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Abstract. Efficient solution of the very large linear systems that arise in numerical modeling of
real-world applications is often only possible through the use of multilevel techniques. While highly
optimized algorithms may be developed using knowledge about the origins of the matrix problem to
be considered, much recent interest has been in the development of purely algebraic approaches that
may be applied in many situations, without problem-specific tuning. Here, we consider an algebraic
approach to finding the fine/coarse partitions needed in multilevel approaches. The algorithm is
motivated by recent theoretical analysis of the performance of two common multilevel algorithms,
multilevel block factorization and algebraic multigrid. While no guarantee on the rate of coarsening
is given, the splitting is shown to always yield an effective preconditioner in the two-level sense.
Numerical performance of two-level and multilevel variants of this approach is demonstrated in
combination with both algebraic multigrid and multilevel block factorizations, and the advantages
of each of these two algorithmic settings are explored.
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1. Introduction. Much of modern scientific computing is driven by the need to
solve increasingly large linear systems that arise from discretization of mathematical
models of physical systems. The matrices of these linear systems are often not only
large but also ill-conditioned. While classical methods may be efficient for smaller
systems, the increasing demand for accuracy in numerical models requires a more
efficient approach.

When full details of the driving application and its discretization are available,
efficient multigrid solvers and multilevel preconditioners may be naturally defined.
Coarse-level acceleration ideas were proposed as early as 1935 in the work of Southwell
[33], while the potential efficiency of multilevel ideas was first demonstrated in the
theoretical work of Fedorenko [16, 17] and Bakhvalov [2] in the 1960s. Geometric
multigrid methods [10, 20], first used for computation in the 1970s, can be shown
to be optimally efficient for simple problems on regular meshes. Hierarchical basis
approaches based on detailed knowledge of the finite-element discretization also lead
to effective preconditioners [3]. While techniques based on such complete knowledge
are often the most efficient, it is not known how to construct optimal solution strategies
for all problems. Further, a good discretization-based preconditioner for one problem
may not work at all for a similar problem, without substantial modification.

Algebraic multigrid (AMG) methods, first proposed in [4] and later analyzed and
tested in [29], offer performance comparable to geometric multigrid on many problems
without requiring as much a priori knowledge. The goal of an AMG algorithm is
to use algebraic means to create the multigrid hierarchy based solely on the linear
system to be solved. While there are many variants of the original approach, in
all cases this amounts to choosing a coarse set of points, and then defining intergrid
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1826 S. MACLACHLAN AND YOUSEF SAAD

transfer operators and a coarse-scale operator that provide a good correction to errors
that are slow to be reduced by relaxation. AMG has been successfully applied to
many problems but is known to be most effective for those that arise from standard
discretizations of elliptic differential equations [12].

The algebraic recursive multilevel solver (ARMS) approach, introduced in [30],
is a multilevel block factorization approach based on incomplete LU (ILU) factor-
izations. The multilevel block factorization approach relies on splitting the matrix
into 2 × 2 block form, then approximately inverting one diagonal block, and then
computing a Schur complement to form a preconditioner [1, Chap. 9]. In ARMS, the
inversion is accomplished using a threshold-based incomplete LU factorization (ILUT)
[31] approach to compute sparse LU factors, which can then be reused in forming an
approximation to the needed Schur complement.

Both the AMG and ARMS approaches require a good splitting into fine and coarse
grids in order to achieve the best possible performance. To be considered good, a
splitting must give a coarse grid that is sufficiently smaller than the original mesh yet
still allows an effective preconditioner to be constructed. In AMG, this means that
the coarse grid is big enough that the coarse-grid correction can effectively address
all errors that are prohibitively slow to be reduced by relaxation. Many heuristics
have been proposed to do this, primarily based on independent set algorithms, as
were originally used in [29]. For ARMS, the primary goal of the coarse-grid selection
algorithm is to allow for an accurate sparse factorization of the fine-grid block, plus
an accurate sparse approximation of the coarse-grid Schur complement.

Theoretical convergence analysis of ARMS and AMG give implicit suggestions of
ways to choose the coarse grid, but there is no easy explicit connection between the
selection of the coarse-grid points and the convergence of the overall scheme. The
idea of compatible relaxation (CR) [6, 8, 15, 23] provides a relationship between the
properties of the fine-scale block of the matrix and the overall performance of AMG.
Similarly, the analysis in [27, 28] provides a relationship between the preconditioning
of the fine-scale block within ARMS and the overall quality of the preconditioner.
Brief reviews of the AMG and ARMS methodologies and their theoretical analyses
are given in section 2.

Here, we use these theoretical results to motivate a coarse-grid selection crite-
rion and algorithm. The optimal coarse-grid selection criterion is seen to lead to an
NP-complete coarsening algorithm and, so, a greedy algorithm is proposed to approx-
imately maximize the measure of a good splitting. The resulting algorithm is shown
to always satisfy the conditions on the fine-scale block in both AMG and ARMS the-
ory; however no guarantee of reduction in the coarse-grid size is possible. This greedy
coarsening strategy and its theoretical analysis are presented in section 3.

Numerical results are given in section 4 that show the algorithm works well for
many problems. Of particular interest is the comparison between the performance of
AMG and ARMS. Here, it is necessary to distinguish between the efficiency and the
robustness of an algorithm. Efficiency is easily measured in terms of error reduction
versus computational cost. Robustness, on the other hand, is difficult to quantify
precisely. Here, we consider the robustness of an algorithm to be indicated by sim-
ilar performance on a wide variety of problems. Our numerical results demonstrate
the efficiency of the AMG-based algorithm for finite-element discretization of elliptic
PDEs. The ARMS-based algorithm is seen to be less efficient than AMG, when AMG
works well, but more robust.

2. Background and motivation. The use of multilevel solution techniques
has become ubiquitous in the numerical solution of PDEs, and has also begun to
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play an important role in more general numerical linear algebraic contexts. While
many of these techniques make use of more knowledge than is present in the linear
system of equations to be solved (e.g., geometric multigrid [10], hierarchical basis
transformations [3]), we concentrate here on purely algebraic approaches, such as the
ARMS technique [30] and AMG methods [4, 29]. Such algebraic techniques presume
a splitting of the overall set of degrees of freedom into two disjoint sets, typically
called the fine- and coarse-level degrees of freedom that are used to partition the
given matrix.

Consider the matrix equation, Ax = b, and suppose that the degrees of freedom
in x and b are partitioned into two disjoint sets, F and C. We consider the matrix,
A, to be already reordered, so that

(1)

[
Aff −Afc

−Acf Acc

](
xf

xc

)
=

(
bf

bc

)
.

2.1. Multilevel block factorization. Multilevel block factorization techniques
[1, Chap. 9] (such as ARMS [30]), make use of this block form to factor A in terms of
A−1

ff . Writing

(2) A =

[
I 0

−AcfA
−1
ff I

] [
Aff 0

0 Âcc

] [
I −A−1

ff Afc

0 I

]
,

where Âcc = Acc −AcfA
−1
ff Afc denotes the Schur complement of A, we can solve for

xf and xc as in Algorithm 1.
Algorithm 1 (block factorization solve).
1. yf = A−1

ff bf

2. yc = bc + Acfyf

3. Solve Âccxc = yc

4. xf = yf + A−1
ff Afcxc

Such a solution technique is, of course, only useful if we can easily solve systems
with Aff and Âcc. In practice, multilevel block factorizations can lead to good pre-
conditioners by approximating these operators by ones that can be inverted in a more
computationally efficient manner. The ARMS algorithm [30] utilizes an incomplete
LU factorization to approximate A−1

ff , both in Steps 1 and 4 of Algorithm 1, and in
computing an approximate Schur complement, which is approximately inverted by a
recursive application of the ARMS methodology.

The action of the two-level ARMS preconditioner on a residual, r = ( rf
rc ), can be

easily explained in terms of a modified block factorization, rewriting (2) as

A =

[
Lff 0

−AcfU
−1
ff I

] [
I 0

0 Âcc

] [
Uff L−1

ff Afc

0 I

]
,

where Aff = LffUff . Taking ILU factors, L ≈ Lff and U ≈ Uff , and letting S−1

approximate the action of the inverse of Âcc, we can write the ARMS preconditioner
as in Algorithm 2.

Algorithm 2 (action of ARMS preconditioner on residual, r).
1. yf = L−1rf
2. yc = rc + AcfU

−1yf

3. xc = S−1yc

4. zf = yf + L−1Afcxc

5. xf = U−1zf
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Note that Algorithms 1 and 2 are, in fact, equivalent, if Aff = LU (i.e., if L = Lff

and U = Uff ) and S−1 = Â−1
cc .

It is apparent that the success of the ARMS preconditioner depends on how well
the action of A−1

ff can be approximated by the ILU solve. This, in turn, depends
directly on the properties of the Aff block of A. Notay relates the condition number

of the preconditioned system, B− 1
2AB− 1

2 , where B represents the action of the (ap-
proximate) multilevel block factorization, as in Algorithms 1 and 2, to the spectral
equivalence of Aff and Âcc and their approximations [27, 28]. Paraphrasing Theorem
9 of [28], we have the following result.

Theorem 1. Consider a symmetric and positive-definite matrix, A, partitioned
as in (1). Let the approximate multilevel block factorization, B, be given by

B =

[
I 0

−AcfD
−1
ff I

] [
Dff 0
0 S

] [
I −D−1

ff Afc

0 I

]
,

where Dff and S are both symmetric and positive definite. Assume that λmin(D−1
ff Aff )

≥ 1 and that
[ Dff −Afc

−Acf Acc

]
is positive semidefinite.

Then,

(3)
λM

λm
≤ κ

(
B− 1

2AB− 1
2

)
≤

(
1 +

√
1 − λ−1

M

)2
λ2
MνM

min(λm, νm)
,

where

λm = λmin(D−1
ff Aff ), λM = λmax(D

−1
ff Aff ),

νm = λmin(S−1Âcc), νM = λmax(S
−1Âcc),

are the extremal eigenvalues of D−1
ff Aff and S−1Âcc.

While [27, 28] provide tighter bounds than those in inequality (3), we emphasize
the role that good spectral equivalence to the Aff block plays in these bounds: The
overall preconditioner can be no better than the equivalence between Dff and the
Aff block, and good equivalence implies the existence of a well-conditioned block fac-

torization preconditioner for the overall system (using S = Âcc). Thus, constructing
the partition such that we know a Dff with good equivalence to the Aff block is
an attractive approach to realizing an efficient preconditioner for A. A much harder
question is achieving good spectral equivalence between the true Schur complement,
Âcc, and its approximation, S, especially as Âcc is, in practice, not explicitly available
within the computation.

