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SUMMARY

Multigrid and related multilevel methods are the approaches of choice for solving the linear systems that
result from discretization of a wide class of PDEs. A large gap, however, exists between the theoretical
analysis of these algorithms and their actual performance. This paper focuses on the extension of the well-
known local mode (often local Fourier) analysis approach to a wider class of problems. The semi-algebraic
mode analysis (SAMA) proposed here couples standard local Fourier analysis approaches with algebraic
computation to enable analysis of a wider class of problems, including those with strong advective character.
The predictive nature of SAMA is demonstrated by applying it to the parabolic diffusion equation in one and
two space dimensions, elliptic diffusion in layered media, as well as a two-dimensional convection-diffusion
problem. These examples show that accounting for boundary conditions and heterogeneity enables accurate
predictions of the short-term and asymptotic convergence behavior for multigrid and related multilevel
methods. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of local mode and local Fourier analysis to estimate the performance of multigrid methods

has a history dating back to the seminal work of Brandt in 1977 [1]. The idea behind this analysis

is that global features, such as boundary conditions or interfaces, often play less of a role in

determining the dominant convergence behavior and, as such, a better approach is to focus on

the local character away from these features. Indeed, local mode analysis can be made rigorous

if sufficient boundary relaxation, for example, is included in the multigrid algorithm for an elliptic

problem [2,3], or if the matrices involved in the computation naturally satisfy appropriate boundary

conditions [4]. As such, local mode analysis has been used in many contexts, including

• to examine relaxation strategies for strongly coupled systems of PDEs, including saddle-point

problems [5–9];

• for methods on triangular and hexahedral grids, including semi-structured mesh approaches

[10–14];

• analysing multigrid methods for stochastic PDEs [15];

• investigating the performance of preconditioned GMRES [16]; and
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2 S. FRIEDHOFF AND S. MACLACHLAN

• designing solvers for discontinuous Galerkin discretizations [17].

The main downsides to local mode analysis are the obvious ones. First, there are some problems

for which the details of the boundary conditions applied are crucial to the observed performance and,

as such, neglecting them renders the analysis unhelpful. This is the case, for example, in applying

local Fourier analysis to convection-dominated and parabolic problems [18–22]. Secondly, the

analysis relies on (multilevel) Toeplitz or circulant matrix structure, greatly limiting its applicability.

In particular, while a key advantage of the multigrid family of methodologies is their ability to

robustly account for heterogeneous operators, such heterogeneity is poorly accounted for in local

mode analysis. In this paper, we introduce a generalization of the local mode analysis technique that

addresses both of these drawbacks, although not in full generality.

The classic view of applying multigrid to parabolic (space-time) problems is based on a time-

marching approach: discretization of the PDE leads to a discrete elliptic problem at each time step

when an implicit scheme is used for the time derivative. Multigrid is then used as an iterative

solver for these elliptic equations. Parallelization in this approach is limited to parallelization in

the elliptic (spatial) solver, since the time-stepping procedure is sequential. Simultaneously solving

for multiple time steps increases the potential for parallelism in the solution process, but because

time is sequential by nature, this idea is not intuitive. Yet, it is possible with work on this topic

going back to as early as 1964 [23]. Research integrating multigrid concepts into time-evolution

algorithms started about 30 years ago with “parabolic multigrid”, a method proposed by Hackbusch

in 1984 [24] that uses Jacobi-like parallel-in-time relaxation. Other “time-parallel” methods based

on these ideas include [25–28]. In 1987, Lubich and Ostermann develop multigrid with “waveform

relaxation” [29], a forward-in-time Gauss-Seidel approach forming the basis of many parallel

multigrid approaches including [21, 30–33]. Current trends in computer architectures are leading

towards systems with more, but not faster processors. As a consequence, faster compute speeds must

come from greater parallelism resurging the interest in multigrid algorithms for parabolic problems

that allow temporal parallelism [34, 35]. Regarding this development, a predictive analysis tool for

these methods becomes highly relevant.

The primary focus of mode analysis for parabolic or convection-dominated problems has been on

the “half-space” viewpoint [18–20,36–39], considering convergence on a discrete half-plane (in 2D)

instead of the full infinite lattice used in local Fourier analysis. The half-space mode analysis point-

of-view, first discussed in [18,19] and used for analysis of convective flow problems in [20,37,38],

considers the evolution of a Fourier mode posed on the inflow boundary over a half-space through

each step of the multigrid process. By considering the maximum change in magnitude seen over a

discrete set of Fourier modes, an estimate of the operator norm is derived. For waveform relaxation,

considered in [36, 39], a related analysis technique is considered, based on the use of discrete

Laplace transforms, carrying over from the continuous-time analysis in [40]. In combination with

a Fourier expansion of the error in the non-advective direction, this again provides an estimate of

the operator norm by maximizing over a discrete set of Fourier frequencies. A third applicable

analysis approach is the “idealized relaxation/coarse-grid correction” approach proposed in [41].

This approach is readily applied to a wide range of problems; however, this broad applicability

comes at the expense of being a non-rigorous approach. Here, we seek an approach that matches the

near-rigorous performance of LFA, but which is applicable to a smaller selection of problems than

the approach in [41].

Elliptic diffusion problems with discontinuous coefficients arise in many applications in

computational science and engineering. When modeling diffusive groundwater flow, for example,

domains are strongly heterogeneous, with large contrasts in permeability between materials such

as sand and shale. While various multigrid and related multilevel methods such as the Black Box

Multigrid (BoxMG) solver [42,43] and deflation-based preconditioners [44,45] are able to account

for discontinuities in the permeability, LFA is not valid; leaving a large gap between the theoretical

analysis of these algorithms and their actual performance.

The key approach proposed here is to mix analytical tools, such as LFA, with tractable

computation to achieve a middle ground, avoiding over-generalization that ignores key problem

features and yields poor predictions of performance but also realizing that direct spectral analysis of
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many interesting problems will always be out-of-reach. The proposed semi-algebraic mode analysis

(SAMA) can be viewed as an essential generalization to the wide literature on local mode and

local Fourier analysis, in that both of these exist as identifiable special cases of the more general

technique. Equally important is the identification of a range of problems for which the analysis can

be made rigorous, giving exact statements about the convergence of two-grid algorithms.

The remainder of this paper is laid out as follows. In §2, we describe two multigrid schemes for

a parabolic model problem. One method based on waveform relaxation as in [21] and one based

on temporal semicoarsening as in [35]. In §3, we illustrate the failure of LFA to generate accurate

predictions of the convergence behavior for the waveform relaxation method applied to the parabolic

model problem. Section 4 presents the key ideas of the semi-algebraic analysis proposed here,

where each theoretical point is backed up by calculations for the model problem. Additionally, we

include a discussion of the class of problems and multigrid methods for which the SAMA approach

is rigorous. Section 5 focuses on the non-parabolic case, and is prefaced by a comment on the

applicability of the analysis in that case. Conclusions are presented in §6.

2. MULTIGRID METHODS ON SPACE-TIME GRIDS FOR PARABOLIC PROBLEMS

2.1. The parabolic model problem in space-time

As a motivating example, we consider the diffusion equation in one space dimension,

ut = uxx, x ∈ (a, b), t ∈ [0, T ]; (1)

further examples are discussed in Section 5. We prescribe u at t = 0, u(x, 0) = u0(x), and impose

either the periodicity condition

u(x± (b− a), t) ≡ u(x, t)

or homogeneous Dirichlet boundary conditions,

u(a, t) = u(b, t) = 0.

We discretize our parabolic model problem on a rectangular space-time grid consisting of Nx

space intervals and Nt time intervals, using a spatial mesh size hx = (b− a)/Nx, and a time step

size ht = T/Nt, whereNx andNt are positive integers, and T denotes the final time. For the periodic

case, the discretization results in a linear system of the form

Au = (J ⊗ INx
+ INt

⊗Q)u = f , (2)

where f = (1/ht)(u0(x−Nx/2+1), . . . , u0(xNx/2), 0, . . . , 0)
T incorporates the discretized initial

condition, in the unknowns ui,j , i = −Nx

2 + 1, . . . , Nx

2 , and j = 1, . . . , Nt, INx
and INt

are identity

matrices, J is the matrix describing the discretization in time, and Q represents the spatial

discretization. We use first-order backward differences (BDF1, or implicit Euler) for the time

discretization and periodic central differences for the spatial discretization, leading to

J =
1

ht













1
−1 1

−1 1
−1 1

. . .
. . .













and Q =
1

h2x













2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2













. (3)

In the case of Dirichlet boundary conditions, all Dirichlet boundary points are eliminated in the

discretized operator, A = J ⊗ INx−1 + INt
⊗Q, where Q is the non-periodic analogue of Q in (3),

i.e., removing the last row and last column of Q.
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2.2. Waveform relaxation

The multigrid waveform relaxation method was developed by Lubich and Ostermann in [29].

The method combines red-black zebra line-relaxation along lines parallel to the time axis with a

semicoarsening strategy using coarsening only in the spatial dimension. We consider the two-level

algorithm based on waveform relaxation, with two space-time grids, Ωh and ΩH , where the subscript

h represents the pair (hx, ht). The grid ΩH is derived from Ωh by doubling the mesh size in the space

dimension only, i.e., H represents the pair (2hx, ht). We assume that grid points are in the order of

increasing time and from left to right in space, and we permute A into a red-black block ordering

by first considering all unknowns at red grid points, (ihx, jht) with i odd, and then all unknowns

at black grid points, (ihx, jht) with i even. Then, the iteration (error-propagation) operator for the

red-black relaxation on the fine grid, Ωh, can be written in the form

SRB = SBLACKSRED = (I −MBA)(I −MRA), (4a)

with

A =

[

ARR ARB

ABR ABB

]

, MR =

[

M−1
RR 0
0 0

]

, MB =

[

0 0
0 M−1

BB

]

. (4b)

Our interest is in two red-black schemes, red-black Jacobi, where

MRR = DRR and MBB = DBB,

with DRR and DBB denoting the diagonals of ARR and ABB , respectively, and red-black Gauss-

Seidel, where

MRR = DRR − LRR and MBB = DBB − LBB,

with −LRR and −LBB denoting the strictly lower triangular parts of ARR and ABB , respectively.

