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Abstract. The solution of large-scale linear systems in computational science and engineering
requires efficient solvers and preconditioners. Often, the most effective such techniques are those
based on multilevel splittings of the problem. In this paper, we consider the problem of partitioning
both symmetric and nonsymmetric matrices based solely on algebraic criteria. A new algorithm is
proposed that combines attractive features of two previous techniques proposed by the authors. It
offers rigorous guarantees of certain properties of the partitioning, yet is naturally compatible with
the threshold based dropping known to be effective for incomplete factorizations. Numerical results
show that the new partitioning scheme leads to improved results for a variety of problems. The
effects of further matrix reordering within the fine-scale block are also considered.
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1. Introduction. Recent advances in the solution of linear systems of equations
have been driven by the ever-increasing problem sizes required in computational sci-
ence and engineering applications. Matrices of interest arise both from discretizations
of differential equations that govern physical systems, where accuracy considerations
demand fine meshes, and from naturally discrete problems with many degrees of free-
dom. These systems are typically not only large but also ill conditioned, requiring
advanced techniques for efficient solution.

For many such large-scale linear systems, the most efficient solution techniques
utilize multilevel frameworks. For elliptic PDE based problems, multigrid [12] and
algebraic multigrid (AMG) [8, 25] methods have been demonstrated to have optimal
efficiency. For more general problems, however, classical multigrid approaches do
not perform as well without more expensive approaches to the multigrid setup phase
[9, 10]. While purely algebraic approaches, such as the algebraic recursive multilevel
solver (ARMS) [30] and other multilevel ILU techniques [4, 7], do not typically match
the performance of multigrid for discretizations of elliptic PDEs, their robustness
across many problems makes them an attractive option when complete knowledge of
a problem’s origin cannot be guaranteed.

When the system matrix is symmetric and positive definite, theoretical analysis
gives insight into the requirements on the partitioning into fine-scale and coarse-scale
degrees of freedom. Analysis of multilevel block factorization preconditioners, such as
ARMS, shows that it is crucial that the fine-scale submatrix be well approximated, in a
spectral sense, by the fine-scale part of the preconditioner in order to achieve effective
results [24]. Motivated by this analysis and corresponding theory for multigrid for
symmetric and positive-definite matrices [16, 21], we have previously developed a
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partitioning algorithm for the symmetric case [22]. In this approach, the optimal
partition is defined in terms of a diagonal-dominance property of the fine-scale block.
Exactly achieving the optimal coarsening was shown to be an NP-complete problem,
and so an O(N) approach to approximately achieve this objective, based on a greedy
strategy, was used instead.

In this paper, we consider the extension of the approach from [22] to nonsymmet-
ric problems. A direct generalization using symmetric permutations is quite natural
although may not be effective when the nonsymmetry in the matrix dominates its
properties. In particular, when defining a multilevel preconditioner, the partition-
ing algorithm must be applied recursively; the symmetric approach of [22], however,
requires stricter constraints on the coarse-grid problem than are natural to ensure
that recursion is possible. While the extension to nonsymmetric matrices is simple
in principle, it is quite powerful. Multilevel ILU factorizations are most effective
when combined with threshold based dropping criteria. The symmetric partitioning
approach [22] requires symmetric operators on all levels; however, threshold based
dropping in IKJ-ordered factorizations is naturally nonsymmetric. In [22], the upper-
triangular factor was discarded, and the incomplete factor, LT , was used instead to
ensure symmetry. Here, no information must be lost.

A natural approach for nonsymmetric problems is to consider a nonsymmetric per-
mutation strategy, as was done in [28]. Here, we extend our earlier, greedy approach
to such nonsymmetric permutations, seeking a permutation where the fine-scale block
is row diagonally dominant. The algorithms proposed in [28], while compatible with
threshold based dropping, do not necessarily guarantee the diagonal-dominance of the
fine-grid subblock and, thus, may result in less accurate factors. By carefully extend-
ing the symmetric partitioning algorithm of [22], we seek to gain the best of both
worlds: the robustness of nonsymmetric permutations coupled with the computa-
tional efficiency gained by large, diagonally dominant fine-grid blocks. The partition-
ing approaches are compared on a variety of nonsymmetric matrices. Additionally,
we consider the effectiveness of the nonsymmetric approaches discussed here on the
symmetric test problems of [22], without looking to exploit symmetry. This allows
the ILU factors to be used as given and compares the utility of enforcing symmetry
versus exploiting the full power of the incomplete factorization approach.