2.2. Algebraic multigrid. Originally proposed in [4] and further explained in
[29], the Algebraic Multigrid (AMG) methodology has, in fact, grown to encompass
a number of algorithms focused on the theme of complementing a given relaxation
procedure by an algebraically determined correction from a coarser subspace. This
collection of algorithms can be roughly parameterized by the choices of the multigrid
components: relaxation, intergrid transfer operators, the (nodal) coarse grid, and
the coarse-grid operator. Once these choices have been made, the AMG V-cycle can
be described as a preconditioner or, more commonly, through its error propagation
operator,

(I −B−1
AMGA) = (I −M−TA)l2(I − PA−1

C RA)(I −M−1A)l1 ,
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where I − M−1A is the error propagation operator of the chosen relaxation scheme
(e.g., Jacobi or Gauss–Seidel), l1 and l2 are parameters giving the number of pre-
and postrelaxations to be used, R is the restriction operator transferring residu-
als from the fine grid to the coarse grid, AC is the coarse-grid operator, and P is
the interpolation operator, transferring corrections from the coarse grid to the fine
grid.

Choices of the multigrid components can be quite varied. Typical relaxation
schemes are the Jacobi and Gauss–Seidel iterations, but other schemes, including sym-
metric Gauss–Seidel and ILU factorizations, are also possible. Choice of the coarse
grid may be done based on the classical AMG definitions of strength of connection
[29], using independent set algorithms (possibly modified for parallel processing envi-
ronments) [14, 21], based on modified strength measures [7], or using CR [6, 8, 15, 23]
(as discussed in more detail below). Once the coarse grid has been chosen, the dimen-
sions of the intergrid transfer operators, R and P , are set, and their nonzero structure
and values can be determined. Once R and P are chosen, a coarse-grid operator, AC ,
may be chosen to solve for the coarse-grid correction.

If A is assumed to be symmetric and positive definite, a variational problem may
be defined to simplify the problem of choosing R, P , and AC . Note the part of the
multigrid error propagation operator that is associated with the coarse-grid correction
step, I − PA−1

C RA. Whatever coarse-grid correction is calculated, error is reduced
only within the range of P . Thus, a reasonable goal is to choose the coarse-grid
correction to minimize the error after correction, over all corrections in the range of
P—that is, to choose wc, such that ‖e − Pwc‖A = min, where e is the error before
the coarse-grid correction step, and the norm, defined as ‖v‖2

A = 〈Av,v〉, is chosen
so that the minimization is achievable. Choosing this variational approach requires
the coarse-grid correction, wc, to satisfy the equation PTAPwc = PTAe. Noting
that Ae = r, the residual before coarse-grid correction, we see that this prescribes
the choices of R = PT and AC = PTAP for any given P . Note that choosing P and
exactly computing AC = PTAP is similar to Tismenetsky’s strategy for computing
approximate Schur complements [35], although the usual focus in multigrid is on
appropriately complementing relaxation.

Thus, the problem of defining R, P , and AC is reduced to one of choosing P such
that the range of P adequately complements the space over which relaxation is effec-
tive. The classical AMG algorithm [29] does this by collapsing certain off-diagonal
connections based on the assumption that the near-null space of A is accurately rep-
resented by the constant vector. If the nature of errors that are slow to be reduced by
relaxation is not known, the adaptive AMG method [9] may be used to expose proto-
types of such errors to be used in the definition of interpolation. Energy-minimization
principles may also be used to define the multigrid interpolation operators [36, 37].

Even in the variational setting, the overall performance of multigrid depends on
the complementarity obtained between the relaxation procedure and the coarse-grid
correction. In particular, the key is choosing a coarse grid such that a good defini-
tion of interpolation is possible. The principle of compatible relaxation (CR), first
introduced by Brandt [6], is based on the idea that the ability to define a good inter-
polation operator is tied to the relaxation it must complement. In [6], Brandt defines
CR as “a modified relaxation scheme which keeps the coarse-level variables invariant”
and states that “a general measure for the quality of the set of coarse variables is
the convergence rate of the compatible relaxation.” Defined in this manner, several
possible versions of CR are possible [23], the most common of which is relaxation only
on the unknowns associated with the fine grid (so-called F -relaxation [34]).
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Falgout and Vassilevski [15] analyze the performance of AMG methods for sym-
metric and positive-definite matrices, A, based on a measure that accounts for the
role of relaxation in complementing the variational coarse-grid correction process. For
a relaxation scheme with convergent error propagation operator I−M−1A, define the
measure

μ(P, e) =
〈M(M + MT −A)−1MT (e − Pec), (e − Pec)〉

〈Ae, e〉 ,

where M +MT −A is invertible because ‖I −M−1A‖A < 1. This measure takes into
account the performance of relaxation in measuring the effectiveness of a given inter-
polation operator, P , beyond what is normally considered in the standard eigenvector-
approximation criterion for AMG [5, 26]. If, for a given choice of P , μ(P, e) < k for
all e �= 0, then it can be shown that ‖I − B−1

AMGA‖A < 1 − 1
k [15, Theorem 2.2] for

l1 = l2 = 1. Thus, μ(P, e) can be seen as a measure of the performance of the resulting
AMG scheme for a chosen relaxation, coarse-grid, and interpolation operator.

The idea of CR may be used to bound the optimal value,

k� = min
P

max
e �=0

μ(P, e),

of k over all possible interpolation operators, P , from the same coarse set. Paraphras-
ing [15, Theorem 5.1], we have the following result.

Theorem 2. Let A be a symmetric and positive-definite matrix. Assume that the
relaxation method with error propagation operator I − M−1A is convergent
(‖I − M−1A‖A < 1). Define SM = 1

2 (M + MT ) to be the symmetric part of M ,

and let ω = λmax(S
−1
M A). Let Δ measure the difference between M and SM where,

for all v, w,

〈Mv,w〉 ≤ Δ〈SMv,v〉 1
2 〈SMw,w〉 1

2 .

Further, take ρff = ‖I−M−1
ff Aff‖Aff

, where Mff is the fine-scale part of the matrix
M , as in (1).

Then,

k� ≤ Δ2

2 − ω

1

1 − ρff
,

and 0 < ω < 2.
Here, the bound on k� gives a bound on the best possible measure of a two-level

AMG algorithm with a given relaxation (prescribed by M) and partition into fine
and coarse grids. For symmetric smoothers (M = MT ), Δ = 1, and this inequality
gives an upper bound on the best possible convergence factor for an AMG method
with a particular coarse grid, which depends on the relaxation method chosen and
the performance of CR. In particular, if CR is quick to converge (and ω is bounded
away from 2, meaning that the slowest to converge modes of the symmetric relaxation,
I − S−1

M A, are the lowest-energy modes of S−1
M A), then there exists an interpolation

operator, P , that gives good multigrid performance. In general, choosing such a P
that also results in an easy-to-invert coarse-grid operator, PTAP , is difficult, as we
seek to retain significant sparsity in P .

The reduction-based AMG algorithm (AMGr) presumes that a partition of the
degrees of freedom has been chosen so that CR is fast to converge [24]. In particular,
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AMGr is based on the assumption of a close spectral equivalence between Aff and a
fine-scale relaxation operator, Dff , as in [24, Theorem 1].

Theorem 3. Let A be symmetric and positive definite, partitioned as in (1).
Suppose that

〈Dffxf ,xf 〉 ≤ 〈Affxf ,xf 〉 ≤ (1 + ε)〈Dffxf ,xf 〉

for all xf , and that
[ Dff −Afc

−Acf Acc

]
is positive semidefinite. Consider the two-level multi-

grid algorithm with fine-grid only relaxation defined by its error propagation operator,

(I −M−1A) =

(
I − 2

2 + ε

[
D−1

ff 0

0 0

]
A

)
,

and interpolation operator,

P =

[
D−1

ff Afc

I

]
.

Then, the multigrid cycle with l prerelaxations, variational coarse-grid correction, and
l postrelaxations has error propagation operator

MG = (I −M−1A)l(I − P (PTAP )−1PTA)(I −M−1A)l,

which satisfies

‖MG‖A ≤ ε

1 + ε

(
1 +

(
ε2l−1

(2 + ε)2l

))
< 1.

Now, under the additional assumptions of Theorem 3 (over those of Theorem 2),
we can not only say that there exists a P that gives good multigrid convergence, but
also give the form of one such P . Notice the similarities between the assumptions
for Theorems 1 and 3; both require that λmin(D−1

ff Aff ) ≥ 1, and that the matrix,[ Dff −Afc

−Acf Acc

]
, is semidefinite. The explicit choice of a coarse-grid operator in the

AMGr algorithm gives a bound on the multigrid convergence factor dependent solely
on the maximum eigenvalue of D−1

ff Aff , which is also the dominant factor in the
bound of Theorem 1.

Thus, for both multilevel block factorizations and (nodal) AMG, tight spectral
equivalence between the fine-scale preconditioner or relaxation operator, Dff , and
Aff is needed to guarantee good performance of the overall solver. Constructing the
fine-grid set so that this is always possible is the subject of the remainder of this
paper.

3. The greedy coarsening algorithm. In [32], the strategy of reordering the
columns and rows of a nonsymmetric matrix to ensure diagonal dominance of the
Aff block was introduced. There, the partitioning was accomplished by ordering the
columns and rows of the matrix in order of decreasing dominance, and choosing, as
Aff , a subblock of A with sufficiently dominant rows. The algorithm defined here is
similar in style, in that it chooses rows for Aff in a greedy manner, but it also takes
into account the added dominance within the Aff block that occurs when points are
added to the coarse set.

In order to make decisions on dominance to select the Aff block, we must have
some sort of measure of the dominance that is sought. We consider choosing Dff
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as a simple, diagonal preconditioner or relaxation method, so that we seek classical
rowwise diagonal dominance of Aff . Writing the partition of the degrees of freedom
into fine and coarse sets as F ∪ C, we say that row i of Aff has θ dominance if

|aii| ≥ θ
∑
j∈F

|aij |.

Note that, by this definition, classical diagonal dominance is equivalent to θ = 1
2

dominance, as the diagonal, aii, is included in the sum on the right side. Then, the
diagonal dominance associated with row i is given by

θi =
|aii|∑

j∈F

|aij |
.

Note that the measure, θi, depends on the selection of F - and C-points.
Ideally, we would like to choose F as the largest set of degrees of freedom such

that for every i ∈ F , θi ≥ θ. That is, we would like F to be the largest subset possible
such that Aff is θ dominant. This would guarantee good equivalence of a diagonal
matrix, Dff , to Aff , as required in the theorems of section 2, but also yield as small a
coarse-scale problem as possible. Formally, we would seek to maximize |F | (where |F |
denotes the size of the set, F ) under the constraint that for every i ∈ F , |aii|∑

j∈F |aij | ≥ θ

for a chosen θ. Defining the binary variables

fi =

{
1 if i ∈ F,
0 if i ∈ C,

the problem can be posed in optimization form:

maximize
n∑

i=1

fi,

subject to fi ∈ {0, 1} ∀i,

|aii| ≥ θ
∑
j∈F

|aij | if fi �= 0.

Note that the sum over j ∈ F can be converted into a sum over all j, by weighting
the terms by fj ,

∑
j∈F |aij | =

∑
j |aij |fj . Then, as this is a constrained optimiza-

tion problem, we convert it to an integer programming problem by adding the term
θ‖A‖∞(1 − fi) to the left side of the inequality constraint,

maximize

n∑
i=1

fi,

subject to fi ∈ {0, 1} ∀i,

θ‖A‖∞(1 − fi) + |aii| ≥ θ
∑
j

|aij |fj .