We use standard geometric coarse-grid correction in the spatial direction, using periodic linear

interpolation, P , full-weighting restriction, R = 1
2P

T , and rediscretization to get the coarse-grid

operator. Taking the global space-time structure into account, the interpolation and restriction

operators are defined by Pt = INt
⊗ P and Rt = INt

⊗R, respectively, and the coarse-grid

operator, Ac, is defined analogously to (2) with hx replaced by 2hx in (3). The resulting two-level

algorithm may be represented by the two-grid iteration matrix,

T
(1,2)
WR = SRB(I − PtA

−1
c RtA)S

RB. (5)

2.3. MGRIT

The multigrid-reduction-in-time (MGRIT) algorithm [35] is based on applying multigrid reduction

(MGR) techniques [46, 47] to time integration. The method uses block smoothers for relaxation

and employs a semicoarsening strategy, that, in contrast to waveform relaxation, coarsens only in

the temporal dimension. To describe the MGRIT algorithm, we assume that grid points are in the

order of increasing time and from left to right in space. We then write (2) using the time-integration

operator, Φht
= (INx

+ htQ)−1, leading to the block-scaled system

Âu ≡











INx

−Φht
INx

. . .
. . .

−Φht
INx











u = ht(INx
⊗ Φht

)f ≡ f̂ . (6)

For simplicity, we only describe the two-level MGRIT algorithm; the multilevel scheme results from

applying the two-level method recursively. We consider two space-time grids, Ωh and ΩH , where

the subscript h represents the pair (hx, ht). The grid ΩH is derived from Ωh by increasing the mesh

size in the time dimension by a positive integer factor m, i.e., H represents the pair (hx,mht). We

partition the grid Ωh into C-points, given by the set of coarse time-scale points, (ihx, jht) with

j mod m = 0, and F -points, (ihx, jht) with j mod m 6= 0. Reordering the fine-grid operator, Â, by
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first considering all unknowns at F -points, then all unknowns atC-points, and using the subscripts f
and c to indicate the two sets of points, the error propagator for the block smoother,FCF -relaxation,

on the fine grid, Ωh, can be written in the form SFCF = SFSCSF with

SF = I − Sf (S
T
f ÂSf )

−1ST
f Â, SC = I − Sc(S

T
c ÂSc)

−1ST
c Â, (7)

and

Â =

[

Aff Afc

Acf Acc

]

, Sf =

[

If
0

]

, Sc =

[

0
Ic

]

.

Thus, FCF -relaxation consists of three sweeps: F -relaxation [48], then C-relaxation, and again F -

relaxation. F -relaxation updates the unknowns at F -points, assuming that unknowns at C-points are

frozen; C-relaxation updates the unknowns at C-points analogously. Note that the choice of FCF -

relaxation naturally follows from applying MGR techniques [47]. The intergrid transfer operators

of MGRIT are injection and “ideal” interpolation,

RI =
[

0 Ic
]

, PΦ =

[

−A−1
ffAfc

Ic

]

,

and the coarse-grid operator, Âc, is defined by the coarse-scale time-integration operator, Φmht
=

(INx
+mhtQ)−1 as in (6). Thus, the two-level MGRIT algorithm may be represented by the two-

level iteration matrix,

T
(1,2)
MGRIT = (I − PΦÂ

−1
c RIÂ)S

FCF . (8)

When using F -relaxation, SF , instead of FCF -relaxation, SFCF , the resulting two-level

algorithm is the parareal time integration method [49],

T
(1,2)
parareal = (I − PΦÂ

−1
c RIÂ)S

F . (9)

Notice that both the MGRIT algorithm and the parareal method use only pre-relaxation.

3. FAILURE OF LOCAL FOURIER ANALYSIS FOR PARABOLIC PROBLEMS

Several authors have noted the failure of local Fourier analysis to produce its usual quality of

predictive results for convection-dominated or parabolic problems [18, 50]. Two studies of the

precise mechanisms of this failure are [21, 22]. In [21], it is observed that the maximum of the

Fourier symbol for the multigrid waveform relaxation method has a sharp peak for values of the

temporal Fourier frequency close to 0 and ±π. Thus, the standard practice of choosing a grid in

Fourier space that matches the dimensions of the physical space grid of interest fails to resolve the

true maximum of the continuous Fourier symbol. This is confirmed and expanded upon in [22],

where predictions made based upon a sufficiently resolved grid in Fourier space are still shown to

be lacking.

Several additional factors in the poor performance of LFA for the waveform relaxation multigrid

methods are identified in [22]. Primary among these is the length of the time-integration interval,

which can be controlled somewhat independently by varying both the time-step size (on a uniform-

in-time mesh) and the number of time steps considered. For relatively small time steps, many

time steps are needed before the analysis offers good prediction; in contrast, for large time steps,

accurate prediction is seen for relatively few time steps. Figure 1 shows the computed and LFA-

predicted spectra for two-grid (0,1)-cycles of the waveform-relaxation scheme applied to the

periodic parabolic model problem in (−π, π)× [0, T ] discretized with fixed time step of 1/16, as

the number of time steps is increased. Table I confirms the complementary analysis of predictivity

for fixed number of time steps and varying time-step size. In both cases, we see that only as the

product, T = htNt, of the time-step size and number of time steps gets large does the analysis

become sharp. Unfortunately, when considered in terms of non-dimensionalized time units, this
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(a) Eigenvalues (in C) on a 16× 32 space-time grid.
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(b) Eigenvalues (in C) on a 16 × 256 space-time grid.
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(c) Eigenvalues (in C) on a 16× 2048 space-time grid.

Figure 1. Eigenvalues (in C) on space-time grids of size (a) 16× 32 (T = 2), (b) 16× 256 (T = 16), and (c)
16× 2048 (T = 128) for two-grid (0,1)-cycles of the waveform-relaxation scheme applied to the periodic
parabolic model problem on (−π, π)× [0, T ] discretized with fixed time step ht = 1/16. At left, eigenvalues
of the analytically computed iteration matrix and at right, eigenvalues predicted by LFA. Results are similar

to those of Figures 5.1 and 5.2 in [22].

ht/h
2

x 1/64 1/8 1 8 65 512

ρ 0.02 0.11 0.08 0.04 0.01 0.00

ρLFA 0.06 0.14 0.09 0.04 0.01 0.00

ρanalytic 0.00 0.02 0.07 0.04 0.01 0.00

Table I. Average convergence factors per iteration (reported in [21]), ρ, LFA predictions of spectral radii,
ρLFA, and spectral radii of the analytically computed iteration matrix, ρanalytic, for two-grid (1,1)-cycles
of the waveform-relaxation scheme applied to the periodic parabolic model problem on (−π, π)× [0, T ]
discretized on a 128× 128 space-time grid, reproduced from [22, Table 4]. Results are truncated after two

digits past the decimal point because this corresponds to the precision of the results in [21].

renders the analysis useless except in the case of problems on time intervals that are too long to

yield interesting physical behavior.

A secondary failure of LFA to be predictive that is exposed in [22] is the effect of multiplicities

in the spectra of the multigrid iteration operator. While LFA appropriately resolves spectra of the

iteration operators when ignoring the non-local character of the operators, i.e., under the long time-

integration condition discussed above, it is based on the assumption that the iteration operator
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is diagonalizable and, as such, is unable to predict the effects of eigenvalues with degenerate

geometric multiplicity. To some extent, this is a secondary problem for the waveform relaxation-

based approach considered in [22]; however, for both the parareal [49] and multigrid-in-time [35]

approaches, non-normality of the iteration operator is crucial: the iteration operator has only a single

eigenvalue of zero, and all convergence information is contained in an analysis of the multiplicities

of the invariant subspaces associated with this eigenvalue.

4. SEMI-ALGEBRAIC MODE ANALYSIS

In this section, we present the key ideas of SAMA. Analogously to classical mode analysis, exact

predictions of the convergence behavior for a certain class of model problems and a certain class

of multigrid algorithms can be made. The convergence behavior of problems and methods which

do not belong to this class may be estimated by combining ideas of LFA with those of SAMA.

In order to simplify the presentation of SAMA, we focus first on the multigrid methods for the

parabolic model problem in space-time introduced in Section 2. Thus, in this section, we primarily

consider the two-dimensional space-time scalar case. The generalization to higher dimensions is

straighforward, and it is briefly outlined at the end of this section; applications of SAMA to other

problems are discussed in Section 5.

4.1. The SAMA methodology

The semi-algebraic approach to mode analysis is motivated by the structure of the matrices of the

iteration operator. As discussed above, the non-normal and non-local character of the operators

seems to drive the failure of LFA. Considering the block lower-triangular structure, however,

motivates a different approach. Using BDF1 for the time discretization given by time-differentiation

matrix J in (3), the fine-grid operator, A = J ⊗ INx
+ INt

⊗Q, is of the form

A =















J0 +Q 0 · · · 0

J−1 J0 +Q 0

. . .
. . .

...

J−1 J0 +Q















, (10)

with J0 = (1/ht)INx
and J−1 = −(1/ht)INx

. In the case of periodic boundary conditions, it is

natural to use periodic central differences for the spatial discretization. As a consequence, the

fine-grid operator is block-Toeplitz with circulant blocks (BTCB). The idea of SAMA is to use

a Fourier ansatz to resolve the circulant behavior and analytical or numerical computation for the

non-circulant terms. More precisely, the circulant blocks can be diagonalized by the matrix, Ψ, of

discretized spatial Fourier modes,

ψ(x, θ) = e−ıθx/hx (11)

with Nx Fourier frequencies, θ, sampled on a uniform mesh in (−π, π] with mesh size 2π/Nx.

Thus, the fine-grid operator, A, can be transformed to a block-Toeplitz matrix with diagonal blocks.