Another important question in the ARMS technique is the ordering of the fine-
scale block, Aff , so that it may be efficiently approximated by its ILUT factors. Here,
we consider various approaches to reordering the fine-scale block based on standard
techniques such as those of Sparspak [17] and METIS [20]. The effects of reordering
on the performance of incomplete factorization preconditioners has been considered
previously [5, 11, 15]. Here, we extend the work of [29] and examine the effects of
reordering on multilevel ILU preconditioners, such as ARMS.

This paper is organized as follows. In section 2, we present the ARMS algo-
rithm and the greedy partitioning strategy. Section 3 details the extension of these
approaches to nonsymmetric problems, with particular focus on nonsymmetric per-
mutations. Numerical results, for both symmetric and nonsymmetric problems, are
presented in section 4. A discussion of reordering of the fine-scale block is given in
section 5, followed by conclusions in section 6.

2. Background.

2.1. The algebraic recursive multilevel solver (ARMS) algorithm. The
ARMS algorithm [30] arises from considering the block factorization of a given matrix,
A. Partitioning the degrees of freedom of A into two sets, F and C, referred to as
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the fine-grid and coarse-grid degrees of freedom (respectively), the (reordered) matrix
can then be written as a block 2 × 2 system,

A =

[
Aff −Afc

−Acf Acc

]
.

This block form can be directly factored as

(1) A =

[
I 0

−AcfA
−1
ff I

] [
Aff 0

0 Âcc

] [
I −A−1

ff Afc

0 I

]
,

where Âcc = Acc−AcfA
−1
ff Afc denotes the Schur complement of A. From this factored

form, an algorithm for the direct solution of Ax = b is apparent (partitioning the

vectors, x = ( xf
xc

) and b =
( bf

bc

)
).

Algorithm 1 (block factorization solve of Ax = b).

1. yf = A−1
ff bf

2. yc = bc + Acfyf

3. Solve Âccxc = yc

4. xf = yf + A−1
ff Afcxc

For a general F/C partition, there is no advantage in using Algorithm 1 over
directly factoring A. The advantage of the block factorization approach occurs when
considering preconditioners, however, if the partition is chosen so that the diagonal-
block matrices, Aff and Âcc, are easily (approximately) inverted. In this case, solution
with an approximate block factorization can be a good preconditioner for a Krylov
subspace method. Many variations on this approach have been considered; see, for
example, [2, 3, 7].

In the ARMS methodology, the inversion of Aff is approximated through its
ILUT factors. That is, we write Aff ≈ LU , where the L and U factors are truncated
based on size and number of nonzeros per row [26], and approximate A as in (1) by

B =

[
I 0

−AcfU
−1L−1 I

] [
LU 0
0 S

] [
I −U−1L−1Afc

0 I

]
.

The application of the preconditioner, B, to a residual, r, is then given by Algorithm 2.
Algorithm 2 (action of ARMS preconditioner on residual, B−1r).
1. yf = L−1rf
2. yc = rc + AcfU

−1yf

3. Solve Sxc = yc

4. zf = yf + L−1Afcxc

5. xf = U−1zf
Here, S is an approximation to Âcc = Acc −AcfA

−1
ff Afc, computed using A−1

ff ≈
U−1L−1 and similar truncation strategies to those of ILUT. While the solution of
Sxc = yc in step 3 could be considered directly, the set, C, is generally still large
enough that this is quite costly. Instead, the ARMS methodology is applied recursively
to solve the system with S, stopping only when the dimension of the coarsest-scale
problem is small enough that direct solution is practical, or when S−1 is seen to be
easily approximated (for example, when S itself is strongly diagonally dominant).