Note that the modified problem is equivalent to the original, as if i ∈ F , 1 − fi = 0,
so the original constraint is imposed for all i ∈ F , but if i /∈ F , 1 − fi = 1, and the
constraint is automatically satisfied, as

∑
j∈F |aij | ≤ ‖A‖∞. Thus, the problem of

finding the largest set, F , with the desired dominance is a 0-1 integer programming
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problem, known to be NP-complete [38]. As such, we cannot expect to easily find an
algorithm that is linear in the number of nonzero entries in A that finds the largest
possible set F that has the desired level of diagonal dominance. Instead, we introduce
here a greedy algorithm that partitions the unknowns into F and C by iteratively
building these sets, adding any sufficiently diagonally dominant points that arise to
F , and moving the least diagonally dominant points into C, one at a time.

To accomplish the partitioning, we introduce a third set of points, denoted by
the set, U , as those points whose partitioning is, as yet, undecided in the process.
Initially, then, U includes all of the degrees of freedom, and sets F and C are both
empty. We introduce the dynamic measures,

θ̂i =
|aii|∑

j∈F∪U

|aij |
,

as measures of the diagonal dominance of row i amongst those rows that either are
already designated as F -points, or could potentially be so designated. If, at any point,
row i is determined to be sufficiently diagonally dominant, that is, θ̂i ≥ θ for some
preselected threshold θ, then i is automatically added to the set of F -points (as it
may only become more dominant as points are moved from U to C or F ). If no
points are attractive as F -points, then a point that is not attractive as a potential
F -point is chosen to be moved to C, in order to make the remaining points in U more
diagonally dominant. Thus, the partitioning algorithm, given in Algorithm 3, is a
greedy algorithm that, at each step, makes a choice to increase the diagonal dominance
of those points in U . In this way, the points in U can be viewed as candidate F -points
that are either confirmed or discarded based on the dynamic values of θ̂i. A common
notation, which we use here, is to call Adj(j) the set of nearest neighbors of j, i.e.,
the set {k : ajk �= 0}.

Algorithm 3 (greedy partitioning algorithm).

0. Set: U = {1, 2, . . . , n}; F = ∅; Compute θ̂i, i = 1, . . . , n.

1. For i = 1 to n do: if θ̂i ≥ θ, then

{
F := F ∪ {i},
U := U \ {i}

2. While U �= ∅ do:
(a) Find j = argmini∈U{θ̂i}
(b) Remove j from U , as it becomes a C-point
(c) For each i ∈ U ∩ Adj(j) do:

• Update θ̂i = |aii|∑
k∈F∪U |aik|

• If θ̂i ≥ θ, then

{
F := F ∪ {i},
U := U \ {i}

As the only way for a point to be reclassified from U to F is if θ̂i ≥ θ, and θ̂i is a
nondecreasing function (since points are only removed from F ∪U), it is immediately
apparent that each row within the Aff block created by Algorithm 3 has (at least) θ
dominance. This, in turn, suggests the existence of a diagonal preconditioner or relax-
ation matrix, Dff , that achieves the tight equivalence bounds suggested by Theorems
1, 2, and 3. We now verify this for the case that A is symmetric and positive definite.

Theorem 4. Let A be symmetric and positive definite, partitioned as in (1).
Choose θ ∈ ( 1

2 , 1] such that

θ ≤ θi =
aii∑

j∈F

|aij |
∀i ∈ F,
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and define Dff ≡ diag(Aff ). Then,

λm = λmin(D−1
ff Aff ) ≥ 2 − 1

θ
,

λM = λmax(D
−1
ff Aff ) ≤ 1

θ
.

Proof. Let λ be an eigenvalue of D−1
ff Aff . Clearly, λ is real because D−1

ff Aff is

similar to the symmetric matrix D
− 1

2

ff AffD
− 1

2

ff . By Gerschgorin’s theorem, there is a
certain index i such that λ satisfies

|λ− 1| ≤
∑

j∈F, j �=i

∣∣∣∣aijaii

∣∣∣∣ =
1

θi
− 1 ≤ 1

θ
− 1

from which the result follows immediately.
The results in Theorems 1 and 3 require that the smallest eigenvalue of D−1

ff Aff

be at least one. By scaling the matrix Dff with the scalar 2 − 1/θ the smallest
eigenvalue will be scaled to 1 and the largest to 1/(2θ − 1).

Corollary 1. Under the same assumption as those of Theorem 4, but with
Dff ≡ (2 − 1

θ ) diag(Aff ), the following bounds are satisfied:

λm = λmin(D−1
ff Aff ) ≥ 1, λM = λmax(D

−1
ff Aff ) ≤ 1

2θ − 1
.

A similar result may be obtained in the same manner as Theorem 4 using a
rowwise scaling of Dff based on the level of dominance in each row.

Corollary 2. Under the same assumptions as those of Theorem 4, but with
(Dff )ii =

(
2 − 1

θi

)
aii for all i ∈ F , the following bounds are satisfied:

λm = λmin(D−1
ff Aff ) ≥ 1, λM = λmax(D

−1
ff Aff ) ≤ 1

2θ − 1
.

Recall that the the smallest and largest eigenvalues of D−1
ff Aff are the minimum

and maximum (resp.) of the Rayleigh quotients
xT
f Affxf

xT
f Dffxf

, so these corollaries are

equivalent to saying that, for all xf ,

xT
f Dffxf ≤ xT

f Affxf ≤ 1

2θ − 1
xT
f Dffxf .

This, in turn, implies that the parameter ε from Theorem 3 may be chosen as 2−2θ
2θ−1 .

Knowing the extremal Rayleigh quotients also allows definition of an appropriately
weighted relaxation scheme, I − σD−1

ff Aff , with minimal spectral radius for use in
the bound in Theorem 2.

Theorems 1 and 3 both require the additional assumption that
[ Dff −Afc

−Acf Acc

]
be

positive semidefinite. In AMGr, this requirement is important as the coarse-level
matrix depends on Dff through the variational formulation. For block factoriza-
tion preconditioners, this condition arises indirectly, in the bounding of the Cauchy–
Bunyakowski–Schwarz constant associated with the factorization using Dff . In ei-
ther case, it is difficult to guarantee this condition for general classes of matrices,
although it is easy to construct a matrix, A, for which it holds: simply choose

A =
[ Dff −Afc

−Acf Acc

]
+

[
Eff 0
0 0

]
for any semidefinite matrices

[ Dff −Afc

−Acf Acc

]
and

[
Eff 0
0 0

]
.
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For a given matrix, A, the existence of the decomposition can be proven in the case
of diagonal dominance if Dff is chosen as in Corollary 2, as in the following result.

Theorem 5. Let A be symmetric and positive definite, partitioned as in (1).
Further assume that A is diagonally dominant. Define the diagonal matrix, Dff , as

in Corollary 2, by (Dff )ii =
(
2 − 1

θi

)
aii for θi = aii∑

j∈F |aij | . Then,
[ Dff −Afc

−Acf Acc

]
is

positive semidefinite.
Proof. As A is diagonally dominant,

∑
j |aij | ≤ 2aii for every i ∈ F . Splitting

the degrees of freedom into F ∪ C, we then have
∑
j∈C

|aij | ≤ 2aii −
∑
j∈F

|aij |

=

(
2 − 1

θi

)
aii = (Dff )ii.

Thus, all rows in
[ Dff −Afc

−Acf Acc

]
associated with an F -point are diagonally dominant.

All rows associated with a C-point are also diagonally dominant, as they already were

in A. So,
[ Dff −Afc

−Acf Acc

]
is diagonally dominant. But then, by Gerschgorin’s theorem,

it must be positive semidefinite.
Remark 1 (relationship to CR). Brandt defines compatible relaxation (CR) as

“a modified relaxation scheme which keeps the coarse-level variables invariant” and
states that “a general measure for the quality of the set of coarse variables is the
convergence rate of the compatible relaxation” [6]. Here, we do not explicitly per-
form the relaxation in CR, but we achieve a similar result. The construction of
the coarse/fine partition, however, is such that the existence of a quickly converging
fine-level Jacobi-like relaxation is guaranteed by Theorem 4 and its corollaries. As a
result, the partitioning algorithm proposed here may be considered as a new approach
to CR, where a property of quickly converging CR is identified (in this case, diagonal
dominance) and used to construct a partition for which CR is guaranteed to converge
quickly, without actually needing to perform the iteration.

4. Numerical results. To test the approach developed in section 3, we con-
sider a variety of problems and explore some of the different options inherent in the
development of multilevel algorithms based on this approach to coarse-grid selec-
tion. The results in Theorems 1 and 3 prescribe specific two-level algorithms with
bounded convergence properties based only on the fine-scale equivalence of Dff and
Aff . Theorems 1 and 2 may also be read as giving indicators of the best possible
performance of a two-level algorithm based on the partitioning prescribed. A need
for more general (and more expensive) treatment of the interaction between fine and
coarse scales is demonstrated and addressed by using the full power of the ARMS and
AMG approaches.

4.1. AMG. The reduction-based AMG algorithm discussed in Theorem 3 pre-
scribes a simple two-level scheme that is useful when the coarse-grid selection gives
a fine-scale block that is easily relaxed. We first test the diagonal-dominance-based
coarse-grid selection scheme in this setting, for PDE-based problems where AMG in
general (and AMGr, in particular) is expected to perform reasonably well.

The convergence result of Theorem 3 rests on the requirement that
[ Dff −Afc

−AT
fc Acc

]
be positive semidefinite, although this condition is not explicitly enforced in the coars-
ening algorithm. While established only as a sufficient condition, fast convergence of
the AMGr algorithm is typically not found when it is violated. For this reason, we
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begin by testing problems where we know the needed definiteness occurs, when A it-
self is diagonally dominant (as established in Theorem 5). For these tests, we consider
the matrices that arise from the bilinear finite-element discretizations of the elliptic
operator, −∇ · K(x, y)∇p(x, y), on the unit square, subject to Dirichlet boundary
conditions.

There are several relevant measures of the performance of the coarsening algo-
rithm itself and of AMGr coupled with it. We record the required setup time for the
algorithm, including computing the coarse grid, partitioning the fine-scale operator,
computing the coarse-grid operator, and computing any necessary parameters of the
method. For AMGr, we choose a random initial guess and iterate directly on the ho-
mogeneous problem, Ax = 0. The number of iterations needed to reduce the 
2-norm
of the residual by six orders of magnitude and the time taken for these iterations are
recorded. These two-level results were computed using MATLAB and, thus, the times
presented are intended primarily for comparison purposes; the multilevel results that
follow are computed using research C codes compiled with appropriate optimization
flags. As always, the reported run times are only accurate to a few hundredths of a
second, and so those presented here are rounded to the nearest tenth of a second.