Note that in the case of Dirichlet boundary conditions and central finite differences for the spatial

discretization, the fine-grid operator is block-Toeplitz with Toeplitz blocks (BTTB) and no longer

BTCB. However, instead of the exponential Fourier basis, the sine Fourier basis can be used to

transform the resulting BTTB operator to a block-Toeplitz matrix with diagonal blocks as the sine

Fourier modes are eigenfunctions of the spatial discretization matrix.

We now reorder this transformed block matrix, F−1AF , where F = INt
⊗Ψ, from Nt ×Nt

blocks of size Nx ×Nx to a block matrix with Nx ×Nx blocks of size Nt ×Nt. This permutation
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8 S. FRIEDHOFF AND S. MACLACHLAN

results in a block-diagonal matrix with Toeplitz blocks,

P−1F−1AFP =













B
(A)
1 0 · · · 0

0 B
(A)
2 0
. . .

. . .
...

0 · · · 0 B
(A)
Nx













(12)

and corresponds to gathering Fourier modes together, i.e., each diagonal block, B
(A)
k , k =

1, . . . , Nx, corresponds to the evolution of one spatial Fourier mode over time,

B
(A)
k =











j0 + λk 0 · · · 0
j−1 j0 + λk 0

. . .
. . .

...

j−1 j0 + λk











, (13)

where j0 and j−1 are the diagonal entries of J0 and J−1, respectively, and λk denotes the (k, k)-entry

of the diagonal matrix Ψ−1QΨ (the kth eigenvalue of Q; λk = 4/h2x sin
2(kπ/Nx) for our parabolic

model problem with periodic boundary conditions). Thus, we can break up the computation of the

spectrum of the fine-grid operator, A, to a mode-by-mode computation. Note that considering a

backward time-discretization, the entries above the diagonal of each of the diagonal blocks are zero,

while those below are constant on each subdiagonal. Therefore, SAMA provides exact eigenvalue

expressions for each lower Jordan block, B
(A)
k .

Figure 2 demonstrates the predictive nature of SAMA for the fine-grid operator of the parabolic

model problem with periodic boundary conditions. In contrast to the LFA prediction, the SAMA

prediction of the spectrum is already sharp for a small number of time steps.

0 10 20 30 40 50

−10

0

10

(a) Analytical spectrum

0 10 20 30 40 50

−10

0

10

(b) SAMA spectrum

0 10 20 30 40 50

−10

0

10

(c) LFA spectrum

Figure 2. Eigenvalues (in C) for the periodic parabolic model problem on (−π, π)× [0, 2] discretized with
fixed time step ht = 1/16 on a space-time grid of size 16× 32. The plots compare (a) the analytical spectrum

to (b) the spectrum predicted by SAMA, and (c) the spectrum predicted by LFA.

Remark 1: If the fine-grid operator is block-circulant with circulant blocks (BCCB), each block

of (12) can be diagonalized using Fourier modes. Thus, in the BCCB case, SAMA coincides with

rigorous Fourier analysis.

Remark 2: While SAMA is most naturally considered for the BTCB case, we focus primarily on

the special case of BTTB where the Toeplitz blocks are diagonalized exactly by the sine Fourier

basis.

Remark 3: The use of circulant or block-circulant-structured preconditioners for non-circulant

problems has a long history [51, 52], but is primarily focused on the case of problems that retain

elliptic character; here, we consider the space-time discretization of parabolic problems, for which

simple (multilevel) circulant preconditioners do not yield good performance.

4.2. Two-grid SAMA

A similar approach extends to all components of the multigrid process; however, the grid hierarchy

affects the block size of the transformed operators. Considering temporal semicoarsening by a factor
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of m in the MGRIT approach and assuming exact spatial solves when applying the time-integration

operator, the interpolation operator, PΦ, for example, is a block matrix with Nt ×Nt/m blocks of

size (Nx − 1)× (Nx − 1), assuming Dirichlet boundary conditions. As a consequence, we reorder

the Fourier-transformed block matrix, F−1PΦFc, where Fc = INt/m ⊗Ψ, to a block matrix with

(Nx − 1)× (Nx − 1) blocks of size Nt ×Nt/m,

P−1F−1PΦFcPc =













B
(PΦ)
1 0 · · · 0

0 B
(PΦ)
2 0
. . .

. . .
...

0 · · · 0 B
(PΦ)
Nx−1













, (14)

where

B
(PΦ)
k = INt/m ⊗ v with v =

[

1, λk, λ
2
k, . . . , λ

m−1
k

]T
.

Similarly, the restriction operator, RI , is transformed to a block matrix with (Nx − 1)× (Nx − 1)
blocks of size Nt/m×Nt, given by

B
(RI )
k =



















1

0 · · · 0 1

0 · · · 0 1
. . .

0 · · · 0



















.m

Denoting the diagonal blocks of the Fourier-transformed and permuted operators by B
(·)
k marking

the respective operator in the superscript, the spectrum of the iteration matrix of the two-level

MGRIT algorithm (8) can be computed mode-by-mode by considering the product

B
(T

(1,2)
MGRIT

)

k =

(

I −B
(PΦ)
k

(

B
(Âc)
k

)−1

B
(RI )
k B

(Â)
k

)

B
(SF )
k B

(SC)
k B

(SF )
k (15)

for each Fourier mode k = 1, . . . , Nx − 1. For the two-level MGRIT algorithm with F -relaxation

corresponding to the parareal time-integration method, we look at

B
(T

(1,2)
parareal

)

k =

(

I −B
(PΦ)
k

(

B
(Âc)
k

)−1

B
(RI)
k B

(Â)
k

)

B
(SF )
k . (16)

We note that the SAMA methodology could also be directly applied to methods that include post-

relaxation as well as (or instead of) pre-relaxation.

The blocks B
(Â)
k of the transformed fine-grid operator Â are given by

B
(Â)
k =















1

−λ̂k 1

−λ̂k 1
. . .

. . .

−λ̂k 1















, (17)

with λ̂k =
(

1 + 4ht/h
2
x sin

2(kπ/(2Nx))
)−1

. Since MGRIT uses temporal semicoarsening, the

blocks B
(Âc)
k of the transformed coarse-grid operator, Âc, are of the same form as those of

the fine-grid operator given in (17) with the fine-grid eigenvalues, λ̂k, replaced by the coarse-

grid eigenvalues, λ̂c;k =
(

1 + 4mht/h
2
x sin

2(kπ/2Nx)
)−1

. Considering F - and C-relaxation, the

diagonal blocks B
(SF )
k and B

(SC)
k of the transformed iteration operators of these block smoothers

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



10 S. FRIEDHOFF AND S. MACLACHLAN

are Nt ×Nt block (bi-)diagonal matrices with blocks of size m×m,

B
(SF )
k =











Z(SF )

Z(SF )

. . .

Z(SF )











and B
(SC)
k =











Z(SC)

λ̂k ê1ê
T
m Z(SC)

. . .
. . .

λ̂kê1ê
T
m Z(SC)











respectively, with

Z(SF ) =















1

λ̂k 0

λ̂2k 0
...

. . .

λ̂m−1
k 0















, Z(SC) =













0
1

1
. . .

1













,

ê1 = [1, 0, 0, . . . , 0]T , and êm = [0, . . . , 0, 0, 1]T . This completes the definition of the diagonal

blocks of the permuted operators of the parareal and MGRIT algorithms and, by using the

expressions (15) and (16), this defines block matrices of the permuted iteration operators of the

two-level methods as a whole. For all k, the diagonal block of these block matrices is zero and thus,

for both the parareal and MGRIT approaches, the iteration operator has only a single eigenvalue of

zero.

4.3. Operator norms and short-term convergence

The dynamics of short-term convergence behavior are more complex than predicted simply by the

spectral radius. To gain insight into this aspect of performance, the operator norm of the iteration

matrix, T , can be considered. More precisely, for any initial error, e0, ‖T ν
e0‖ ≤ ‖T ν‖ ‖e0‖, where

ν denotes the number of iterations of the multigrid scheme. Thus, ‖T ν‖ is an upper bound for the

error reduction after ν iterations which, itself, is naturally but not sharply bounded as ‖T ν‖ ≤ ‖T ‖
ν
.

The SAMA approach reduces the computation of these error reduction factors to the calculation of

norms of products of block-diagonal matrices representing the evolution of a spatial Fourier mode

over time for a discrete set of Fourier frequencies. Furthermore, since for any block-diagonal matrix

B with blocks Bk, k = 1, . . . , n, we have

‖T ‖
2
= sup

x 6=0

‖Bx‖2

‖x‖
2 = sup

xk 6=0

‖B1x1‖
2 + · · ·+ ‖Bnxn‖

2

‖x1‖
2
+ · · ·+ ‖xn‖

2 = max
k

sup
xk 6=0

‖Bkxk‖
2

‖xk‖
2 = max

k
‖Bk‖

2
,

and likewise, ‖T ν‖ = maxk ‖B
ν
k‖, we can estimate the operator norm of powers of the iteration

operator by computing norms of the diagonal blocks and then maximize over the discrete set of

Fourier frequencies.

Figure 3 compares SAMA-predicted error reduction factors (operator norms of powers of the

iteration matrix) with experimentally measured error reduction factors for the two-level MGRIT

algorithm with various coarsening factors, m. Results show that for all coarsening factors, SAMA

tracks the short-term convergence behavior of MGRIT well. Additionally, SAMA predicts the

following exactness property of MGRIT: Assuming exact arithmetic, one iteration of F -relaxation

computes the exact solution at the first m− 1 time steps, i.e., at all F -points in the first coarse-scale

time interval. Furthermore, one iteration of FCF -relaxation computes the exact solution at the first

2m− 1 time steps. An interesting property of MGRIT resulting from this fact is that the algorithm

solves for the exact solution in Nt/(2m) iterations, corresponding to half the number of points

on the coarse grid. Similarly, parareal solves for the exact solution in Nt/m iterations. Thus, the

operator norm is exactly zero from iteration Nt/(2m) + 1 or Nt/m+ 1, respectively, onwards. In

the example considered in Figure 3, we look at Nt = 256. For m = 32 or m = 16, for example, the

operator norm of the two-level MGRIT iteration matrix from the fifth or ninth power, respectively,

onwards is zero according to the exactness property (and, thus, cannot be shown in log scale). This
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is predicted by SAMA as the SAMA-predicted error reduction factors of the fifth and ninth power

of the iteration matrix for factor-32 and factor-16 coarsening, respectively, are zero.