It is then apparent that the success of Algorithm 2 as a preconditioner is depen-
dent on the accuracy of the factorization, Aff ≈ LU . The accuracy of this factor-
ization, in turn, depends on the partition chosen to define F . If the partition allows
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direct factorization of Aff with no fill (if the graph of Aff is, for example, a tree),
then the factorization may be done very accurately at low cost. Unfortunately, this
is usually not possible without choosing F to be prohibitively small. In contrast,
however, choosing C to be small often leads to an Aff block whose inverse is difficult
to approximate in a sparse manner. The contrasting goals of sparse factorization and
effective coarsening lead to partitioning algorithms that aim at a compromise.

2.2. Original ARMS partitioning. The original ARMS algorithm [30] is a
natural extension of the ILUM, BILUM, and BILUTM algorithms. The ILUM (multi-
elimination ILU) algorithm [27] is a block-factorization preconditioner, where the
partitioning is chosen so that the fine-scale block, Aff , is diagonal (that is, F is an in-
dependent set of the degrees of freedom). As Aff is diagonal, it is easily inverted, and
the block-factorization solve may be easily implemented (although it is often useful to
allow some dropping in the computation of the Schur complement to limit fill). The
BILUM (block ILUM) algorithm [31] extends this idea using small block-independent
sets to form F , yielding a block-diagonal matrix, Aff . In BILUTM (block multilevel
ILUT) [32], the block-independent sets used to form F were allowed to be much larger,
leading to inefficiency in computing the exact inverse of the diagonal blocks of Aff .
Instead, the ILUT algorithm was used to compute approximate inverses of the large
diagonal blocks in Aff , where the block-independent sets are formed using a domain
decomposition approach.

In [30], the idea of diagonal dominance was first introduced into the partitioning
stage. Row-wise diagonal-dominance coefficients of A are initially computed as ŵ(i) =

|aii|∑n
j=1 |aij | , and then scaled by the maximum dominance ratio, giving w(i) = ŵ(i)

maxj ŵ(j) .

An initial fine-scale block is then chosen using a similar approach as before, either
by choosing an independent set of the degrees of freedom, or by choosing block-
independent sets (using, for example, nested dissection [17]). Points from this set
are, however, rejected based on thresholding of the diagonal-dominance ratios, w(i).
If a row, i, chosen to be in F is not sufficiently diagonally dominant (if w(i) < θ
for some predetermined θ), then row i is rejected from the fine set and switched to
a coarse-grid point. Note that the use of relative diagonal-dominance measures here
implies that the fine-grid block, Aff , can no longer be said to be (block) diagonally
dominant—only that it tends to be, as its rows were chosen from the most diagonally
dominant rows of A.

The introduction of a measure based on diagonal dominance is motivated by
considering the ILUT employed in approximating the inverse of Aff in the ARMS
algorithm (Algorithm 2). The accuracy of the overall preconditioning depends on how
accurately Aff is represented by its ILUT factors. The efficiency, however, depends
on how sparse these factors are. To best balance these competing concerns, we seek
to choose F so that Aff is well approximated by sparse ILUT factors. To achieve
this balance, we reject rows from F that are poorly diagonally dominant, as these are
rows in which we expect many significant off-diagonal entries in the ILUT factors.
Put another way, we can most easily compute accurate, sparse ILUT factors of Aff

when it is strongly diagonally dominant; thus, we reject rows from F that are more
likely to cause fill.

2.3. Greedy partitioning. While the use of a diagonal-dominance measure as
in [30] is an important improvement in the ARMS algorithm, the approach used there
is static; that is, the evolving fine/coarse partition plays no role in the computation
or use of these measures. A dynamic approach to diagonal dominance was recently
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introduced in [22], based on the observation that it is the dominance strictly within
Aff that determines how well Aff may be approximated by its ILUT factors, and
not just the dominance of the F rows of A (as is measured by the ratios in [30]).

