that we can increase this number
by considering the two limits, T → ∞ and Δt → 0. Effects of these two limits on the
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(a) red-black Jacobi in space, Gauss-Seidel in time relaxation

(b) red-black Gauss-Seidel in space-time relaxation

Fig. 5.5. Results similar to those of Figure 5.4(a) with screened Rutherford instead of Henyey–
Greenstein scattering, (a) red-black Jacobi in space, Gauss–Seidel in time, and (b) red-black Gauss–
Seidel in space-time relaxation.

Fig. 5.6. Results similar to those of Figure 5.4(b) with screened Rutherford instead of Henyey–
Greenstein scattering.

LFA prediction of the convergence behavior of two-grid (0, 1)-cycles with red-black
Gauss–Seidel in space-time relaxation for the diffusion equation, the generalized dif-
fusion equation with the screened Rutherford and the Henyey–Greenstein scattering
operator are illustrated in Tables 6, 7, and 8. In Tables 6 and 7, it can be seen that the
LFA predicts that the performance of two-grid (0, 1)-cycles for the diffusion equation
and for the generalized diffusion equation with the screened Rutherford scattering
operator do not change if we go from T = 1 to T = 2. Changing T has no effect
on the equations that are analyzed within the LFA, only on how many points are
sampled in the time direction of Fourier space. Thus, observing no changes in the
results in Tables 6 and 7 as we increase T , this says that T = 1 samples enough points
in Fourier space to get an accurate picture of the error-propagation operator.

For the diffusion equation, we see in Table 6 that the LFA results are consistently
shifted down by two rows as we move to each subsequent column, i. e., we see consistent
results when we double nx and multiply Δt by 1/4. This is to be expected as these
shifts result in a simple scaling of the (infinite-grid) operator by a factor of four, which
will have no effect on the performance of relaxation or coarse-grid correction. For each
fixed nx, the LFA prediction stabilizes for Δt ≤ 2/(nx)

2, which implies that the mesh-
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Table 6

LFA predictions of spectral radii for the diffusion equation, discretized using BDF2 in time,
two-grid (0, 1)-cycles with red-black Gauss–Seidel in space-time relaxation, nx × (T/Δt)-grid.

nx = 32 nx = 64 nx = 128 nx = 256 nx = 512
Δt = 1/128 0.247 0.208 0.125 0.058 0.018
Δt = 1/256 0.249 0.235 0.167 0.090 0.033
Δt = 1/512 0.250 0.247 0.208 0.125 0.058

T = 1 Δt = 1/1024 0.250 0.249 0.235 0.167 0.090
Δt = 1/2048 0.250 0.250 0.247 0.208 0.125
Δt = 1/4096 0.250 0.250 0.250 0.235 0.167
Δt = 1/8192 0.250 0.250 0.250 0.247 0.208

Δt = 1/128 0.248 0.208 0.125 0.058 0.018
Δt = 1/256 0.249 0.235 0.167 0.090 0.033
Δt = 1/512 0.250 0.247 0.208 0.125 0.058

T = 2 Δt = 1/1024 0.250 0.250 0.236 0.167 0.090
Δt = 1/2048 0.250 0.250 0.247 0.208 0.125
Δt = 1/4096 0.250 0.250 0.250 0.235 0.167
Δt = 1/8192 0.250 0.250 0.250 0.247 0.208

Table 7

Results similar to those in Table 6 with the generalized diffusion equation with the screened
Rutherford scattering operator instead of the diffusion equation.

nx = 32 nx = 64 nx = 128 nx = 256 nx = 512
Δt = 1/128 0.375 0.370 0.356 0.291 0.187
Δt = 1/256 0.376 0.370 0.363 0.333 0.248
Δt = 1/512 0.376 0.370 0.365 0.351 0.300

T = 1 Δt = 1/1024 0.376 0.370 0.365 0.356 0.331
Δt = 1/2048 0.376 0.370 0.365 0.357 0.341
Δt = 1/4096 0.376 0.370 0.365 0.357 0.343
Δt = 1/8192 0.376 0.370 0.365 0.357 0.343

Δt = 1/128 0.375 0.370 0.356 0.291 0.187
Δt = 1/256 0.376 0.370 0.364 0.333 0.248
Δt = 1/512 0.376 0.370 0.365 0.351 0.300

T = 2 Δt = 1/1024 0.376 0.370 0.365 0.356 0.331
Δt = 1/2048 0.376 0.370 0.365 0.357 0.341
Δt = 1/4096 0.376 0.370 0.365 0.357 0.343
Δt = 1/8192 0.376 0.370 0.365 0.357 0.343

aspect ratio, λh = Δt/(Δx)2, is 1/(2π2) or smaller. Moreover, for fine-enough time
grids in Fourier space, predictions are bounded independently of the time step size if
λh ≤ 1/(2π2). To see stabilization in the LFA prediction for nx = 512, for example,
we need about 130, 000 points in the time-Fourier direction. Thus, Table 6 suggests
that for the diffusion equation we get very slow convergence of the LFA prediction
to its asymptotic bound. The mode that gives the maximum predicted attenuation
factor occurs at a temporal wave number of approximately 2π(n2

x/128)Δt.
In Table 7, we see that LFA predictions for the generalized diffusion equation with

the screened Rutherford scattering operator behave similarly to the LFA predictions
for the diffusion equation but with a nicer scaling factor, meaning that we get much
faster convergence of the LFA prediction to its asymptotic bound. More precisely, for
each fixed nx, the LFA predictions stabilize for Δt ≤ 1/(4nx). We note that, due to
the choice of parameters in the scattering operators in [3], the continuum problem to
be solved is slightly different for each nx, leading to slightly different stabilized rates
predicted by the LFA.
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Table 8