1 2 3 4 5 6 7 8
10

−16

10
−10

10
−5

10
0

MGRIT iteration #

er
ro

r 
re

du
ct

io
n

 

 

m = 4  SAMA
m = 4  exp.
m = 16 SAMA
m = 16 exp.
m = 32 SAMA
m = 32 exp.

Figure 3. SAMA-predicted error reduction factors and measured error reduction factors for two-level cycles
of the MGRIT algorithm with various coarsening factors applied to the parabolic model problem on

(0, π)× [0, π2/4] with Dirichlet BCs discretized on a 32× 256 space-time grid.

4.4. Combining SAMA with LFA

The two-grid SAMA approach reduces the analysis of two-level methods to that of products of

block-diagonal matrices, with each block representing the evolution of a spatial Fourier mode over

time. The approach is rigorous precisely when the Fourier basis of spatial modes resolves the

circulant or circulant-like structure of the operators of the iteration matrix. This is, however, an

unreasonable assumption that fails to cover cases such as spatial semicoarsening or Gauss-Seidel-

like relaxation schemes. In these cases, we use an LFA approach to account for locally circulant

behavior. We extend the operators to an infinite grid in space and use the fact that any infinite-

grid Toeplitz matrix can be diagonalized by a set of continuous Fourier modes, i.e., with Fourier

frequencies, θ, that vary continuously in the interval (−π, π]. A discrete set of frequencies is then

chosen, corresponding to a discrete mesh in θ, needed for the prediction of the performance of the

two-grid method. In practice, we consider the discretized spatial Fourier modes (11).

Multigrid processing naturally mixes modes: Considering spatial semicoarsening with coarsening

by a factor of two, as in the waveform relaxation-based method, for example, the restriction

operator,Rt, maps two fine-grid functions, the Fourier harmonics, to one coarse-grid function. More

precisely, these two functions are associated with the frequencies

θ ∈
(

−
π

2
,
π

2

]

and θ′ = θ − sign(θ)π.

It can be verified that the fine-grid harmonic spaces are left invariant by the coarse-grid correction

process [48]. As a result, using the matrix, Ψharm, of discretized Fourier modes, permuted in

pairs of harmonics, (ψ(x, θ), ψ(x, θ′)), we can block-diagonalize each block of the restriction and

interpolation operators, with block sizes 1× 2 or 2× 1, respectively, reflecting the coupling of

the two Fourier harmonics. Thus, the restriction and interpolation operators, Rt and Pt, can be

transformed to block-Toeplitz matrices with block-diagonal blocks. We then reorder these Fourier-

transformed block matrices, F−1
c RtFharm and F−1

harmPtFc, where Fharm = INt
⊗Ψharm and Fc =

INt
⊗Ψc, to block-diagonal matrices with Nx/2×Nx/2 blocks of size Nt × 2Nt or 2Nt ×Nt,
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12 S. FRIEDHOFF AND S. MACLACHLAN

respectively. For the interpolation operator, Pt, for example, this permutation results in

P−1F−1
harmPtFcPc =













B
(Pt)
1 0 · · · 0

0 B
(Pt)
2 0
. . .

. . .
...

0 · · · 0 B
(Pt)
Nx/2













,

with each block, B
(Pt)
k , in contrast to (14), representing the interpolation of a spatial harmonic pair

at all times. Similarly, since for red-black relaxation schemes, as in the waveform relaxation-based

method, we are updating alternating points in space, we reorder the Fourier-transformed relaxation

operators to block-diagonal matrices with Nx/2×Nx/2 blocks of size 2Nt × 2Nt reflecting the

coupling of pairs of “red” and “black” Fourier modes. Thus, the block calculation describing the

evolution of a spatial Fourier mode over time needs to be extended.

4.4.1. Coarse-grid correction For the analysis of the coarse-grid correction process in the

waveform relaxation approach, for example, instead of considering each Fourier mode separately,

we look at each mode and its harmonic, denoted by the k-th and k′-th mode, respectively,

with k = 1, . . . , Nx/2, k′ = Nx − k, and transform all operators to block-diagonal matrices with

Nx/2×Nx/2 blocks. Taking into account that Fourier harmonics coincide on the coarse grid, we

denote the diagonal blocks of the transformed fine-grid, coarse-grid, interpolation, and restriction

operators by B
(A)
k , B

(Ac)
k ,B

(Pt)
k , and B

(Rt)
k , respectively. Then, the spectrum of the iteration matrix

of the coarse-grid correction process in the waveform relaxation scheme, I − PtA
−1
c RtA, can be

computed in terms of pairs of Fourier modes by considering the product

I − B
(Pt)
k

(

B
(Ac)
k

)−1

B
(Rt)
k B

(A)
k , (18)

for each k = 1, . . . , Nx/2 referring to the k-th pair of Fourier modes. The blocks B
(A)
k of the

transformed fine-grid operator, A, can be written in terms of (13),

B
(A)
k =

[

B
(A)
k 0

0 B
(A)
k′

]

,

with j0 = 1/ht, j−1 = −1/ht, as well as

λk =
4

h2x
sin2

(

πk

Nx
−
π

4

)

, and λk′ =
4

h2x
sin2

(

πk

Nx
+
π

4

)

forB
(A)
k andB

(A)
k′ , respectively, sampling the low Fourier frequency θk ∈ (−π/2, π/2] on a uniform

mesh with mesh size 2π/Nx such that θk = −π/2 + 2πk/Nx. The blocks B
(Ac)
k of the transformed

coarse-grid operator are also of the form (13) with j0 = 1/ht, j−1 = −1/ht, and

λk =
1

h2x
sin2

(

2πk

Nx
−
π

2

)

.

Finally, the blocks B
(Rt)
k and B

(Pt)
k of restriction and interpolation, respectively, are

B
(Rt)
k =

[

ckINt
skINt

]

and B
(Pt)
k =

(

B
(Rt)
k

)T

,

where ck and sk define the LFA symbols of linear interpolation and full-weighting restriction,

ck =
1

2

(

1 + cos

(

πk

Nx
−
π

4

))

and sk =
1

2

(

1− cos

(

πk

Nx
−
π

4

))

.
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4.4.2. Red-black relaxation For the analysis of the red-black relaxation schemes of the waveform

relaxation-based two-grid method, it is natural to use a “red-black” Fourier basis instead of the

“harmonic” Fourier basis considered for the analysis of coarse-grid correction. As a consequence,

the 2Nt × 2Nt diagonal blocks correspond to pairs of red and black Fourier modes instead of pairs

of Fourier harmonics. However, a simple transformation allows combining the analyses of relaxation

and coarse-grid correction to consider the waveform relaxation-based two-grid method as a whole.

Details are given in Appendix A. Considering Nx/2 pairs of “red” and “black” Fourier modes,

SAMA reduces the analysis of the iteration operator for the red-black relaxation defined in (4) to

that of the product
(

I − B
(MB)
k B

(A)
k

)(

I − B
(MR)
k B

(A)
k

)

(19)

with k = 1, . . . , Nx/2 referring to the k-th pair of Fourier modes. The blocks B
(A)
k of the

transformed fine-grid operator are given by

B
(A)
k =



























j0 + λ
(RR)
k λ

(RB)
k

j−1 j0 + λ
(RR)
k λ

(RB)
k

. . .
. . .

. . .

λ
(BR)
k j0 + λ

(BB)
k

λ
(BR)
k j−1 j0 + λ

(BB)
k

. . .
. . .

. . .



























,

with

j0 =
1

ht
, j−1 = −

1

ht
,

λ
(RR)
k = λ

(BB)
k =

2

h2x
, λ

(RB)
k = −

1

h2x

(

1− e−ı(4πk/Nx)
)

, λ
(BR)
k = −

1

h2x

(

1− eı(4πk/Nx)
)

.

Recall that

MR =

[

M−1
RR 0
0 0

]

, MB =

[

0 0
0 M−1

BB

]

.

Since for red-black Jacobi in space-time MRR = DRR and MBB = DBB are already block-

diagonal matrices with diagonal blocks, computing B
(MR)
k and B

(MB)
k , k = 1, . . . , Nx/2, is

straightforward. For red-black Gauss-Seidel in space-time, we consider MRR = DRR − LRR and

MBB = DBB − LBB . In general, the blocks on the diagonal of these operators are Toeplitz and,

thus, an LFA approach would need to be used. However, for the parabolic model problem there are

no additional red-to-red or black-to-black connections besides the trivial ones. Hence, the blocks

B
(MR)
k , k = 1, . . . , Nx/2, of the reordered operator MR are given by

B
(MR)
k =





























j0 + q11
j−1 j0 + q11

. . .
. . .

j−1 j0 + q11











−1

0

0 0



















,

with q11 = 2/h2x denoting the entry in the first row and first column of the matrix Q; a similar

expression can be found for the blocks B
(MB)
k , k = 1, . . . , Nx/2, of the reordered operator MB .
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4.4.3. Application to multigrid waveform relaxation We consider the parabolic model problem (1)

in the domain (−π, π)× [0, T ], subject to an initial condition and periodic boundary conditions,

and the two-level waveform relaxation-based multigrid method described in §2.2. For SAMA

predictions, we use the expressions (18) and (19) for the analysis of coarse-grid correction and

relaxation, respectively, along with the transformation given in Appendix A, which allows analyzing

the two-grid method as a whole.

Figure 4 shows the computed and SAMA-predicted spectra on a 16× 32 space-time grid for a

two-grid (0,1)-cycle of the waveform-relaxation scheme applied to the parabolic model problem

with fixed time step of 1/16 considered in Figure 1(a). In contrast to the LFA prediction depicted in

Figure 1(a), the SAMA prediction is already sharp when the time-integration interval is small. The

differences in the computed and SAMA-predicted spectra result from the presence of lower Jordan

blocks in the iteration matrix causing difficulties in the numerical computation of the spectrum.