In [22], the static measures, w(i), are replaced by dynamic measures, θ̂i =
|aii|∑

j∈F∪U |aij | , where the degrees of freedom of A are assumed either to have been

already partitioned into F and C, or to be in U , the set of undecided points. Thus,
θ̂i is a measure of the dominance of row i over all points that either are in F or have
the potential to be in F . If row i ∈ U is dominant over this set (θ̂i ≥ θ for some
predetermined θ), then i is added to set F . If there are no such points, then at least
one column from U must be added to C in order to determine if the dominance of
the rows in U can be improved to the point where they make good F points, or if
they should also be discarded into C. For the case of symmetric and positive-definite
matrices, as considered in [22], the partition of rows and columns into F and C was
also symmetric (that is, if row i ∈ C, then so is column i); so, the row/column pair
associated with the least diagonally dominant row is chosen to be the new C point.
Measures for all neighboring U rows are then updated, with any rows whose measures
are now large enough added to F .

This greedy approach (so named because at each step, all sufficiently dominant
rows are added to F and the least dominant row is discarded into C) is considered
as an approximation to the “ideal” partitioning of the degrees of freedom of A. If
diagonal dominance of Aff is all that we need to ensure a good approximation of
Aff by its ILUT factors (in terms of both accuracy and sparsity), then the ideal
partitioning is the one which maximizes the size of F , given the constraint that for all

rows, i ∈ F , θi = |aii|∑
j∈F |aij | ≥ θ, for some predetermined θ. In [22], we showed that

finding the ideal partitioning for arbitrary A is an NP-complete problem. This greedy
approach approximates the ideal partitioning in such a way that we are guaranteed
that the Aff block is diagonally dominant and led to effective ARMS performance
for a number of symmetric problems.

It is important, however, to realize that the approach proposed in [22] is strictly
limited in its applicability to symmetric problems. In particular, the decision as to
which elements of A to partition into F and C is made using a solely row based
criterion. A symmetric partition may be effective for a given nonsymmetric ma-
trix; however, in general, an appropriate measure for making such a decision should
take the nonsymmetry into account. This is particularly important in the multilevel
setting considered here, where a naturally nonsymmetric factorization (such as the
ILUT) may be used to approximate A−1

ff within the calculation of the approximate
Schur complement. If this nonsymmetry is not appropriately taken into account, the
partitioning of the coarse-grid operator is no longer guaranteed to satisfy the desired
diagonal-dominance property and may fail altogether.

3. Nonsymmetric partitioning approaches. While the symmetric partition-
ing approaches described above work well for many symmetric (and some nonsym-
metric) problems, they do not always effectively partition the rows and columns of A.
Consider, for example, taking a diagonally dominant tridiagonal matrix and cyclically
permuting all entries two columns to the right. The resulting matrix is no longer diag-
onally dominant (indeed, the diagonal entries are all zero), and either of the above al-
gorithms would fail to find any F points. A more robust approach is to define separate
left and right permutation matrices, allowing large off-diagonal entries to be moved
to the diagonal of the reordered system and used as pivots in the ILUT factorization.
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3.1. Two-stage algorithm. In [28], a two-stage approach is used to find a
nonsymmetric permutation that results in an Aff block that is expected to have its
largest entries on the diagonal. A preselection stage is used to first identify rows that
are good potential rows for Aff and then sort these rows based on a measure of their
likelihood to produce sparse ILUT factors. In the second stage, the nonsymmetric
permutations are defined by traversing this list (in order), permuting the dominant
element for the row to the diagonal, if possible, and discarding rows for which a
suitable permutation cannot be defined. In this way, a nonsymmetric permutation
pair is constructed that yields an Aff block that is expected to yield sparse ILUT
factors based on a simple greedy strategy.

The preselection stage itself first discards rows with no significant dominant
element, and then orders the remaining rows based on evaluating their potential
to yield sparse ILUT factors. For each row, i, the dominant element in row i,
ki = argmaxk |aik|, is first calculated, along with the row’s �1 norm, ti =

∑
j |aij |. If

ti is small enough, relative to |aiki |, measured by a preselected tolerance, then row
i is admitted as a candidate row for Aff . Diagonal dominance alone is not enough,
however, to guarantee sparse ILUT factors. Indeed, a row with only two equal-sized
nonzero entries may be more attractive than a row with one large entry and many
small entries (as it tends to introduce less fill into the subsequent rows of the factors).