As the coarse grid and Dff determine the convergence bounds for these algo-
rithms, the spectral equivalence properties for Aff and Dff are reported for each
problem and each grid resolution. In particular, we report the number of coarse-grid
points, nc, and ε = λmax(D

−1
ff Aff ) − 1, computed from the upper spectral equiva-

lence bounds for the fine-scale operators (which is itself computed using a few steps of
Arnoldi iteration). The asymptotic convergence factor, ρ, measured in the A-norm,
is computed directly using at most 200 steps of the power method. The AMGr cycle
used is one with l prerelaxations followed by a coarse-grid correction and no postre-
laxation. The analysis of Theorem 3 can also be performed in this setting, yielding

the bound, ‖MG‖A ≤
(

ε
1+ε

(
1+

(
ε2l−1

(2+ε)2l

))) 1
2 , where the square-root arises as the con-

vergence of this one-sided cycle is limited by halving the number of relaxation sweeps
relative to the symmetric cycle. In the results presented here, we choose l = 3, which,
for all examples, yielded the fastest solution time for 1 ≤ l ≤ 5.

Table 1 shows the performance of the two-level AMGr scheme on matrices that
come from bilinear finite element discretizations of the two-dimensional diffusion equa-
tion, −∇ ·K∇p. Three different choices of the diffusion coefficient, K(x, y), are cho-
sen, corresponding to the homogeneous case (K(x, y) = 1, the Poisson equation), the
smoothly varying case (K(x, y) = 10−8 + 10(x2 + y2)), and the discontinuous case,
where K(x, y) is 1 in 80% of the elements, chosen at random, and 10−8 in the remain-
ing 20% of the elements. In all three cases, the two-level AMGr algorithm performs
well, reducing the A-norm of the error by a factor of 106 in at most 20 iterations.

Table 1

Performance of two-level AMGr on test matrices from discretizations of −∇ ·K(x, y)∇p(x, y).

Coefficient Grid nc ε tsetup tsolve # iters. ρ
32 × 32 225 4.98 0.5 0.2 13 0.37

K(x, y) = 1 64 × 64 961 4.99 7.2 0.7 13 0.37
128 × 128 3969 5.00 119.3 3.1 13 0.37
32 × 32 255 4.53 0.4 0.3 17 0.51

K(x, y) = 10−8 + 10(x2 + y2) 64 × 64 1012 4.69 6.4 1.2 19 0.57
128 × 128 4036 4.69 106.8 5.1 18 0.55
32 × 32 277 4.61 0.5 0.3 18 0.52

random K(x, y) 64 × 64 1149 4.78 6.4 1.4 19 0.59
128 × 128 4715 4.86 109.2 6.7 20 0.62
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Grid sizes are effectively reduced, and the resulting asymptotic convergence factors
are bounded well away from unity.

In the homogeneous case, the coarsening chosen by Algorithm 3 results in uniform
coarse grids. All Dirichlet boundary nodes are automatically chosen as fine-grid points
(as they are already diagonally dominant). Nodes neighboring the boundary are also
attractive as fine-grid points because of their inherent diagonal dominance (from the
algebraic elimination of connections to the boundary nodes). Thus, the 33× 33 mesh
of unknowns from the 32 × 32 element grid is coarsened to a uniform 15 × 15 mesh.
Similarly, the 64×64 and 128×128 element meshes are coarsened to meshes of 31×31
and 63 × 63 degrees of freedom. The parameter, ε, of the splitting stays close to 5.0
as the mesh is refined and is theoretically bounded by 9, from Corollary 2, for our
choice of θ = 0.55. As expected from a two-level scheme, the setup time does not
scale with refinement, nor does the solve time (although this is closer). The resulting
convergence factors of approximately 0.37 do not degrade with grid size, as predicted
by Theorem 3, although the measured convergence factor is signficantly better than
that predicted by the theory.

For the variable coefficient problems, coarsening is less uniform, as is expected
given the variations in these operators. The spectral equivalence constant, ε, however,
remains bounded below 5, leading to effective two-level solvers. Setup times again do
not scale, as expected, and the lack of scaling in the iteration times is slightly more
pronounced. Asymptotic convergence factors remain nicely bounded below one, and
below those predicted by Theorem 3. As a result, iteration counts for reducing the
A-norm of the error remain small.

4.1.1. Implementation and cost issues. For multilevel tests, we give more
weight to the question of an efficient implementation of Algorithm 3. There are two
potential sources of inefficiency in the partitioning algorithm—the selection of the
new C-point and the updating of all neighboring F -points. In order to be able to
efficiently find the absolute minimal measure, we would need to either keep a sorted
list of the measures, which would need updating each time a point was put into C, or
search the (unsorted) list of measures. Instead, we implement an incomplete bucket
sort [13, section 9.4] based on a doubly linked-list data structure [13, section 11.2]
that allows efficient identification of a point with approximately minimal measure as
well as fast updates of measures.

For each potential F -point, a standard linked-list data item is created. With
each linked-list item, a key for the associated node is assigned as the measure of
the node. As measures of potential F -points lie in the interval [0, θ), this interval is
divided into equal-sized subintervals (or buckets), and all list items whose keys lie in
the given bucket are added to a single doubly linked list associated with that bucket.
The nonempty bucket associated with the smallest key then contains not only the
item associated with the absolute minimal measure, but also all items within some
small range of the minimal measure. A single element is chosen out of this bucket as
an approximately minimal measure and used as the new C-point, j, in Algorithm 3.
Taking advantage of the symmetry of A, we then can look over all nonzero columns, i,
in row j of A, to update θ̂i to account for the removal of j. This is easily accomplished
by an indexing array that points to the linked-list item corresponding to node i.
Using these structures, we no longer select the absolute minimal-measured node to
remove at each iteration, but are rewarded with O(1) update and find-approximate-
min operations, and an O(n) amount of storage for partitioning the n× n matrix, A.

As a multigrid cycle, we consider a mixture of components from the AMGr al-
gorithm and a classical multigrid V-cycle. Full relaxation sweeps, as opposed to the
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Table 2

Performance of multilevel AMG with AMGr-style interpolation, as in Theorem 3, on test ma-
trices from discretizations of −∇ ·K(x, y)∇p(x, y).

Coefficient Grid # levels cG cA tsetup tsolve # iters. ρ

128 × 128 6 1.31 1.32 0.03 0.08 10 0.34

256 × 256 7 1.32 1.32 0.2 0.3 10 0.36

K(x, y) = 1 512 × 512 8 1.33 1.33 0.6 1.2 10 0.38

1024 × 1024 9 1.33 1.33 2.6 4.9 10 0.40

2048 × 2048 10 1.33 1.33 12.4 17.9 9 0.41

128 × 128 6 1.31 1.32 0.03 0.08 10 0.33

256 × 256 7 1.32 1.32 0.2 0.3 10 0.35

K(x, y) = 10−8 + 10(x2 + y2) 512 × 512 8 1.33 1.33 0.6 1.2 10 0.37

1024 × 1024 9 1.33 1.33 2.6 5.0 10 0.39

2048 × 2048 10 1.33 1.33 12.3 19.9 10 0.41

128 × 128 6 1.38 1.75 0.08 0.2 17 0.59

256 × 256 7 1.39 1.83 0.5 0.7 17 0.62

random K(x, y) 512 × 512 8 1.40 1.89 3.1 3.2 18 0.68

1024 × 1024 9 1.40 1.93 33.7 14.9 21 0.77

2048 × 2048 10 1.40 1.98 907.6 88.2 31 0.91

F -relaxation used in AMGr, are prevalent in AMG and, so, we use a full sweep of
Gauss–Seidel relaxation for both pre- and postrelaxation within the V-cycle, ordered
so that coarse points are relaxed first on the downward part of the cycle, but that
F -points are relaxed first on the upward part of the cycle. Interpolation is defined
as in AMGr (cf. Theorem 3), using the diagonal matrix, Dff , as in Corollary 2. The
problem is coarsened until the next coarsest grid would have fewer than 8 degrees of
freedom, and the coarsest-grid problem is solved using a (complete) Cholesky factor-
ization.

We first test this AMG approach on the same problems as in Table 1, again
with θ = 0.55. The number of subintervals in the bucket sort is taken to be 1000,
regardless of the problem size. As we no longer explicitly need the parameter, ε, to
define relaxation, we do not calculate it for these examples. In Table 2, we show the
number of levels created in the multigrid hierarchy for each problem. To measure
the efficiency of the multigrid coarsening process, we report both the multigrid grid
complexity and operator complexity. The grid complexity, cG, defined as the sum
of the number of grid points on each level divided by the number of grid points
on the finest level, is an indicator of the rate at which the problem is coarsened.
The multigrid operator complexity, cA, defined as the sum of the number of nonzero
entries in the operator on each level divided by the number of nonzero entries in the
finest-grid operator is a measure of both the storage needed and computational cost
of a single multigrid cycle. The times required for the setup and solve phases are
reported, where solution is taken to mean a reduction in the residual by a factor of
106 in solving the homogeneous problem, Ax = 0, given a random initial guess. The
number of iterations needed for convergence, as well as the asymptotic convergence
factor, ρ, measured after at most 200 iterations are also reported.

Performance for the two problems with smooth coefficients is typical of geometric
multigrid methods applied to these problems. The number of levels grows by one
for each grid refinement, and both grid and operator complexities remain relatively
constant as the problem is refined. In fact, because of the approximate minimization
in Step (2)(a) of Algorithm 3, a series of fully coarsened grids is chosen for both of
these problems, bounding the grid complexity by a factor of 4

3 . That the operator
complexity is also bounded by 4

3 for these problems is a consequence of this regular
coarsening, coupled with the fact that, in the variational definition of the coarse-
grid operator, the stencil of the coarse-to-fine interpolation operator is that of Afc,
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resulting in coarse-grid operators that are also nine-point operators on a regular mesh.
Setup times roughly scale with matrix size (although there is some slowing, likely due
to the indirect indexing operations needed to define interpolation), and the solve
times scale nicely with problem size. The resulting convergence factors are bounded
well away from unity, although are slightly worse than typical (Ruge–Stüben) AMG
performance on these problems, which would lead to convergence factors in the range
of 0.1 to 0.2. The simple interpolation operator defined in Theorem 3 allows for
efficient computation of the AMG interpolation and coarse-grid operators, but limits
its applicability. For these problems, where the AMGr interpolation is effective, setup
times for the AMG algorithm can be much lower than those of classical AMG, but
typically result in poorer convergence behavior, as seen here.

Performance for the randomly discontinuous coefficient problem, as seen in Table
2, degrades with refinement of the mesh. While the grid complexity does remain nicely
bounded, only slightly larger than the factor of 4

3 seen in the previous examples, there
is a notable growth in the operator complexities. This growth is a result of the
nonuniform coarsening that is naturally chosen for this problem, coupled with the use
of an interpolation stencil that exactly matches that of Afc. In this way, the density of
nonzeros in coarse-grid operators grows as the multigrid cycle coarsens. Such growth
is compounded in further coarsenings, as new nonzero entries in the stencil of Afc

lead to new nonzeros in the variational coarse-grid operator, as well as denser matrix-
matrix-matrix products needed to compute these products. This is most noticeable
in the dramatic increase in the time needed for the setup stage as the grid is refined,
a result of the effectively dense matrix computations needed to coarsen the coarsest
few levels of the multigrid hierarchy for the 2048 × 2048 element grid problem. The
obvious solution to this growth is to drop some of the small (or weak) off-diagonal
connections in these growing factors, either in the choice of interpolation or in the
computation of the coarse-grid operators themselves. Dropping weak off-diagonal
connections in the definition of interpolation is, in fact, exactly what is done in the
standard AMG approach, discussed below. The slower growth in the solve times is
very closely correlated to the combination of the growth in the problem size (by a
factor of 4) and the number of iterations needed to reduce the residual appropriately
(by a factor of 3

2 between the 1024 × 1024 and 2048 × 2048 problems). This increase
in the number of iterations, in turn, is closely linked to the increase in the asymptotic
convergence factors as the grids are refined. It is difficult to say (without finer grids
to test) if this increase is due to a lack of optimality of the overall multigrid approach
(i.e., convergence factors continue to worsen as the grid is refined), or is related to
the poorer treatment of the coarsest levels of the multigrid hierarchy.