Jordan blocks can lead to clustering of computed eigenvalues in form of a circle in the complex

plane. As opposed to the computed spectrum, SAMA generally predicts only one eigenvalue with

multiplicity corresponding to the size of the lower Jordan block.

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
−4

−2

0

2

4
x 10

−3

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
−4

−2

0

2

4
x 10

−3

Figure 4. Eigenvalues (in C) on a 16× 32 space-time grid for a two-grid (0,1)-cycle of the waveform-
relaxation scheme applied to the periodic parabolic model problem on (−π, π)× [0, 2] discretized with fixed
time step ht = 1/16. At left, eigenvalues of the analytically computed iteration matrix as in Figure 1(a) left

side and at right, eigenvalues predicted by SAMA.

To separate effects of Jordan blocks in the numerical computation of the spectrum of the iteration

matrix, we consider pseudospectra, where the ε-pseudospectrum of a matrix is defined as the set in

the complex plane covered by the union of the spectrum of all perturbations of that matrix by terms

less than ε in norm [53]. Figure 5 compares pseudospectra of the iteration matrix, computed with the

MATLAB package EigTool [54] with SAMA and LFA predictions. In contrast to the eigenvalues of

the LFA prediction, the eigenvalues of the SAMA prediction lie within the 10−15 pseudospectrum.

Thus, we get a much better prediction of the spectrum of the iteration matrix using SAMA than

when applying LFA. Furthermore, the structure of eigenvalue clustering is captured by the SAMA

prediction.

Results of the performance of the two-grid waveform relaxation-based method are measured

by the factor, ρν , by which the l2-norm of the residual is reduced in the νth iteration. The

average convergence factor over k successive cycles, ρν,ν+k−1, is simply the geometric mean

of ρν , ρν+1, . . . , ρν+k−1. Since SAMA readily predicts the asymptotic convergence behavior, we

average over the last 20 of 100 iterations. In order to be guaranteed to be able to run 100 iterations

before convergence, we consider a zero right-hand side and a random initial guess. Table II shows

these average convergence factors, ρ81,100, as well as SAMA-predicted spectral radii. We see that

SAMA predictions correspond well to experimentally measured convergence factors for all grid

sizes; however, SAMA generally predicts faster convergence than seen in practice, since large

multiplicities lead to slower initial convergence.

To capture the effects of early convergence rates measured in experiments, we consider the

operator norm of the iteration matrix. Figure 6 compares SAMA-predicted error reduction factors

(operator norms of powers of the iteration matrix) with experimentally measured error reduction

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



A GENERALIZED PREDICTIVE ANALYSIS TOOL FOR MULTIGRID METHODS 15

−0.15 −0.1 −0.05 0 0.05
−0.05

0

0.05

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

Figure 5. Eigenvalues predicted by SAMA (black dots) and LFA (black x’s) as well as pseudospectra (in
C), represented by solid lines, of the iteration matrix of a two-grid (0,1)-cycle of the waveform-relaxation
scheme applied to the periodic parabolic model problem on (−π, π)× [0, 2] discretized with fixed time step
ht = 1/16 on a 16× 32 space-time grid. Note that the SAMA predictions are so close to one-another within

the 10−15 pseudospectrum that one cannot distinguish the individual dots.

Nx = 32 Nx = 64 Nx = 128 Nx = 256 Nx = 512

Nt = 32 1.39e-01 8.54e-02 2.81e-02 7.16e-03 1.78e-03

ρ81,100 Nt = 64 1.56e-01 1.21e-01 5.72e-02 1.76e-02 4.67e-03

Nt = 128 1.77e-01 1.54e-01 8.97e-02 3.29e-02 9.15e-03

Nt = 32 1.18e-01 6.63e-02 2.20e-02 5.79e-03 1.50e-03

ρSAMA Nt = 64 1.26e-01 1.07e-01 4.68e-02 1.39e-02 3.58e-03

Nt = 128 1.31e-01 1.34e-01 8.31e-02 2.95e-02 8.08e-03

Table II. Average convergence factors per iteration in last 20 of 100 iterations, ρ81,100, and SAMA-predicted

spectral radii, ρSAMA, of the iteration matrix of two-grid (0,1)-cycles of the waveform-relaxation scheme
applied to the periodic parabolic model problem on (−π, π)× [0, 1] discretized with mesh sizes hx = 2π/Nx

and ht = 1/Nt on Nx ×Nt space-time grids.
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Figure 6. SAMA-predicted error reduction factors (dots) and experimentally measured error reduction
factors (solid lines) of two-grid (0,1)-cycles of the waveform-relaxation scheme applied to the periodic
parabolic model problem on (−π, π)× [0, 1]. At left, error reduction factors on a 32× 32 space-time grid

and at right, error reduction factors on a 32× 128 space-time grid.

factors. In addition to adequately predicting the asymptotic behavior as in Table II, Figure 6 shows

that considering operator norms, SAMA accurately tracks the early performance of the method.
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The analysis for other discretization schemes is similar. Using periodic central differences

for the spatial discretization and a general backward-difference-in-time scheme given by time-

differentiation matrix

J =













j0 0 · · · 0
j−1 j0 0
j−2 j−1 j0

...
. . .

. . .
. . .

...

j1−Nt
· · · j−2 j−1 j0













,

typically of fixed (small) bandwidth, and defining Ji = jiINx
, i = 0,−1, . . . , 1−Nt, the fine-grid

operator, A = J ⊗ INx
+ INt

⊗Q, of the parabolic model problem is of the form

A =















J0 +Q 0 · · · 0

J−1 J0 +Q 0

. . .
. . .

...

J1−Nt
· · · J−1 J0 +Q















.

The spectrum of this fine-grid operator can then be computed mode-by-mode by considering blocks

of the form

B
(A)
k =











j0 + λk 0 · · · 0
j−1 j0 + λk 0

. . .
. . .

...

j1−Nt
· · · j−1 j0 + λk











, (20)

where λk again denotes the kth eigenvalue of Q and ji, i = 0,−1, . . . , 1−Nt, are the diagonal

entries of the matrices Ji. For second-order backward differences (BDF2) in time, for example,

j0 = 3/2ht, j−1 = −2/ht, j−2 = 1/2ht, and ji = 0 for all i = −3,−4, . . . , 1−Nt.

Figures 7 and 8 present similar results to Figures 4 and 5, respectively, for the two-grid waveform-

relaxation method applied to the parabolic model problem using BDF2 instead of BDF1 for the

discretization in time. Again, the SAMA prediction of the spectrum is already sharp for the short

time-integration interval and it is much better than the LFA prediction.
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−0.005

0
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Figure 7. Eigenvalues (in C) on a 16× 32 space-time grid for a two-grid (0,1)-cycle of the waveform-
relaxation scheme applied to the periodic parabolic model problem on (−π, π)× [0, 2] discretized with fixed
time step ht = 1/16 using BDF2 instead of BDF1 as in Figure 4. At left, eigenvalues of the analytically

computed iteration matrix and at right, eigenvalues predicted by SAMA.

4.5. Three-grid SAMA

Similarly to the extension of LFA to a three-grid Fourier analysis presented in [55], incorporating

a three-grid analysis into the SAMA approach is straightforward. In addition to broadening the

applicability to a larger class of multigrid methods, three-grid SAMA can improve the accuracy
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Figure 8. Eigenvalues predicted by SAMA (black dots) and LFA (black x’s) as well as pseudospectra (in
C), represented by solid lines, of the iteration matrix of a two-grid (0,1)-cycle of the waveform-relaxation
scheme applied to the periodic parabolic model problem on (−π, π)× [0, 2] discretized with fixed time step

ht = 1/16 using BDF2 instead of BDF1 as in Figure 5.

of asymptotic multigrid convergence predictions. Furthermore, a three-grid analysis can provide

insight into extending optimal two-level algorithms to true multilevel algorithms while preserving

optimality. As an example of this property, we consider the three-level MGRIT algorithm and the

obvious generalization of the parareal method to three grids. In order to simplify the presentation, we

focus on three-level V -cycles with only pre-relaxation as this variant is used in the MGRIT setting.

More precisely, in this section three-level cycles refer to three-level V (1, 0)-cycles. However, as

in the LFA context using the recursion formula of L-grid cycles [4, 48, 56], iteration matrices of

many variants, including three-grid W -cycles and different choices of the number of pre- and post-

smoothing iterations, for example, can be defined and analyzed.

Instead of inverting Âc as in the two-level MGRIT algorithm (8), in the three-level method the

system on the first coarse grid is approximated by a two-grid cycle with zero initial guess, i.e.,

the term Â−1
c in the two-grid iteration matrix (8) is replaced by (Ic − T

(2,3)
MGRIT)Â

−1
c to obtain the

three-grid iteration matrix

T
(1,3)
MGRIT =

(

I − PΦ(Ic − T
(2,3)
MGRIT)Â

−1
c RIÂ

)

SFCF, (21)

where T
(2,3)
MGRIT is defined as in (8) with operators on the first and second coarse grids; the iteration

matrix of the three-level parareal method can be derived analogously. The analysis of the three-level

MGRIT algorithm by means of SAMA is then reduced to that of the product given in (15) with
(

B
(Âc)
k

)−1

replaced by the product

(

I −

(

I −B
(Pt;c)
k

(

B
(Âcc)
k

)−1

B
(Rt;c)
k B

(Âc)
k

)

B
(SFCF

c )
k

)

(

B
(Âc)
k

)−1

, (22)

where the subscripts c and cc indicate that operators are defined on the first and second coarse

grid, respectively. Note that expressions for the diagonal blocks in (22), i.e., diagonal blocks of the

transformed two-level iteration operator used for approximating the system on the first coarse grid,

can be derived similarly to the expressions for the diagonal blocks of the transformed operators

defining the two-level algorithms.