To address this issue, the dominance ratios,
|aiki

|∑
j |aij | , are then multiplied by 1

|Adj(i)| ,

where Adj(i) = {j �= i : aij �= 0}, and |S| denotes the number of elements in set S.
These weighted dominance ratios are then sorted in decreasing order to establish a
ranking of the attractiveness of row i to be included in Aff .

Many possible strategies exist for selecting which of the rows passed by the pre-
selection algorithm described above are then included in Aff [28]. A simple greedy
approach is to scan these rows in order, building a nonsymmetric permutation by
accepting row i and column ki into the F block if neither has already been accepted.
As rows appear at most once in the preselection list, this requires only checking if
column ki has already been used as a diagonal by another row already selected for F .
If so, row i is discarded to C; otherwise it is accepted, and node (i, ki) is permuted to
the diagonal.

While this approach is successful for many problems, it does not always yield an
effective preconditioner. Adding constraints on Aff such that it is diagonally domi-
nant may yield a smaller block but a better overall preconditioner (as the ILUT factors
of Aff are both sparser and more accurate). Note, however, that this approach relies
on static measures (i.e., measures that are not influenced by the evolving partition)
and does not guarantee the diagonal dominance of the resulting Aff block. A second
strategy proposed in [28] is based on a dynamic measure and, thus, guarantees row
diagonal dominance within the Aff block of the reordered matrix. In this approach,
for each row i accepted by the preselection algorithm, if column ki has not already
been reordered and element |aiki

| dominates row i over those columns already added
to F , row i and column ki are added to Aff . Additionally, for each remaining column
j ∈ Adj(i) that has not already been added to F or C, if aij is large enough such
that row i would fail to be diagonally dominant in Aff if |Adj(i) \ (F ∪ C)| entries
of size aij are added to it, column j is rejected from possibly becoming an F column,
and is added to C. In this way, the Aff block of the reordered system is guaranteed
to be row diagonally dominant, but columns that may have been acceptable choices
for the Aff block are rejected based on an averaged expectation and not their unique
contribution. Notice also that the performance is strongly dependent on the ordering
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produced by the preselection algorithm. If row i is strongly dominated by column ki,
but there are many large entries in that column, the resulting partition may suffer
from accepting row i too early.

3.2. Single-stage greedy nonsymmetric partitioning. Here, we propose a
technique that combines the nonsymmetric permutation approach of [28] (described
in section 3.1) with the single-stage greedy algorithm approach of [22] (described in
section 2.3). The resulting algorithm once again guarantees that the Aff block of the
reordered system is diagonally dominant but is much more reluctant to move columns
into C. As such, we expect the resulting algorithm to form similar partitions to those
chosen by [28] when that algorithm performs well (i.e., when the chosen F blocks
are not too small) but to show improved performance when the average dominance
criterion described above is too aggressive at removing columns. The practical benefit
of such an approach is an expected improvement in the complexity of the resulting
preconditioners; increasing the size of the Aff blocks while retaining similar diago-
nal dominance properties should not degrade convergence of the preconditioners but
should result in a sparser approximate factorization that is less expensive to apply.

Extending the diagonal-dominance measure from [22], row i of matrix A is defined

to be θ-dominated by column k if |aik|∑
j |aij | ≥ θ. As before, we seek to find a partitioning

of the rows and columns of A so that each row in Aff is θ-dominated by its diagonal.
To do this, consider the three sets of undecided points, U , fine points, F , and coarse
points, C, but now we will maintain different sets for both rows and columns. A point
in Urow is made into an F -row if, at any point,

|aiki
|∑

j∈Fcol∪Ucol

|aij |
≥ θ,

where ki = argmaxk∈Ucol
|aik|. If row i is put into Frow, then column ki must also

be put into Fcol, so that the entry, aiki
, may be permuted into a diagonal position in

Aff . If, at any point, row i is zero over all columns in Ucol, then it is placed in Crow,
as it is no longer possible to θ-dominate this row with any valid pivot element.