4.1.2. Importance of theoretical conditions. An even poorer example of the
performance of an AMGr-like algorithm can be seen when we violate the assumption

that the “reduced” matrix,
[ Dff −Afc

−Acf Acc

]
, be nonnegative definite. In Theorem 5, we

note that such an example cannot arise when A is diagonally dominant and, so, we
consider another PDE-based example, −∇·K(x, y)∇p(x, y), where we choose a tensor
coefficient, K(x, y) = [ 1 0

0 0.01 ]. As with the continuum operator, the discretization has
strong connections between nodes that lie on the same line of fixed y value, but a
finite-element discretization of this equation has significant nonzero connections to
degrees of freedom that lie off of these lines as well. The greedy coarsening algorithm
effectively recognizes these properties of strength of connection and chooses the first
coarse grid to be a semicoarsened version of the fine grid, known to be effective for
this problem. The AMGr interpolation operator, however, attempts to define an
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interpolation that connects a fine-grid point to all of its coarse-grid neighbors. In
this case, this includes interpolation from points that are not strongly related to the
fine-grid point in question. As a result, the multigrid complexities grow substantially
(as Afc is relatively dense) and the overall algorithm performs poorly. For a 32 × 32
element grid, a grid complexity of 4.69 and operator complexity of 48.16 were recorded,
with an asymptotic convergence factor of 0.98989.

A solution to the degradation of performance seen for the randomly discontinu-
ous problems or overall poor performance in the anisotropic case is to combine the
coarsening of Algorithm 3 with classical AMG interpolation techniques. While clas-
sical AMG [29] limits interpolation to the stencil of Afc, not all nonzero entries in
this stencil are used. To compensate for dropping connections in Afc, as well as for
strong connections in Aff , the nonzero entries in a row of interpolation are also not
necessarily equally proportional to the original entries of Afc. Interpolation is defined
based on the principle that the errors remaining after relaxation yield small residuals,
so that interpolation needs to be most accurate for vectors, e, such that Ae ≈ 0 in a
pointwise sense. Considering a fine-grid point, i, this means that

(Ae)i = 0,

or aiiei = −
∑
k∈Ci

aikek −
∑
j∈Fi

aijej ,

where the sets Ci and Fi are defined through the localizations of the global coarse
and fine sets: C ∩Adj(i), and F ∩Adj(i). Interpolation from coarse neighbors of the
point, i, is relatively straightforward, so the main goal is to collapse the connections
in Fi onto Ci or i itself in a way to meaningfully define an interpolation operator.

4.1.3. Combination with AMG coarsening. Classical AMG [29] categorizes
the off-diagonal connections in row i as strong or weak depending on their suitability
for use in interpolation. When the connection between two points is said to be strong,
it is treated as an important connection to account for in interpolation, while a weak
connection is to be discarded. The classical definition for the set of points that i
strongly depends on is Si = {j : −aij ≥ β maxk �=i{−aik}} for a chosen strength
threshold, β [10] (other possible algebraic definitions of strong connections include
those in [7, 11]). The set Ci is then defined by Ci = C ∩ Si, while Fi = Adj(i) \ Ci.
Connections in Fi are then further partitioned into strong connections, F s

i = Fi ∩ Si,
and weak connections, Fw

i . Weak connections are not important in interpolation, so
they are collapsed directly to the diagonal. Strong connections to fine-grid points are
accounted for through an indirect interpolation, based on an assumption on the errors
that are slow to be reduced by relaxation (as in [29]) or, possibly, further knowledge of
such errors [9]. Making choices consistent with classical AMG gives the interpolation
formula [10] for i ∈ F ,

(4) ei = −
∑
k∈Ci

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aik +
∑
j∈F s

i

⎛
⎜⎜⎝ aijajk∑

k′∈Ci

ajk′

⎞
⎟⎟⎠

aii +
∑
j∈Fw

i

aij

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ek.
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Table 3

Performance of multilevel AMG with classical AMG-style interpolation and a two-stage coars-
ening algorithm on test matrices from discretizations of −∇ ·K(x, y)∇p(x, y).

Coefficient Grid # levels cG cA tsetup tsolve # iters. ρ

128 × 128 6 1.31 1.32 0.07 0.04 5 0.11

256 × 256 7 1.32 1.32 0.3 0.2 5 0.12

K(x, y) = 1 512 × 512 8 1.33 1.33 1.3 0.6 5 0.13

1024 × 1024 9 1.33 1.33 5.3 2.5 5 0.14

2048 × 2048 10 1.33 1.33 21.3 10.2 5 0.14

128 × 128 6 1.31 1.32 0.07 0.04 5 0.11

256 × 256 7 1.32 1.32 0.3 0.2 5 0.12

K(x, y) = 10−8 + 10(x2 + y2) 512 × 512 8 1.33 1.33 1.3 0.6 5 0.13

1024 × 1024 9 1.33 1.33 5.3 2.6 5 0.14

2048 × 2048 10 1.33 1.33 21.1 10.2 5 0.14

128 × 128 10 1.50 1.97 0.1 0.07 6 0.23

256 × 256 12 1.51 2.02 0.6 0.3 6 0.28

random K(x, y) 512 × 512 15 1.51 2.06 2.3 1.2 6 0.35

1024 × 1024 19 1.51 2.08 9.7 4.7 6 0.40

2048 × 2048 22 1.52 2.10 40.5 10.0 6 0.46

128 × 128 9 1.91 2.26 0.08 0.06 5 0.13

256 × 256 11 1.95 2.34 0.4 0.3 5 0.13

anisotropic K(x, y) 512 × 512 13 1.96 2.39 1.5 1.0 5 0.13

1024 × 1024 15 1.97 2.41 6.2 4.1 5 0.20

2048 × 2048 16 1.97 2.43 27.2 17.3 5 0.20

Dividing the neighbors of a node, i, into groups of strong and weak connections is
necessary to ensure that AMG interpolation does not try to connect points that have
no real relationship in the matrix (or governing PDE). In order to define nontrivial
interpolation by (4), we now need to ensure that Ci is nonempty. To do this, we use
a two-pass coarsening routine based on that used in classical AMG [29], where the
coarse grid is first chosen as a maximal independent set over the strong connections of
the matrix; then a second pass is made, changing F -points to C-points, to ensure that
the strong connections of i are properly accounted for in interpolation. Here, we let
Algorithm 3 choose an initial partition into F and C, and then use the AMG second
pass algorithm that allows changing F -points to C-points to allow for better use of
(4) in defining interpolation [29]. Note that removing points from F can only improve
the diagonal dominance of Aff , so Theorem 4 and its corollaries will still hold for the
repartitioned system. Our only concern then is to ensure that we do not enlarge C by
too much in seeking good approximation properties for the resulting interpolation.

Results for AMG-style interpolation (4), using Algorithm 3 as a first pass for
coarsening, augmented by the second pass described above, are shown in Table 3.
Here, we choose the AMG strength threshold β = 0.25 for the isotropic problems and
β = 0.3 for the anisotropic problem. Operator and grid complexities are reported, as
are the number of levels in the multigrid hierarchy, showing the deepening hierarchies
as the coarsening becomes less uniform. This increase in the number of levels allows
AMG to retain the low operator complexities seen in Table 2, yet still address the
important need of all fine-grid points for adequate strong connection to the coarse
grids.

For all of these problems, we see very effective solvers, with low iteration counts
and convergence factors. For the smoothly varying coefficient problems, we see the
same grid and operator complexities for the AMG-based approach as for the AMGr-
style interpolation, as the second pass of coarsening does not add any points to the
coarse grids chosen by Algorithm 3 and the nonzero pattern of interpolation is the
same. The setup times for these problems are larger, due both to the second pass of
coarsening (which still checks that all points have suitable connection to the coarse
grid) and the more complicated definition of interpolation. The AMG-style interpo-
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lation, however, produces solvers with lower convergence factors, so the extra setup
time is roughly equally offset by the lower solve time. For the randomly discontinuous-
coefficient problem, we see slightly higher grid and operator complexities, but these
are more evenly distributed throughout the multigrid hierarchy, so there is no longer
a significant slowing of the setup stage on finer grids. The resulting solvers are slightly
less efficient than those of the smooth coefficient cases but still much better than those
shown in Table 2. The anisotropic problem is also well handled by this algorithm,
with larger grid and operator complexities consistent with geometric multigrid ap-
proaches to this problem. As with all of these examples, setup and solve times scale
nicely with the increase in problem size, and the convergence factors grow slightly,
but remain bounded well below unity.

4.2. ARMS. Effective two-level block factorizations, as discussed in Theorem
1, rely on good spectrally equivalent preconditioners for both the fine-scale block and
Schur complement, Âcc. To test the use of the diagonal-dominance-based coarsening
scheme with approximate block-factorization preconditioners, we first consider two-
level preconditioners, making use of the equivalence from Corollary 2 to handle the
fine-scale preconditioning. Preconditioning of the Schur complement block is consid-
ered both exactly and using the variational coarse-grid operator as an approximation
to Âcc.

The requirement that
[ Dff −Afc

−AT
fc Acc

]
be positive semidefinite also arises in the the-

ory for ARMS (cf. Theorem 1), so we begin by testing the two-level ARMS algorithm
on the same PDE-based test problems as we did with AMGr. Some of the mea-
sures discussed above are again relevant, including the overall setup time (choosing
the coarse grid, partitioning the fine-scale operator, computing the fine-scale precon-
ditioner, and computing the coarse-scale operator). We test the two-level ARMS
algorithm as a preconditioner for conjugate gradient (CG) by choosing a right-hand
side, b, to be the result of the matrix applied to the vector of all ones, b = A1, and a
random initial guess. The number of iterations and time needed to reduce the A-norm
of this error by a relative factor of 106 are also reported. Once again, these two-level
results are computed using MATLAB with the reported times useful only for compar-
ison between themselves and those in Table 1; the multilevel results that follow are
computed using research C codes compiled with the appropriate optimization flags.
The reported CPU times are accurate only to a few hundredths of a second and, so,
are rounded to the nearest tenth of a second.