Figure 9 shows SAMA-predicted error reduction factors and experimentally measured error

reduction factors for two- and three-level cycles of the parareal and MGRIT algorithms. The slopes

of the best-fit lines of the plots can be used to compute the predicted and measured average error

reduction per iteration, ρSAMA and ρ, respectively. With superscripts denoting the number of grid
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levels, for parareal we obtain

ρ
(2)
SAMA = 0.13, ρ(2) = 0.11,

ρ
(3)
SAMA = 0.22, ρ(3) = 0.21,

and for MGRIT we get

ρ
(2)
SAMA = 0.05, ρ(2) = 0.05,

ρ
(3)
SAMA = 0.07, ρ(3) = 0.07.

The degradation from two-level to three-level in the analysis of parareal suggests that the obvious

generalization of parareal to multiple levels may not produce an optimal method. If the algorithm

were to be scalable, we would see not much (if any) degradation going from two-level to three-level,

as is the case for MGRIT.
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Figure 9. SAMA-predicted error reduction factors and measured error reduction factors for two- and three-
level cycles of the parareal and MGRIT algorithms with factor-2 coarsening applied to the parabolic model

problem on (0, π)× [0, π2/4] with Dirichlet BCs discretized on a 32× 256 space-time grid. At left, error
reduction factors for parareal and at right, error reduction factors for MGRIT.

4.6. Nested two-grid SAMA

Another expansion of two-grid SAMA is to incorporate the analysis of nested two-grid methods.

This is of natural interest for the analysis of the MGRIT algorithm due to the fact that the time-

integration operator, Φht
, in the block-scaled system (6) corresponds to a spatial solve. Considering

exact spatial solves and Dirichlet boundary conditions, the sine Fourier basis can be used to

diagonalize Φht
as presented in Section 4.2. However in practice, the spatial problems are solved

with an iterative method such as multigrid. We can incorporate using µ iterations of two-grid cycles

for the spatial solves by replacing Φht
by the expression

Φ̃ht
=

(

I −
(

I − T
(1,2)
space Φ

−1
ht

)µ)

Φht
, (23)

where T
(1,2)
space is the two-grid iteration matrix of the spatial multigrid method used. As a simple

example, we consider using a spatial multigrid method consisting of two-grid (1,1)-cycles with

coarsening by a factor of two, red-black Gauss-Seidel relaxation, full weighting restriction and

linear interpolation. Since the sine Fourier modes no longer diagonalize the blocks of the operators

of the iteration matrix, we consider an LFA approach. Using standard multigrid operators, a

representation of their Fourier symbols can be found in the literature [4, 48, 56]. Since both red-

black relaxation and coarse-grid correction mix modes, we consider pairs of Fourier harmonics.

As a consequence, when analyzing two-level MGRIT with approximate spatial solves by means

of SAMA, operators of the two-level MGRIT iteration matrix are transformed to block-diagonal

matrices with (Nx/2− 1)× (Nx/2− 1) blocks as in Section 4.4, where each block corresponds to
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the evolution of a spatial harmonic pair over time; the remaining Fourier mode is in the nullspace of

the red-black Gauss-Seidel relaxation scheme and, thus, does not contribute to the analysis. Hence,

we consider the product

(

I − B
(PΦ)
k

(

B
(Âc)
k

)−1

B
(RI)
k B

(Â)
k

)

B
(SF )
k B

(SC)
k B

(SF )
k (24)

with k = 1, . . . , Nx/2− 1 representing the k-th pair of Fourier harmonics. Expressions for the B
(·)
k ’s

in (24) correspond to those for the B
(·)
k ’s in the case of exact spatial solves, given in Section 4.2,

with each scalar entry replaced by a matrix of size 2× 2. More precisely, we replace each entry

equal to 0 or 1 by the zero matrix or identity matrix of size 2× 2, respectively. Furthermore, since

we approximate the spatial solves on the fine grid by applying µ two-grid (1,1)-cycles of the spatial

multigrid method described above, we replace each entry equal to λ̂k by

Λk =
(

I −
(

Λ
(SRB

x )
k Λ

(K(1,2)
x )

k Λ
(SRB

x )
k

)µ)
[

λ̃k 0

0 λ̃k′

]

with

Λ
(SRB

x )
k =

1

4

[

β + 1 β + 1
−β + 1 −β + 1

] [

β + 1 −β − 1
β − 1 −β + 1

]

, β =
2α

1 + 2α
cos

(

kπ

Nx

)

, α =
ht
h2x
,

and

Λ
(K(1,2)

x )
k = I − λ̃c;k

[

cos4 (θk) − cos2 (θk) sin
2 (θk)

− cos2 (θk) sin
2 (θk) sin4 (θk)

] [

λ̃−1
k 0

0 λ̃−1
k′

]

,

where θk = kπ/(2Nx) and

λ̃k =

(

1 + 4
ht
h2x

sin2(θk)

)−1

, λ̃c;k =

(

1 +
ht
h2x

sin2(θk/2)

)−1

for k = 1, . . . , Nx/2− 1 and k′ = Nx − k. Finally, considering exact spatial solves on the coarse

grid, each entry of B
(Âc)
k equal to λ̂c;k becomes

[

λ̂c;k 0

0 λ̂c;k′

]

for k = 1, . . . , Nx/2− 1 and k′ = Nx − k.

Figure 10 shows SAMA-predicted error reduction factors and measured error reduction factors for

two-level cycles of the MGRIT algorithm with FCF -relaxation using µ cycles of spatial multigrid

to approximate the spatial solves on the fine grid for different values of µ. Increasing the number

of two-level cycles for the spatial solves from one to two increases computation cost, but gives

better average error reduction per iteration. However, increasing the number further to three cycles

only increases computational cost without improving average error reduction per iteration. More

precisely, the SAMA-predicted and actual average error reduction per iteration for µ = 1 is about

0.11, whereas it is about 0.05 for µ = 2 and µ = 3.

4.7. SAMA for higher dimensional problems

The generalization of the SAMA approach to multi-dimensional problems is straightforward. Just

as in the two-dimensional space-time scalar case, the SAMA approach reduces the analysis of

multigrid methods applied to multi-dimensional problems to that of products of block-diagonal

matrices, with each block representing the evolution of a spatial Fourier mode over time. However,

for problems defined on a higher-dimensional spatial domain, the analysis requires considering more

spatial Fourier modes, since Fourier frequencies, θ, are sampled on a higher-dimensional grid. As

a consequence, in the rigorous case, i.e., in the case that the Fourier basis of spatial Fourier modes
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Figure 10. SAMA-predicted and measured error reduction factors for two-level cycles of the MGRIT
algorithm with FCF -relaxation and factor-2 coarsening applied to the parabolic model problem on

(0, π)× [0, π2/4] with Dirichlet BCs discretized on a 32× 256 space-time grid. The spatial solves on the
fine grid are approximated by µ two-level (1,1)-cycles with coarsening by a factor of two, red-black Gauss-
Seidel relaxation, full weighting restriction and linear interpolation. Note that error reduction factors almost

coincide for µ = 2 and µ = 3.

resolves the circulant or circulant-like structure of the operators of the iteration matrix, only the

number of blocks, B
(·)
k , considered in the analysis increases.

Figure 11 shows SAMA-predicted error reduction factors and experimentally measured error

reduction factors for two-level cycles of the MGRIT algorithm with FCF -relaxation and factor-2

coarsening applied to the parabolic model problem in two space dimensions with Dirichlet boundary

conditions, and assuming exact spatial solves when applying the time-integration operator. The

results show that SAMA provides good predictions of the short-term convergence behavior in the

multi-dimensional case. Furthermore, the average error reduction per iteration is about 0.05 with

rates only slowly degrading, as is typical for small grid sizes in a domain refinement study.
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Figure 11. SAMA-predicted error reduction factors and measured error reduction factors for two-level cycles

of the MGRIT algorithm applied to the parabolic model problem on (0, π)2 × [0, π2/8] with Dirichlet BCs
discretized on a space-time grid of various grid sizes.

In the non-rigorous case, we could again use an LFA approach to account for locally circulant

behavior. For a parabolic problem in d space dimensions, every low frequency mode is coupled with

2d − 1 high frequency modes. Accordingly, in the analysis by means of SAMA, we would need to
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consider the evolution of 2d spatial Fourier modes over time. We note that standard expressions for

LFA of coarse-grid correction and relaxation processes are available for problems in two or three

space dimensions [48] and, so, it is relatively straight-forward to account for these in the SAMA

setting.

5. ADDITIONAL EXAMPLES

The SAMA approach reduces the analysis of multigrid methods to that of products of block-diagonal

matrices representing, in the parabolic case, the evolution of one spatial Fourier mode or a pair of (or,

in d spatial dimensions, 2d) spatial Fourier modes over time for a discrete set of Fourier frequencies.

In this section, we consider two non-parabolic model problems; one describing elliptic diffusion

in layered media and one convection-diffusion problem. Both of these problems demonstrate that

SAMA can be readily applied to non-parabolic problems, but is limited to cases where there is

tensor-product structure with homogeneous elliptic-like behavior in one direction.

5.1. Elliptic diffusion in layered media

The first example deals with the two-scale layered diffusion problem

−∇ · (κ(y)∇u) = 0 on [0, 1]2 (25)

with permeability κ(y) and subject to homogeneous Neumann boundary conditions at the

boundaries x = 0, x = 1, and y = 0,

∂u

∂x
(0, y) =

∂u

∂x
(1, y) =

∂u

∂y
(x, 0) = 0,

and a homogeneous Dirichlet boundary condition at the boundary y = 1,

u(x, 1) = 0.

The permeability is constructed based on dividing the unit square into layers of alternating

permeability as depicted in Figure 12 for four layers and permeabilities 1 and 10−7.
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(a) Example 1
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0 1
0

17
64

33
64

49
64

1

(b) Example 2

Figure 12. Permeability fields considered for two-scale layered diffusion problems.