Rows and columns are always moved into the F sets in pairs, defining a nonsym-
metric permutation with a square Aff block. Eliminating rows and columns from the
U sets into the C sets, however, should occur independently, as if row i is no longer
sufficiently dominated by an eligible pivot to be put in Frow; it does not necessarily
mean that any of the columns in Adj(i)∩Ucol would not make a good pivot for another
row in Urow. Thus, the elimination of rows and columns from Urow and Ucol into the
C sets occurs independently, as follows. If, at some point in the algorithm, no row in
Urow is sufficiently dominated by a column in Ucol such that another row/column pair
can be added to F , a single column, j� ∈ Ucol, that is deemed to be least attractive as
a column in Aff is selected to be added to Ccol. For each i ∈ Urow such that aij� �= 0,
the dominance ratio of row i is updated by decrementing the �1 norm by |aij� | and,
possibly, recomputing the dominant column, ki ∈ Ucol. If aij� is the last nonzero entry
in row i’s restriction to Ucol, then row i is added to Crow. Otherwise, if the updated

θ̂i =
|aiki

|∑
j∈Fcol∪Ucol

|aij | ≥ θ, then the pair (i, ki) is added to the F sets. If, at any point

when a column is moved into Fcol or Ccol, a row, i, is no longer sufficiently dominated

over Fcol by some k ∈ Ucol, that is, |aik|∑
j∈Fcol

|aij | < θ for all k ∈ Adj(i) ∩ Ucol, then

there is no possible pivot column for row i that would result in a diagonally dominant
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Aff , and row i is discarded into C. This pattern continues until either Urow or Ucol

is empty.
There are many possible measures of which the column, j�, is chosen as the least

attractive potential F column. In the symmetric permutation case considered in [22],
j� was chosen based on the attractiveness of row j� as an F -row. Here, we consider
the row diagonal-dominance measures,

θ̂i =
|aiki |∑

j∈Fcol∪Ucol

|aij |
,

from which the decrease of θ̂−1
i that occurs when column j� is moved from Ucol to Ccol

is easily quantified as
|aij� |
|aiki

| . The column that is most attractive as a C column, then,

is the one that brings about the greatest cumulative change in the measures, θ̂i, for

i ∈ Urow measured, for example, as
∑

i∈Urow

|aij |
|aiki

| for each j ∈ Ucol.

The resulting algorithm is then summarized as follows, where we ignore the im-
portant question of computational complexity and suppress the updating of ki for
i ∈ Urow, which is assumed to always reference the largest entry, aik, over k ∈ Ucol.
In Algorithm 3, all second-order updates are also suppressed, particularly the elimi-
nation of rows to C when new dominating columns, ki, are computed. For full details
of the implementation, see the discussion in section 3.3.

Algorithm 3 (single-stage greedy nonsymmetric partitioning algorithm).

1. Initialize Urow = Ucol = {1, 2, . . . , n}
2. Initialize Crow = Ccol = ∅ and Frow = Fcol = ∅
3. For all i ∈ Urow,

(a) Compute ki = argmaxk∈Ucol
|aik|

(b) Compute li =
∑

j∈Fcol∪Ucol
|aij |

(c) Compute ri =
∑

j∈Fcol
|aij |

(d) If aiki
= 0, then Crow = Crow ∪ {i}, Urow = Urow \ {i}.

(e) If
|aiki

|
li

≥ θ, then make (i, ki) a diagonal element of Aff :
• Frow = Frow ∪ {i}, Urow = Urow \ {i}
• Fcol = Fcol ∪ {ki}, Ucol = Ucol \ {ki}

(f) If
|aiki

|
ri

< θ, then Crow = Crow ∪ {i}, Urow = Urow \ {i}.
4. While Ucol �= ∅ and Urow �= ∅,