The coarse grids are selected using the same code and parameters as are used
for the runs in Table 1, so the coarse-grid sizes presented here are the same as those
(and are presented only for convenient reference). As in Theorem 1, the important
quantities in bounding the condition number of the overall preconditioner are λM =
λmax(D

−1
ff Aff ) and λm = λmin(D−1

ff Aff ), the upper and lower spectral equivalence
bounds for the fine-scale operators. We also report the condition number of the

preconditioned system, κ(B− 1
2AB− 1

2 ) = λmax(B−1A)
λmin(B−1A) , as an indicator of the overall

success of the preconditioner.
Table 4 shows details of the performance of two-level ARMS-preconditioned CG,

using the exact Schur complement, on these model PDE problems. As observed with
AMGr, Algorithm 3 effectively reduces the dimension of the fine-scale problem and
produces a diagonal matrix, Dff , that has good spectral equivalence to the fine-
scale block, Aff . Setup and solve times scale poorly, as expected, due to the time
required to first compute the exact Schur complement and then to invert it for each
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Table 4

Performance of two-level ARMS using exact Schur complements on test matrices from dis-
cretizations of −∇ ·K(x, y)∇p(x, y).

Coefficient Grid nc λm λM tsetup tsolve # iters. κ(B
− 1

2 AB
− 1

2 )

32 × 32 225 1.00 5.98 0.6 0.3 19 7.45

K(x, y) = 1 64 × 64 961 1.00 5.99 10.7 6.5 18 7.48

128 × 128 3969 1.00 6.00 199.1 366.0 18 7.49

32 × 32 255 1.00 5.53 0.7 0.4 20 8.64

K(x, y) = 10−8 + 10(x2 + y2) 64 × 64 1012 1.00 5.69 13.1 8.5 21 9.33

128 × 128 4036 1.00 5.69 241.7 419.8 20 9.14

32 × 32 277 1.00 5.61 1.3 0.4 19 8.16

random K(x, y) 64 × 64 1149 1.00 5.78 24.2 11.5 20 9.25

128 × 128 4715 1.00 5.86 253.8 696.2 21 10.16

Table 5

Performance of two-level ARMS using variational approximations to the Schur complements
on test matrices from discretizations of −∇ ·K(x, y)∇p(x, y).

Coefficient Grid nc νm νM tsetup tsolve # iters. κ(B
− 1

2 AB
− 1

2 )

32 × 32 225 0.63 1.00 0.3 0.2 22 10.53

K(x, y) = 1 64 × 64 961 0.63 1.00 4.4 0.7 22 10.62

128 × 128 3969 0.63 1.00 71.8 4.0 22 10.64

32 × 32 255 0.47 1.00 0.4 0.3 25 14.13

K(x, y) = 10−8 + 10(x2 + y2) 64 × 64 1012 0.43 1.00 6.3 1.3 27 16.47

128 × 128 4036 0.44 1.00 109.2 6.4 26 16.02

32 × 32 277 0.48 1.00 0.4 0.5 25 13.97

random K(x, y) 64 × 64 1149 0.41 1.00 6.3 1.4 27 16.83

128 × 128 4715 0.37 1.00 109.6 9.8 28 18.63

iteration. Iteration counts are stable as the problem size grows, and there is only slight
growth in the condition numbers as the meshes are refined. The resulting condition
numbers satisfy the bounds of Theorem 1, but these bounds are clearly not sharp. In
particular, the upper bounds for these condition numbers are at least 100, while the
largest observed condition number is just larger than 10. The lower bound, dependant
only on the spectral equivalence of Dff and Aff , is a much better predictor of the
true performance for these problems.

Table 5 shows details of the performance of two-level ARMS preconditioned CG,
using variational approximations to the Schur complement, on these model PDE prob-
lems. The variational approximation is formed, as in AMGr, by taking the interpo-

lation operator, P =
[
D−1

ff Afc

I

]
, and then computing the approximation, S = PTAP .

As in Theorem 1, the spectral equivalence between S and Âcc plays an important
role in the upper bound on the condition number of the preconditioned system. Here,
we report the upper and lower spectral-equivalence bounds, νM and νm, along with
the usual measures of performance. The fine-scale spectral-equivalence bounds, λM

and λm, for these problems are the same as those appearing in Tables 1 and 4. The
coarse-scale spectral-equivalence bounds for these problems are nicely controlled, with
the upper bounds close to 1, and the lower bounds away from 0. Setup time again
does not scale, as is expected from the increasing cost of computing the partitioning
(without an efficient sorted data structure) and coarse-scale operator. Iteration times
are very similar to those of two-level AMGr, as in Table 1, with a slightly larger factor
of increase over that of the problem size. Iteration counts are steady, as are the con-
dition numbers of the preconditioned operators. Once again, the bounds of Theorem
1 are loose bounds on the actual performance of the preconditioner; the lower bound
does not take into account the role of the approximation to the Schur complement
and, so, is unchanged from the case of an exact Schur complement, whereas the upper
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bound increases slightly (by a factor of 1
νm

) but remains significantly larger than the
condition numbers that are observed.

4.2.1. PDE problems. To test the effectiveness of coarsening within ARMS
using Algorithm 3 in a multilevel setting, we again consider PDE-based problems
where the system matrix is symmetric, positive definite, and diagonally dominant (so
that we are certain to satisfy all of the conditions of Theorem 1). As exact computation
of the Schur complement on each level is prohibitively expensive, we first test the
variational coarsening scheme used in Table 5. Here, GMRES is preconditioned by
ARMS, and the number of iterations and time to solution needed to reduce the 
2-
norm of the residual by a relative factor of 106 are recorded. The time needed to set
up the ARMS preconditioner is also reported, including time needed for choosing the
coarse grids, computing the variational coarse-grid operators, and computing the exact
Schur complement for the coarsest-grid operator, which is taken to be any operator
which has dimension less than 10, or which is itself θ dominant. The parameter, θ,
is again chosen to be 0.55. The ARMS preconditioner complexity (fill factor), cB ,
defined to be the storage required for the ARMS preconditioner on all levels, divided
by the number of nonzeros in the matrix A (and, thus, excluding the storage needed
for A itself) is also recorded, as is the number of levels in the ARMS hierarchy.

Here, we use GMRES as the Krylov accelerator instead of CG for reasons of con-
sistency. The ARMS algorithm has been developed with a focus on general matrices
and not only symmetric problems [32, 30]. As such, GMRES has been the appropri-
ate choice of accelerator. For these symmetric problems, using variational coarse-grid
operators, we have chosen to use GMRES to remain consistent with this previous
work. Additionally, while effort is made to retain some degree of symmetry in the
ILU-based preconditioners to follow, symmetry may be sacrificed in favor of accuracy
in the treatment of the coarsest levels (which may be quite large). In these cases, as
well, GMRES is the only appropriate choice of Krylov subspace method. Thus, we
have chosen to use it here, as well, for ease of comparison between these results. Non-
symmetric extensions of the approaches proposed here are considered (and compared
to symmetric approaches) in [25].

Results for the multilevel-ARMS-preconditioned GMRES using variational coarse-
grid operators and the greedy coarsening algorithm are shown in Table 6. Coarsening
for the constant and smoothly varying cases are again the same, as they were in the
multilevel AMGr results of Table 2. Counting the storage needed for the fine-scale
operator itself, the operator complexities for all three problems are slightly higher
than those of AMGr. Coupled with the added memory requirements of GMRES
(storing one fine-scale vector per iteration), the 2048 × 2048 element mesh problems
that were possible with AMGr are no longer tractable on a workstation with 2 Giga-
bytes of memory. Setup times are, in general, notably larger than AMGr for the same
problem, with the only exception being the 1024 × 1024 mesh for the randomly dis-
continuous permeability where AMGr performed quite poorly. In all cases, iteration
times for ARMS-preconditioned GMRES are larger than those for AMGr.

4.2.2. Combination with ILU-based coarsening. Theorem 1 also requires

that
[ Dff −Afc

−Acf Acc

]
be nonnegative definite for the bounds on the condition number

of the preconditioned system to hold. While this is true for all of the PDE prob-
lems tested in Table 6, it is not true for an anisotropic problem, such as when
K(x, y) =

[
1 0
0 0.01

]
. Testing the variational-coarsening-based ARMS as a precondi-

tioner for GMRES on a 32× 32 element mesh for this problem requires 911 iterations
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Table 6

Performance of multilevel ARMS with variational coarsening on test matrices from discretiza-
tions of −∇ ·K(x, y)∇p(x, y).

Coefficient Grid # levels cB tsetup tsolve # iters.

K(x, y) = 1

128 × 128 6 0.69 0.1 0.3 42
256 × 256 7 0.70 0.4 1.5 46
512 × 512 8 0.70 1.7 8.0 50

1024 × 1024 9 0.70 6.9 35.4 53

K(x, y) = 10−8 + 10(x2 + y2)

128 × 128 6 0.69 0.1 0.3 42
256 × 256 7 0.70 0.4 1.5 46
512 × 512 8 0.70 1.7 7.8 49

1024 × 1024 9 0.70 6.9 34.2 52

random K(x, y)

128 × 128 6 0.89 0.1 0.3 46
256 × 256 7 0.92 0.6 2.0 53
512 × 512 8 0.95 2.7 12.2 64

1024 × 1024 9 0.96 11.9 52.8 66

to reduce the residual by a relative factor of 106. To achieve the robustness we would
like from our preconditioner, we turn to the full power of the ARMS approach [30],
using an ILU factorization in place of the diagonal Dff . Because we have partitioned
A specifically so that the Aff -block is diagonally dominant, we expect to be able to
find a suitably sparse ILU factorization that provides both better spectral equivalence
to Aff than is possible with a diagonal matrix and a better approximate Schur com-
plement. This combination should then result in a more robust preconditioner than
is possible with a diagonal Dff .

Since the fine-scale operators from these PDE problems are symmetric, certain
savings are natural in the coarse-grid selection algorithm. In particular, when a coarse-
grid node, j, is selected from the set, U , we need only look at the nonzero elements
in row j of the matrix to find the nodes whose measures need updating. This is
particularly easy when using a compressed-sparse-row storage format, as these indices
and the appropriate updates are easily available. In the general (nonsymmetric) case,
the update is not as convenient (when using compressed sparse row storage), as a
search for nonzero entries in column j must be done, requiring either extra storage
or extra computation. To ensure this advantage is maintained, a modification of the
ILUT procedure is used in order to ensure that a symmetric dropping strategy is
employed. Here, the ILU factorization of Aff is computed using the ILUT algorithm
(dropping based both on size and rowwise fill factors [31]), but the U factor in Aff ≈
LDU is replaced by LT . The matrix product L−1Afc is easily computed at the same
time as the factorization of Aff , by applying the elimination to the extended matrix,
[Aff , −Afc]. The Schur complement can then be computed rowwise from the matrix
equation, S = Afc − (L−1Afc)

TD−1(L−1Afc). In order to control sparsity directly
within S, we precompute the diagonal entries of S, allowing dropping based on size,
using the symmetric drop criterion, sij ≤ α

√
siisjj . Dropping based on level of fill is

also possible [22] but not used in the examples presented here.
Table 7 shows the results for the ARMS-preconditioned GMRES algorithm based

on symmetrized ILUs. The drop tolerance, α, is chosen to be either 0.01 or 0.1 for
both the ILU factorization of Aff and the approximate Schur complement calculation.
Choosing α appropriately requires a balance between accuracy of the ILU approxi-
mation to Aff and the fill of the resulting preconditioner. Typically, choosing α to
be relatively small results in a more effective preconditioner, but a larger value of α
results in a smaller preconditioner complexity, cB , which is useful for large problems
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Table 7

Performance of multilevel ARMS with symmetric ILU-based coarsening on test matrices from
discretizations of −∇·K(x, y)∇p(x, y). Results marked with a * indicate that the residual reduction
criterion was a relative factor of 104 instead of 106.