We discretize our elliptic model problem (25) on a uniform Cartesian mesh using Nx ×Ny

bilinear quadrilateral finite elements of size hx × hy, where hx = 1/Nx and hy = 1/Ny. Then, the

discretized operator can be written in the form A = My ⊗ Sx + Sy ⊗Mx, where Mx and My are

the mass matrices and Sx and Sy are the stiffness matrices in the x- and y-dimension, respectively,

given in stencil form as

Mx = hx
[

1
6

2
3

1
6

]

, Sx =
1

hx

[

−1 2 −1
]

,

My = hy
[

1
6κi−1

1
3 (κi−1 + κi)

1
6κi

]

, Sy =
1

hy

[

−κi−1 κi−1 + κi −κi
]

,
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where κi, i = 1, 2, . . . , Ny, is the permeability in the i-th element in the y-direction, and stencils

at boundary points are adjusted appropriately. We eliminate Dirichlet boundary points in the

discretized operator, whereas Neumann boundary points are retained. Thus, Mx and Sx are matrices

of size (Nx + 1)× (Nx + 1) and My and Sy are matrices of size Ny ×Ny.

Efficient solvers for this, and more strongly heterogeneous, diffusion problems have attracted

much attention in recent years, as they arise in many applications, including neutron transport and

geophysical flow. One of the first effective algorithms was the Black Box Multigrid (BoxMG)

method [42, 43], which introduced operator-induced interpolation into the multigrid literature,

in combination with suitable relaxation and Galerkin coarsening techniques. Algebraic multigrid

(AMG) [48, 57] is also an effective approach, although it is more suited to problems with much

more heterogeneous structure. Specialized preconditioners have also been introduced, including

geometric multigrid preconditioning [58], domain decomposition approaches [59,60], and deflation-

based preconditioners [44, 45]. Here, we focus on the analysis of BoxMG and the deflation-based

preconditioners; however, the analysis could also be applied to other approaches, as long as the

circulant/Toeplitz structure is essentially maintained.

5.1.1. BoxMG The Black Box Multigrid method (BoxMG) was introduced in [42, 43]. Its key

feature is Galerkin coarse-grid correction based on operator-induced interpolation that effectively

accounts for the discontinuities in the permeability κ(y) in (25). We consider the two-level algorithm

based on BoxMG with weighted Jacobi relaxation and full coarsening by a factor of two in each

dimension. BoxMG defines a two-dimensional interpolation scheme but, since the permeability only

varies in y, BoxMG interpolation coincides with a tensor-product interpolation of standard linear

interpolation in the x-direction and ideal one-dimensional interpolation in the y-direction. Thus,

denoting interpolation in x by Plin and interpolation in y by P1D, given in stencil form as

Plin =
1

2

[

1 2 1
]

and P1D =
1

κi−1 + κi

[

κi−1 κi−1 + κi κi
]

,

where κi, i = 1, 2, . . . , Ny, is the permeability in the i-th element in the y-direction, the interpolation

operator can be written in the form P = P1D ⊗ Plin. Choosing the transpose of interpolation for

restriction and the Galerkin coarse-grid operator, PTAP , the two-level method for solving (25)

may be represented by the two-grid iteration matrix,

T = SJ(I − P (PTAP )−1PTA)SJ , with SJ = I −
4

5
D−1A, D = diag(A). (26)

We choose under-relaxation parameter 4/5 as we would for the homogeneous problem, noting

that the relaxation method remains convergent for this choice. Note that with a 64× 64 element

fine grid the permeability field in Figure 12(a) is perfectly resolved on both the fine and coarse

grid, whereas the permeability field in Figure 12(b) cannot be represented on the coarse grid and

thus, operator-induced interpolation and Galerkin coarsening are crucial ingredients to avoid poor

multigrid performance.

In the finite-element setting, Neumann boundary conditions make it difficult to apply rigorous

Fourier analysis. Therefore, we combine SAMA with LFA. More precisely, we use an LFA approach

based on the exponential Fourier modes given in (11) to block-diagonalize the operators associated

with the x-direction. Note that ∇u is continuous in the x-direction; the heterogeneity in y is taken

into account by SAMA.

Table III compares BoxMG interpolation with bilinear interpolation on a 64× 64 element grid

with four layers of alternating permeability, not aligned with the coarse grid as depicted in Figure

12(b), of 1 and 10p for different values of p. We see that SAMA predictions correspond well to

both experimentally measured convergence factors and spectral radii of the analytically computed

iteration matrix. SAMA accurately predicts that, in contrast to bilinear interpolation, using BoxMG

interpolation produces an efficient two-level algorithm independent of the size of the jump in the

permeability. Note that when considering coarse-grid aligned layers of varying permeability as

depicted in Figure 12(a), the two interpolation schemes coincide.
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p = 0 1 2 3 4

BoxMG ρSAMA 1.60e-01 1.60e-01 1.60e-01 1.60e-01 1.60e-01

interpolation ρ181,200 1.59e-01 1.60e-01 1.60e-01 1.60e-01 1.60e-01

ρanalytic 1.60e-01 1.60e-01 1.60e-01 1.60e-01 1.60e-01

bilinear ρSAMA 1.60e-01 4.75e-01 6.15e-01 6.32e-01 6.34e-01

interpolation ρ181,200 1.60e-01 4.75e-01 6.15e-01 6.32e-01 6.34e-01

ρanalytic 1.60e-01 4.75e-01 6.15e-01 6.32e-01 6.34e-01

Table III. Average convergence factors per iteration in last 20 of 200 iterations, ρ181,200, SAMA-predicted

spectral radii, ρSAMA, and spectral radii of the analytically computed iteration matrix, ρanalytic, for two-grid
(1,1)-cycles applied to the elliptic model problem with four layers of alternating permeability, not aligned

with the coarse grid, of 1 and 10p for different values of p discretized on a 64× 64 element grid.

In Table IV, we consider varying the number of layers of alternating permeability of 1 and 10−7

with layer boundaries at y = 0, y = 1, and y = n/l+ hy, n = 1, . . . , l − 1, where l denotes the

number of layers. Table V looks at varying the grid size used for the discretization. Results show that

SAMA accurately predicts that convergence of the two-level method using BoxMG interpolation is

also independent of the number of layers and the grid size.

number of layers 4 8 16

BoxMG ρSAMA 1.60e-01 1.60e-01 1.60e-01

interpolation ρ181,200 1.60e-01 1.60e-01 1.60e-01

ρanalytic 1.60e-01 1.60e-01 1.60e-01

bilinear ρSAMA 6.34e-01 6.34e-01 6.79e-01

interpolation ρ
181,200 6.34e-01 6.34e-01 6.79e-01

ρanalytic 6.34e-01 6.34e-01 6.79e-01

Table IV. Average convergence factors per iteration in last 20 of 200 iterations, ρ181,200 and SAMA-

predicted spectral radii, ρSAMA, and spectral radii of the analytically computed iteration matrix, ρanalytic,
for two-grid (1,1)-cycles applied to the elliptic model problem with layers of alternating permeability, not

aligned with the coarse grid, of 1 and 10−7 discretized on a 64× 64 element grid.

number of elements 16 × 16 32× 32 64× 64 128 × 128

BoxMG ρSAMA 1.60e-01 1.60e-01 1.60e-01 1.60e-01

interpolation ρ181,200 1.60e-01 1.60e-01 1.60e-01 1.60e-01

bilinear ρSAMA 6.79e-01 6.34e-01 6.34e-01 6.34e-01

interpolation ρ181,200 6.79e-01 6.34e-01 6.34e-01 6.33e-01

Table V. Average convergence factors per iteration in last 20 of 200 iterations, ρ181,100 and SAMA-predicted

spectral radii of the iteration matrix for two-grid (1,1)-cycles applied to the elliptic model problem with four

layers of alternating permeability, not aligned with the coarse grid, of 1 and 10−7.

In Figure 13, we consider the spectrum of the two-grid iteration matrix on a 64× 64 element grid

considering four layers of alternating permeability of 1 and 10−7. Note that since we combine

SAMA with LFA, for SAMA we analyze operators of size 642 × 642, whereas analytically

computed operators are of size 65 · 64× 65 · 64. Thus, the SAMA-predicted spectrum consists of

642 eigenvalues, whereas the spectrum of the analytically computed iteration matrix consists of

65 · 64 eigenvalues. In addition to the spectral radius considered in the above results, the plots show

that the SAMA prediction of the spectrum also corresponds well to the spectrum of the analytically

computed iteration matrix.

5.1.2. Deflation The deflation method (or deflated conjugate gradient method) [44] can be used to

accelerate the convergence of the preconditioned conjugate gradient method (PCG). Here, motivated

by [45], we consider a PCG method whose preconditioner is analogous to (but not equivalent
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Figure 13. Eigenvalues on a 64× 64 element grid for a two-grid (1,1)-cycle applied to the elliptic model

problem with four layers of alternating permeability, not aligned with the coarse grid, of 1 and 10−7. At left,
eigenvalues of the analytically computed iteration matrix and at right, eigenvalues predicted by SAMA.

to) a two-grid (1,0)-cycle with Jacobi relaxation and a very aggressive coarsening strategy. More

precisely, applied to (25), the restriction operator or so-called “deflation-subspace matrix” collapses

all points within a layer to a single point with equal weighting. Thus, the number of coarse-

grid points corresponds to the number of layers. Choosing interpolation, P , as the transpose of

restriction, and denoting the diagonal of A by D, the two-level preconditioner is given by

(

I − P
(

PTAP
)−1

PTA
)

D−1. (27)

We note that the deflation preconditioner is, in fact, singular, and it is used in conjunction with a

complementary solve over its nullspace to yield a solution process; see [45,61] for more details.

Figure 14 shows the computed and SAMA-predicted spectra on a 64× 64 element grid for

the deflation preconditioner applied to the elliptic model problem with four layers of alternating

permeability, as depicted in Figure 12(b), of 1 and 10−7. Comparing the computed and SAMA-

predicted spectra of the preconditioned system, SAMA accurately predicts that the two small

eigenvalues resulting from the two layers with small permeability are shifted to zero. Thus, in

this particular case of two layers with small permeability using the deflation preconditioner for

the conjugate gradient (CG) method decreases the number of CG iterations by two. Note that this

property makes deflation preconditioning interesting for problems with a large number of layers

with small permeabilities.
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Figure 14. Eigenvalues of the preconditioned matrix for the deflation preconditioner applied to the elliptic

model problem with four layers of alternating permeability of 1 and 10−7 discretized on a 64× 64 element
grid. At left, eigenvalues of the analytically computed matrix and at right, eigenvalues predicted by SAMA.