Results similar to those in Table 7 with Henyey–Greenstein instead of screened Rutherford
scattering.

nx = 32 nx = 64 nx = 128 nx = 256 nx = 512
Δt = 1/128 0.045 0.089 0.161 0.238 0.237

T = 1 Δt = 1/256 0.046 0.089 0.162 0.238 0.237
Δt = 1/512 0.046 0.089 0.162 0.238 0.237

Δt = 1/128 0.089 0.162 0.238 0.238 0.249
T = 2 Δt = 1/256 0.089 0.162 0.238 0.238 0.249

Δt = 1/512 0.089 0.162 0.238 0.238 0.249

Δt = 1/128 0.162 0.238 0.238 0.250 0.249
T = 4 Δt = 1/256 0.162 0.238 0.238 0.250 0.249

Δt = 1/512 0.162 0.238 0.238 0.250 0.249

Δt = 1/128 0.239 0.238 0.250 0.250 0.249
T = 8 Δt = 1/256 0.239 0.238 0.250 0.250 0.249

Δt = 1/512 0.239 0.238 0.250 0.250 0.249

Δt = 1/128 0.239 0.250 0.250 0.250 0.249
T = 16 Δt = 1/256 0.239 0.250 0.250 0.250 0.249

Δt = 1/512 0.239 0.250 0.250 0.250 0.249

Table 8 shows that for Henyey–Greenstein scattering, LFA results differ signifi-
cantly from LFA results for the diffusion equation and for the generalized diffusion
equation with screened Rutherford scattering. This observation is consistent with the
observed convergence behavior for the transport equation when comparing Henyey–
Greenstein scattering to screened Rutherford scattering and the Fokker–Planck equa-
tion. In contrast to convergence predictions for the diffusion equation and for the
generalized diffusion equation with the screened Rutherford scattering operator, we
see that there is no dependence on Δt. Moreover, the temporal wave number where
the maximum LFA-predicted attenuation factor occurs is independent of Δt and T ,
once T is large enough.

Compared to the effective convergence factors of angular multigrid V(0, 1)-cycles,
given in Table 3, we see that for the diffusion equation theoretical convergence factors
correspond excellently to experimentally measured ones: The stabilized LFA predic-
tion for the diffusion equation on a reasonable physical domain is 0.25. Considering
unscaled convergence factors of angular multigrid V(0, 1)-cycles, i. e., the fourth pow-
ers of the numbers in Table 3, this prediction is in excellent agreement with the results
for the Fokker–Planck equation in Table 3 (the fourth root of 0.25 is 0.71). However,
for screened Rutherford and Henyey–Greenstein scattering, the LFA predictions over-
estimate the observed convergence rates (0.34 and 0.25 for LFA vs. 0.25 and 0.11 for
unscaled convergence factors).

6. Discussion. We have presented LFA results for generalized diffusion prob-
lems in space-time that are analogous to model two-dimensional transport problems.
In contrast to problems that have only elliptic behavior, for parabolic space-time
problems, LFA does not offer its usual predictivity of the convergence behavior for re-
laxation and multigrid schemes unless the time period used for the LFA computations
is very long in comparison with the diffusion time scale.

Another key issue in LFA is determining the number of grid points needed in
the Fourier domain in order to ensure that we resolve the true LFA prediction of the
spectral radii, based on the continuous Fourier-domain representation. For elliptic
problems on fixed physical domains (usually the unit interval, square, or cube), it is
usually assumed that taking the same number of points in Fourier space as in physical
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space is sufficient. Here, we find that for the diffusion equation and the generalized
diffusion equation with screened Rutherford scattering, we need approximately as
many points in the time-Fourier direction as we need to cover a unit time interval,
independent of the actual time interval in question. In contrast, for generalized dif-
fusion equations with Henyey–Greenstein scattering, we need many more points in
the time-Fourier direction than are needed to cover a unit time interval. Even with
a sufficient number of points in the Fourier domain, the resulting predictions of the
convergence behavior of our space-time problems remains inaccurate unless we con-
sider unrealistically long time intervals. We observe that the LFA factors are always
greater than the analytical factors, but we have no analysis to prove this observation.
As a next step, the ideas of half-space mode analysis [7] can be considered to give
more useful predictions [10].

While the LFA gives us some insight into the performance of multigrid methods
for the two-dimensional Flatland transport model, we find that it exposes many more
questions about the nature and applicability of LFA than it answers. This suggests
that it will not, in general, be a useful tool in extending the results from [3] to full
three-dimensional transport.

To make the multigrid scheme analogous to the angular multigrid method of [3],
we have only used a semicoarsening strategy with coarsening in space only. We have
not analyzed any multigrid scheme involving coarsening in time. However, analyzing
a different coarsening strategy including coarsening in time is a natural extension of
our LFA. This could be of interest in the case of extending the angular multigrid
method to coarsen in angle and space simultaneously.
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