Coefficient Grid α # levels cB tsetup tsolve # iters.

K(x, y) = 1

128 × 128 0.01 2 2.59 0.3 0.3 28

256 × 256 0.01 2 2.65 1.5 2.5 44

512 × 512 0.01 2 2.68 12.7 24.5 82

1024 × 1024 0.1 2 1.03 159.1 34.2* 46*

K(x, y) = 10−8 + 10(x2 + y2)

128 × 128 0.01 2 2.60 0.3 0.4 31

256 × 256 0.01 2 2.65 1.5 3.4 56

512 × 512 0.01 2 2.68 12.7 31.7 97

1024 × 1024 0.1 2 1.03 159.6 40.6* 52*

random K(x, y)

128 × 128 0.01 3 1.40 0.2 0.4 32

256 × 256 0.01 3 1.41 0.7 2.5 45

512 × 512 0.01 3 1.42 3.1 25.1 83

1024 × 1024 0.01 3 1.42 13.5 12.4* 17*

anisotropic K(x, y)

128 × 128 0.01 5 1.61 0.2 0.3 26

256 × 256 0.01 5 1.62 0.8 2.3 42

512 × 512 0.01 5 1.63 3.3 17.3 65

1024 × 1024 0.01 5 1.63 14.9 6.9* 10*

where memory limitations are restrictive. A further dropping rule is applied to each
row of L, allowing no more than twice the average number of nonzeros in a row of A.
Again, θ = 0.55, and the coarsening is continued until either the coarse-grid operator
has fewer than 10 degrees of freedom or is itself θ dominant.

The robustness of the ILU-based approach comes at a cost in increased memory
consumption, reflected in the higher operator complexities for the results in Table
7, as compared to those in Table 6. For the smooth isotropic coefficients, only one
coarsening was performed, because of the resulting θ-dominance of the coarse-grid
operator. This behavior is largely independent of the choices of α and the row-
based fill threshold, only changing if θ was measurably changed. As a result, the
operator complexities for these problems are somewhat large, over 2 when α = 0.01.
In order to perform any meaningful number of iterations on the 1024× 1024 element
mesh problems, it is necessary to choose α = 0.1 to reduce the fill. Even then,
memory limitations prevented reducing the residual by a relative factor of 106, and a
smaller reduction, by a relative factor of 104 is used instead. GMRES performance
(residual reduction per iteration) for these problems does tend to get worse as the
iterations proceed and, so, the number of iterations recorded for these large problems
is significantly fewer than the number that would be needed for a reduction by a
relative factor of 106.

Comparing performance between these four problems, however, shows the robust-
ness of the combination of the greedy coarsening algorithm with ILU-based ARMS,
which will be further demonstrated in section 4.2.3. Preconditioner complexities, a
primary factor in memory limitations, are controlled by the parameter, α. Setup
times are generally comparable across the different problems (for the same α), as are
solution times and iteration counts. In fact, the problems which caused most diffi-
culty for the variational coarse-grid operator approach are now more efficient than
the smoothly varying coefficient problems that were most efficient. The structure of
these problems appears to naturally lead to deeper ARMS hierarchies, yielding lower
preconditioner complexities and, thus, lower costs per iteration.

Comparing the results for AMG (Table 3) to those for ARMS (Table 7), we
see that both generally perform well for these PDE-based problems, but that the
AMG approach appears to be more efficient. ARMS requires storage of part of the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A GREEDY STRATEGY FOR COARSE-GRID SELECTION 1847

Table 8

Performance of multilevel ARMS with symmetric ILU-based coarsening on test matrices with
θ = 0.55, drop tolerance of 0.01, average fill factor of 5, and a maximum of 10 levels of coarsening.

Name n nnz cB tsetup tsolve # iters.
bodyy4 17546 121938 1.08 0.1 0.05 6
bodyy5 18589 129281 1.06 0.1 0.04 4
bodyy6 19366 134748 1.04 0.1 0.03 3
bcsstk18 11948 149090 1.17 0.1 2.7 189
t2dah a 11445 176117 1.23 0.2 0.9 88
obstclae 40000 197608 2.41 0.3 0.09 5
jnlbrng1 40000 199200 1.85 0.3 0.1 7
minsurfo 40806 203622 2.02 0.3 0.1 6
bcsstk25 15439 252241 1.26 0.3 3.7 190
cvxbqp1 50000 349968 6.51 7.2 1111.2 2670
bcsstk17 10974 428650 2.30 1.2 24.7 660
t3dl a 20360 509866 1.48 0.5 20.8 465
gridgena 48962 512084 1.32 0.5 2.7 76
finan512 74752 596992 1.32 0.6 0.2 4
gyro k 17361 1021159 1.13 1.1 19.9 397
msc10848 10848 1229778 1.54 2.9 22.0 431
cfd1 70656 1828364 3.33 10.5 391.3 1003
vanbody 47072 2336898 7.55 244.7 1131.8 2415
oilpan 73752 3597188 1.48 6.2 862.7 1582

operator on each level, plus the ILU factors of each fine-grid block, while AMG requires
storage of only the operators, as relaxation on each level is determined entirely by
these operators. The ability of AMG to run as an iteration by itself, instead of as
a preconditioner for a Krylov subspace method, also reduces its memory overhead,
although the ARMS preconditioners used here could be modified for use with CG
instead of GMRES, ameliorating this effect. Overall solve times and iteration counts
are also much lower for the AMG approach. This is not surprising, as multigrid
techniques are largely focused on solving PDE-based problems such as these. The
ARMS approach, on the other hand, is motivated by purely algebraic consideration,
and, so, we expect it to not perform as well as AMG on PDE-based problems, but to
exhibit robustness that the AMG approach may not have.

4.2.3. General sparse symmetric systems. To further test the robustness of
the ARMS approach, we consider a subset of the matrices from the test set of [18, 19].
As we are interested primarily in matrices that are not naturally diagonally dominant,
we consider only those symmetric and positive-definite matrices for which full data is
available (i.e., we do not consider matrices for which only a nonzero pattern is given).
In order to run all tests on a single machine (dual-processor Intel Xeon 3.0 GHz with
2 GBytes of RAM), we test all problems with fewer than 3 million nonzero entries. By
using swap space, convergence results for one problem with approximately 3.5 million
nonzero entries, oilpan, are also obtained.

Results in Table 8 show the performance of ARMS-preconditioned GMRES for
these matrices. As a first test, we take the parameters for ARMS to allow significant
fill in the preconditioner, B, thus looking at the case where accuracy in computing B is
not a significant factor in ARMS performance. Diagonal-dominance parameter θ was
chosen to be 0.55, as in the PDE-based problems above. The ILU drop tolerance, α,
was taken to be 0.01, and further dropping is done so that no row of the approximate
L factor has more than 5 times the average number of nonzeros per row of Aff in it.
A maximum of 10 levels is allowed, with the coarsest-grid operator computed using
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ILUTP with α = 0.0001 and fill per row restricted to 20 times the average number
of nonzeros per row of the coarsest-grid operator. ILUTP is a pivoting variant of the
ILUT algorithm discussed above [31]; elements in the elimination are again filtered by
size and fill per row, but a column pivoting step is added for each row to improve the
stability of the factorization. With these parameters, ARMS failed to reduce the norm
of the residual by a relative factor of 106 before memory limitations were reached for
only three of the twenty-two problems.

Table 8 reports the complexities (fill factors), cB , of the resulting preconditioners,
setup and iteration times (in seconds), and number of iterations needed to reduce the
norm of the residual by a relative factor of 106 for the nineteen problems that did
converge. As these problems arise from many different applications, it is difficult
to make comparisons across different problems, in particular, between smaller and
larger problems. We do see quick convergence with low preconditioner complexities
for a number of problems, however. For the problems with slower convergence, those
with low preconditioner complexities allow many iterations within a short period of
CPU time, making the overall time to solution acceptable. For a few of the problems
with preconditioner complexities greater than 3, solution was still possible before
running into memory limitations. The three problems for which convergence was
not obtained, bcsstk36 (nnz = 1143140, cB = 10.63), msc23052 (nnz = 1154814,
cB = 9.83), and nasasrb (nnz = 2677324, cB = 4.80), the large preconditioner
complexities coupled with the large initial problem sizes required termination of the
iterations before convergence. Slow but steady convergence was seen for msc23052 and
nasasrb before iterations were stopped. Only iteration on bcsstk36 was ineffective
in reducing the residual substantially in 6100 iterations before memory limitations
were reached.

Experiments with larger drop tolerances (e.g., α = 0.05 or α = 0.1) show good
decreases in preconditioner complexity, but poor performance of the resulting pre-
conditioners. Thus, in Table 9, we look to reduce the preconditioner complexities
by allowing each row of L to have only twice as many nonzeros as an average row
of Aff , by allowing more levels (up to 50), and by using a smaller θ = 0.51 in the
resulting preconditioners. For some problems, these results are equivalent to those
in Table 8, up to measurement errors in the times reported. For the problems with
large preconditioner complexities in Table 8, the preconditioner complexities are now
lower (although still possibly large). This reduction of complexity, however, is (as
expected) correlated with an increase in iteration counts and overall time-to-solution
(although this is not always the case; cf. vanbody and cvxbqp1). Setup and solu-
tion times are comparable for the problems with fewer than one million nonzeros,
although, in some cases, notable growth in cB and setup time are also seen. For the
larger problems, results are slightly mixed. A few more iterations are needed for cfd1
and oilpan, resulting in slightly higher solution times, whereas a much lower precon-
ditioner complexity results in lower setup and solution times for vanbody. The lower
preconditioner complexities for bcsstk36 and msc23052 result in sufficient residual
reduction to meet the convergence criteria before available memory (including swap
space) is filled. A slightly lower preconditioner complexity for nasasrb, 4.36, was ob-
tained for these parameters, but memory considerations still forced early termination
of the run, with a residual reduction by a relative factor of approximately 3.35 × 104

in 2500 iterations.

4.2.4. A comparison with AMG and ILUTP. As discussed in section 4.2.2,
AMG is expected to perform better than ARMS in some cases (particularly for ma-
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Table 9

Performance of multilevel ARMS with symmetric ILU-based coarsening on test matrices with
θ = 0.51, drop tolerance of 0.01, average fill factor of 2, and a maximum of 50 levels of coarsening.