5.2. Convection-diffusion

As a second example, we consider the 2D grid-aligned convection-diffusion problem

−ε∆u+ ux = f on Ω = [0, 1]2 (28)
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with ε > 0, determining the ratio between diffusion and convection, and subject to homogeneous

Dirichlet boundary conditions, u(x, y) = 0 on ∂Ω.

We discretize our convection-diffusion model problem on a uniform Cartesian mesh consisting of

Nx intervals in the x-direction and Ny intervals in the y-direction, using mesh sizes hx = 1/Nx

and hy = 1/Ny, respectively, where Nx and Ny are positive integers. For simplicity, we only

consider the case Nx = Ny and mesh size h = hx = hy. To avoid instability issues arising for

small ε when using standard central differencing for the discretization of the convective term [48],

we use a first-order upwind discretization. Then, the discretized operator can be written in the

form A = (εDxx +Dx)⊗ INy−1 + INx−1 ⊗ εDyy, where we eliminate Dirichlet boundary points

in the discretized operator, and where Dxx, Dyy and Dx denote the usual central finite difference

discretization of −uxx and −uyy, respectively, and the first-order upwind discretization of ux, given

in stencil form as

Dxx =
1

h2
[

−1 2 −1
]

, Dyy =
1

h2
[

−1 2 −1
]

, Dx =
1

h

[

−1 1 0
]

.

While this problem is simple enough that there is no need to develop or analyze solvers for it

specifically, it serves as a prototype model for solvers for general convection-diffusion problems,

particularly as might arise in linearizations of high Reynold’s number flow and other applications in

fluid dynamics. As such, problems such as this one are common test cases in the design of improved

iterative methods for non-symmetric matrices; see, for example, [62, 63]. Here, we illustrate the

applicability of the SAMA approach by considering its ability to effectively predict both success and

failure of two-grid methods, arising from varying the ordering of Gauss-Seidel relaxation sweeps.

We consider two relaxation schemes, Gauss-Seidel with downwind ordering of the variables, defined

by relaxation operator

SGS-down = I − (D − L)−1A,

with D and −L denoting either the diagonal and strictly lower-triangular parts of A in the case of

pointwise Gauss-Seidel, or the block-diagonal and strictly block-lower-triangular parts of A, when

ordered by lines of nodes in the y-direction, in the case of blockwise relaxation, and Gauss-Seidel

with upwind ordering of the variables, defined by relaxation operator

SGS-up = I − (D − U)−1A,

with −U denoting the strictly upper-triangular part of A in the case of pointwise Gauss-Seidel, or

the strictly block-upper-triangular part ofA, when ordered by lines of nodes in the y-direction, in the

case of blockwise relaxation. Note that the ordering of the grid in the case of downstream relaxation

is according to the convection-direction, (1, 0)T , and, thus, relaxation becomes an exact solver for

ǫ→ 0. We consider the two-level algorithm with upstream or downstream Gauss-Seidel relaxation

and full standard coarsening by a factor of two in each dimension, using bilinear interpolation,

P , and full weighting restriction, R, and rediscretization to get the coarse-grid operator, Ac. The

resulting two-level algorithm may be represented by the two-grid iteration matrix,

TTG-up = SGS-up(I − PA−1
c RA)SGS-up or TTG-down = SGS-down(I − PA−1

c RA)SGS-down. (29)

As the convection direction cannot be taken into account by rigorous Fourier analysis, we

combine SAMA with mode analysis in the y-direction. More precisely, we consider both rigorous

Fourier analysis, using the sine Fourier modes to block-diagonalize the operators in the y-direction,

for the case of blockwise relaxation, and an LFA approach that uses the standard LFA analysis (in

1D) for the case of pointwise Gauss-Seidel. In both cases, the behavior in the convection direction

is accounted for through the SAMA methodology.

Table VI compares the SAMA predictions and performance of two-level (1,1)-cycles based on

downwind and upwind relaxation ordering, for different values of the convection coefficient, ε. In

the case of block relaxation, SAMA predictions are exact, due to the use of rigorous mode analysis

to treat the y-direction, while for point relaxation, an LFA approach is needed and, thus, SAMA is

not rigorous. However, for both block and point relaxation, SAMA accurately predicts the efficiency

of downstream relaxation as ε→ 0 as well as the failure of upwind ordering in this limit.
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ε = 10−2 10−4 10−6 10−8

downstream ‖TTG-down‖SAMA 7.56e-01 2.37e-02 4.87e-06 4.91e-10

block Gauss-Seidel ‖TTG-down‖2 7.56e-01 2.37e-02 4.87e-06 4.91e-10

upstream
∥

∥TTG-up

∥

∥

SAMA
6.73e-01 1.13e+00 1.14e+00 1.14e+00

block Gauss-Seidel
∥

∥TTG-up

∥

∥

2
6.73e-01 1.13e+00 1.14e+00 1.14e+00

downstream ‖TTG-down‖SAMA 1.04e+00 4.09e-02 8.58e-06 8.65e-10

point Gauss-Seidel ‖TTG-down‖2 7.89e-01 4.64e-02 9.59e-06 9.66e-10

upstream
∥

∥TTG-up

∥

∥

SAMA
1.03e+00 1.11e+00 1.14e+00 1.14e+00

point Gauss-Seidel
∥

∥TTG-up

∥

∥

2
7.33e-01 1.11e+00 1.14e+00 1.14e+00

Table VI. Analytically computed error reduction factors and SAMA-predicted error reduction factors of two-
grid (1,1)-cycles with various relaxation schemes applied to the convection-diffusion model problem with

different values of ε discretized on a grid of size 64× 64.

In Figure 15, we consider analytically computed and SAMA-predicted spectra on a 64× 64 grid

for a two-grid (1,1)-cycle with downstream block or point relaxation applied to the convection-

diffusion model problem with ε = 10−4. In addition to the error reduction rates measured by the

operator norm considered in the above results, the plots show that, in the block-relaxation case, the

SAMA prediction of the spectrum corresponds well to the spectrum of the analytically computed

iteration matrix, whereas in the point-relaxation case it does not, due to the combination with LFA.
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(a) Eigenvalues (in C) for two-grid (1,1)-cycles with downstream block Gauss-Seidel relaxation.
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(b) Eigenvalues (in C) for two-grid (1,1)-cycles with downstream point Gauss-Seidel relaxation.

Figure 15. Eigenvalues (in C) for two-grid (1,1)-cycles with downstream (a) block or (b) point Gauss-Seidel

relaxation applied to the convection-diffusion model problem with ε = 10−4 discretized on a grid of size
64× 64. At left, eigenvalues of the analytically computed iteration matrix and at right, eigenvalues predicted

by SAMA.

6. CONCLUSIONS

A new predictive analysis tool for multigrid and related multilevel methods is proposed, which

extends the local mode analysis approach to a class of problems for which standard LFA does not
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offer its usual predictivity. The method is applicable to problems with tensor-product structure,

where only one “dimension” includes behaviour that is not amenable to either rigorous or local

Fourier analysis. Thus, it is a natural analysis tool for parabolic problems in any number of spatial

dimensions, where the time-direction has natural non-diagonalizable behaviour with structure akin

to a Jordan block. It can also be applied to elliptic-type problems with one-dimensional structure

that makes LFA inapplicable or unreliable, such as with layered media or grid-aligned convection.

While this remains a restricted class of problems, it enlarges the applicability of mode analysis

techniques to include many important problems that were previously intractable in this way.

The proposed SAMA approach, then, couples standard LFA with algebraic computation that

accounts for the non-local or heterogeneous character of operators in this class. In addition

to providing insight into asymptotic convergence behaviour, SAMA maintains multiplicities of

eigenvalues of iteration operators and can be used effectively to examine worst-case short-term

convergence through operator norms. We demonstrate that it clearly provides an advantage for

parabolic problems, obtaining robust predictivity of performance independent of the length of the

time domain, in sharp contrast to LFA, which only becomes predictive for extremely long time

integration. We also demonstrate that it can be applied to non-traditional multigrid cycling schemes,

such as in the case of simple deflation-based preconditioners.

A. COMBINING ANALYSES USING DIFFERENT FOURIER BASES

For the analysis of the red-black relaxation schemes, we use the red-black Fourier basis given by

{ψR(θc;k),ψB(θc;k)}k=−
Nx
4 +1,...,Nx

4
, (ψR(θc;k))j = (ψB(θc;k))j = e−ıθc;kj , (30)

with the discrete set of Fourier frequencies,

θc;k =
4πk

Nx
, k = −

Nx

4
+ 1, . . . ,

Nx

4
. (31)

The analysis of coarse-grid correction is based on the harmonic Fourier basis given by

{ψ(θk),ψ(θk′)}k=−
Nx
4 +1,...,Nx

4
, ψj(θk) = e−ıθkj , (32)

with the discrete set of harmonic Fourier frequencies,

θk =
2πk

Nx
, θk′ = θk − sign(θk)π, k = −

Nx

4
+ 1, . . . ,

Nx

4
.

Denoting the Fourier matrix of red-black Fourier modes (30) by ΨRB and the Fourier matrix of

harmonic Fourier modes (32) by Ψharm, the analyses of relaxation and coarse-grid correction can be

combined by using the transformation

Ψharm = PRBΨRBT ,

where PRB is the permutation matrix that puts ΨRB into red-black block ordering and T is given

by

T =































1 1
1 1

. . .

1 1

e
ıθ

−
Nx
4

+1 −e
ıθ

−
Nx
4

+1

e
ıθ

−
Nx
4

+2 −e
ıθ

−
Nx
4

+2

. . .

e
ıθNx

4 −e
ıθNx

4































.
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