Name n nnz cB tsetup tsolve # iters.
bodyy4 17546 121938 1.01 0.06 0.07 6
bodyy5 18589 129281 0.99 0.09 0.05 4
bodyy6 19366 134748 0.98 0.1 0.04 3
bcsstk18 11948 149090 1.16 0.1 2.1 165
t2dah a 11445 176117 1.19 0.2 0.9 81
obstclae 40000 197608 8.40 3.9 0.1 3
jnlbrng1 40000 199200 5.10 1.3 0.1 4
minsurfo 40806 203622 3.29 0.4 0.1 6
bcsstk25 15439 252241 1.24 0.3 3.1 162
cvxbqp1 50000 349968 4.02 1.8 642.0 2018
bcsstk17 10974 428650 1.90 0.9 27.4 705
t3dl a 20360 509866 1.33 0.5 25.5 527
gridgena 48962 512084 1.32 0.5 2.9 81
finan512 74752 596992 1.33 0.5 0.2 5
gyro k 17361 1021159 1.12 1.0 19.9 398
bcsstk36 23052 1143140 5.79 21.6 2301.5 5648
msc23052 23052 1154814 5.72 22.4 2403.4 5754
msc10848 10848 1229778 1.37 2.3 21.9 433
cfd1 70656 1828364 2.99 8.2 515.6 1198
vanbody 47072 2336898 3.51 19.6 460.8 1413
oilpan 73752 3597188 1.33 4.6 979.1 1694

trices arising from discretization of elliptic PDEs), but ARMS is generally expected
to be more robust. That is, we expect that the loss in efficiency of ARMS for cer-
tain problems will be offset by more consistent performance on a general collection of
problems, such as those in Tables 8 and 9. To test this expectation, Table 10 gives
the performance of classical AMG on the general problems of the previous section.
Here, the two-stage coarsening algorithm using greedy coarsening as a first pass with
θ = 0.55 and strength threshold β = 0.3 is used to select the coarse grid and in-
terpolation stencil, while the classical (Ruge–Stüben) algorithm is used to define the
interpolation weights. A single full-grid sweep of Gauss–Seidel relaxation is used on
each level descending and ascending the V-cycle. To ensure the multigrid hierarchy
fits in available memory, 10 sweeps of relaxation are used to “solve” the coarsest-grid
problem, instead of computing the (sometimes large, dense) LU factorization of the
coarsest-grid operator.

Comparing the AMG and ARMS results for these problems, we see that AMG re-
sults in a faster overall time to solution for only five problems. For problems obstclae,
jnlbrng1, and minsurfo, the setup time for AMG is one-third faster and solve times
the same as those in Table 8. For these three problems, the AMG operator com-
plexities are also close to the ARMS preconditioner complexities, reflecting similar
overall memory costs, especially as the AMG operator complexity includes the stor-
age for the original fine-scale operator, not counted in the ARMS fill factors. AMG
outperforms ARMS on matrix cvxbqp1, although this really reflects better, but still
bad, performance. The low AMG operator complexity for this problem allows AMG
to converge in less time than ARMS but, with over ten thousand iterations required
to reduce the residual by a relative factor of 106, AMG performance can hardly be
called acceptable. Finally, the reduced storage costs of AMG compared to ARMS-
preconditioned GMRES allows AMG to converge on the nasasrb matrix, although
with a large operator complexity and many iterations.
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Table 10

Performance of multilevel AMG V(1, 1) cycles on test matrices with full-grid Gauss–Seidel
relaxation, two-stage greedy coarsening using θ = 0.55 and β = 0.3, a maximum of 20 levels of
coarsening, with the coarsest-grid problem solved by 10 sweeps of relaxation.

Name n nnz # levels cG cA tsetup tsolve # iters.
bodyy4 17546 121938 8 1.50 1.44 0.03 2.8 363
bodyy5 18589 129281 8 1.57 1.51 0.04 15.8 1851
bodyy6 19366 134748 7 1.61 1.55 0.04 74.7 8385
bcsstk18 11948 149090 20 2.49 5.51 0.2 11.0 497
t2dah a 11445 176117 20 5.11 6.89 0.4 324.3 10348
obstclae 40000 197608 11 1.73 2.47 0.2 0.08 3
jnlbrng1 40000 199200 13 2.10 3.45 0.2 0.1 4
minsurfo 40806 203622 13 1.90 2.93 0.2 0.1 4
bcsstk25 15439 252241 20 3.42 9.07 0.6 9.4 168
cvxbqp1 50000 349968 4 1.81 1.38 0.2 287.7 10694
bcsstk17 10974 428650 20 4.57 13.46 1.4 525.9 4290
gridgena 48962 512084 16 1.80 3.13 0.6 13.9 274
t3dl a 20360 509866 20 3.69 6.31 0.8 587.9 7333
finan512 74752 596992 12 1.74 2.50 0.4 0.4 6
gyro k 17361 1021159 20 4.08 8.17 2.4 172.3 946
bcsstk36 23052 1143140 20 6.87 26.03 7.1 2828.0 4486
msc23052 23052 1154814 20 6.95 28.00 8.5 2312.4 3357
msc10848 10848 1229778 20 8.07 20.05 6.0 10375.7 19829
cfd1 70656 1828364 20 4.52 80.16 52.1 4318.7 1426
vanbody 47072 2336898 20 6.15 21.87 13.5 2846.3 2526
nasasrb 54870 2677324 20 4.27 13.02 9.6 3586.4 4711
oilpan 73752 3597188 20 2.80 3.66 3.3 1314.2 3938

For the remaining problems, AMG is generally worse in terms of both storage
factors (or cost per iteration) and iteration count. The operator complexities for
AMG are often larger than ten times the storage of the fine-grid operator, and as
much as eighty times this storage is needed. Iteration counts are over ten thousand
for three problems and are often many times those used for ARMS. Put simply, there
is no reason to expect that the assumptions made in classical AMG on the slow-to-
converge modes of Gauss–Seidel relaxation are valid for these general problems and, as
a result, the AMG interpolation scheme may provide an arbitrarily bad complement
to this relaxation. While the parameters of the AMG methodology may be tuned to
improve performance on any one of these problems, the results in Table 10 clearly
show the lack of robustness of AMG when used as a black-box solver, in comparison
to the relatively good results seen in Tables 8 and 9.

For comparison with a single-level preconditioning strategy, we also look at the
performance of (nonsymmetrized) ILUTP on these same test problems in Table 11.
In order to make fair comparisons between the multilevel ILU strategy in ARMS and
that in ILUTP, we choose the parameters of ILUTP, notably α, the drop tolerance,
such that the overall preconditioner complexity is roughly the same as those in Table
9. We limit the number of nonzero entries in each row of L and UT to be no more than
20 times the average number of nonzeros per row of A. This is done so that the choice
of α is used as the primary control over the preconditioner complexities; α is varied
in increments of 0.0025 to give the operator complexity closest to those of Table 9.
We also report the preconditioner complexities, setup and solve times, and number of
iterations to reduce the residual by a relative factor of 106. For each problem, we allow
at most twice the number of iterations that ARMS-preconditioned GMRES took to
converge in Table 9, unless that would require too much memory (i.e., for the problems
where swapping was required), in which case the limit is the number of iterations that
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Table 11

Performance of ILUTP-preconditioner GMRES on test problems.

Name n nnz α cB tsetup tsolve # iters. Reduction
bodyy4 17546 121938 0.03 1.00 0.5 0.03 6 -
bodyy5 18589 129281 0.0175 1.00 0.6 0.04 7 -
bodyy6 19366 134748 0.0125 0.97 0.7 0.03 7 -
bcsstk18 11948 149090 0.03 1.17 0.1 4.5 330 1.79 × 104

t2dah a 11445 176117 0.1975 1.18 0.2 1.5 162 1.24 × 101

obstclae 40000 197608 0.0025 4.55 3.4 0.09 4 -
jnlbrng1 40000 199200 0.0025 4.39 3.5 0.1 6 -
minsurfo 40806 203622 0.0025 3.54 3.4 0.09 5 -
bcsstk25 15439 252241 0.04 1.21 0.2 3.2 216 -
cvxbqp1 50000 349968 0.0225 4.14 4.4 594.5 2018 2.29 × 102

bcsstk17 10974 428650 0.125 1.91 0.8 70.4 1410 5.32 × 102

t3dl a 20360 509866 0.03 1.36 0.9 7.4 275 -
gridgena 48962 512084 0.025 1.32 1.5 4.0 118 -
finan512 74752 596992 0.0075 1.34 2.4 0.1 4 -
gyro k 17361 1021159 0.0725 1.16 0.9 44.4 796 1.04 × 105

bcsstk36 23052 1143140 0.21 5.70 54.0 2111.8 5648 3.67
msc23052 23052 1154814 0.18 5.70 82.3 2172.8 5754 7.54
msc10848 10848 1229778 0.05 1.38 2.4 9.0 244 -
cfd1 70656 1828364 0.0175 2.97 12.0 44.9 297 -
vanbody 47072 2336898 0.3025 3.60 12.9 1266.4 2826 9.09 × 101

oilpan 73752 3597188 0.2 1.25 11.0 908.4 1694 3.58

ARMS-preconditioned GMRES took to converge. The residual reduction factors for
the problems that did not converge are reported in the final column of Table 11.

Comparing the results from Tables 9 and 11, we see that the ARMS-precondit-
ioning approach often, but not always, pays off relative to ILUTP-preconditioned
GMRES. In terms of total time to solution, the two strategies tie for a single problem
(bcsstk25), the ARMS-preconditioners are faster for sixteen problems, while ILUTP
yields faster solvers for four problems. In terms of number of iterations (closely
related to iteration time as the preconditioner complexities are approximately equal
for each problem), ILUTP-preconditioned GMRES required fewer iterations for five
problems, with one tie and the ARMS preconditioner requiring fewer iterations for
fifteen problems. Of these fifteen problems, ILUTP converged before iteration and
memory limits were reached for only six problems. For the remaining nine problems,
ARMS was significantly better than ILUTP. On three of the test matrices, not only
did ILUTP not converge in double the number of iterations that ARMS required, but
it did not succeed in reducing the norm of the residual by a factor of even half that
required for convergence. On the two most difficult problems for which ARMS was
successful, bcsstk36 and msc23052, ILUTP was unable to reduce the residual by a
factor of 10 in the same number of iterations that ARMS required for a reduction by a
relative factor of 106. For the nasasrb matrix that caused ARMS the most difficulty,
ILUTP reduced the residual by a factor of 2.02 in the same number of iterations it
took ARMS to reduce the residual by a factor of 3.4 × 104.

5. Conclusions. Motivated by a theoretical analysis, a new coarsening algo-
rithm for algebraic multigrid and multilevel solvers is proposed. This greedy algorithm
partitions the degrees of freedom so that the fine-grid block satisfies some diagonal
dominance properties, and, thus, can be easily treated by relaxation or an ILU factor-
ization. Numerical results show that two-level solvers based on this technique exhibit
optimal convergence properties. Multilevel solvers based on simple grid-transfer oper-
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ators perform well for simple model problems but break down when certain theoretical
assumptions are violated. When used in combination with coarsening ideas from the
usual AMG and ARMS methodologies, the resulting algorithms achieve improved
robustness, demonstrated on both PDE-based problems and test problems from a
variety of sources.
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