(a) For each j ∈ Ucol, compute wj =
∑

i∈Urow

|aij |
|aiki

|
(b) Let j� = argmaxj∈Ucol

{wj} and make j� a C-column: Ccol = Ccol∪{j�},
Ucol = Ucol \ {j�}

(c) For i ∈ Urow ∩ {i : aij� �= 0},
i. Update li = li − |aij� |
ii. If aiki = 0, then Crow = Crow ∪ {i}, Urow = Urow \ {i}.
iii. If

|aiki
|

li
≥ θ, then

• Frow = Frow ∪ {i}, Urow = Urow \ {i}
• Fcol = Fcol ∪ {ki}, Ucol = Ucol \ {ki}

5. Crow = Crow ∪ Urow

6. Ccol = Ccol ∪ Ucol

Steps 1 and 2 in Algorithm 3 simply initialize the sets U , F , and C for both
columns and rows. Step 3 is an initial pass over the rows, which finds the largest
entry in each row and computes the total and fine-grid row sums of each row. If the
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row is zero over Ucol, it is immediately discarded into Crow. If the row is already
θ-dominated by its largest entry, then that entry is permuted to the diagonal and its
row and column are moved into the F sets. If no θ-dominance by a column in Ucol is
possible for the row, it is also immediately discarded into Crow.

The main elimination loop occurs in step 4. For each undecided column, j, a
measure, wj , of column j’s fitness as an F -column is computed. The larger the
measure, the more large entries there are in column j, relative to the largest in the
eligible part of each row. Thus, we select the column, j�, with the largest measure
to be eliminated from Ucol (and added to Ccol) in step 4(b). For rows i such that
j� ∈ Adj(i), the removal of column j� increases the dominance of aiki

over the portion
of row i that is in Fcol ∪ Ucol; thus, we check each adjacent row to see if it is now
sufficiently dominated to be included in F .

Finally, note that the termination condition for the main loop (in step 4) allows
the algorithm to stop without a full partitioning of both rows and columns. This is
reasonable, as step 4(a) could be trivial in two ways: either Ucol is empty, in which
case there are no weights to be calculated, or Urow is empty, in which case all the
weights are zero. This is possible because columns and rows are moved individually
into their respective C blocks, so that while |Fcol| = |Frow| must always hold, there
is no such constraint on the growth of the C blocks. Thus, iteration of the main loop
stops whenever either the rows or the columns are completely partitioned into C and
F . Steps 5 and 6 ensure that whatever rows or columns are left are placed into C, so
that both the Aff and Acc blocks are square.

The column measures computed in step 4(a) are chosen to reflect how much of
a roadblock column j poses to finding a diagonally dominant Aff block. If column
j has many entries that are large relative to the largest in their row, then it does,
indeed, make dominance hard to achieve. One possible downside to this particular
measure, however, is the inability to distinguish between good potential pivots (entries
in column j that are the largest in their rows) and entries that effectively block
dominance (entries that are very close to, but slightly smaller than, the largest in
their rows). It may be possible to neglect entries identified as potential pivots in this
algorithm, leading to a more effective measure, but we have not experimented with
this option. Another option apparent from the discussion above is that this choice
of measure is simply one of many possible averages of the changes in the θ̂i. Other
measures (including other �p norms, or other averages, such as the harmonic average)
are also possible but have not been experimented with.

3.3. Implementation details. While Algorithm 3 describes the important fea-
tures of the partitioning algorithm, it is intended only to convey the general outline
of the scheme. Here, we provide full details of the scheme, as implemented, and as
tested in section 4. In particular, we consider the choices made in order to achieve low
computational complexity, as well as the details of updating the row-wise quantities
ki, li, and ri. By tracking when these updates are made, the first opportunities to
move a row from Urow to Frow or Crow are more easily identified when the relevant
quantities are updated. This detailed implementation described here is presented as
Algorithm 4 in the appendix.

For ease of computation, two preprocessing stages are added. First, the transpose
of A is computed (step 3 of Algorithm 4). While not explicitly necessary, this is
convenient because of our use of a compressed sparse row (CSR) storage scheme for
the matrix A (and AT ). Thus, for loops such as in step 4(c) of Algorithm 3, we have
easy access to the set, {i : aij� �= 0}, as the adjacency list of row j� in AT . For this
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reason, we use the notation AdjT (j) = {i : aij �= 0} in Algorithm 4. Additionally, the
adjacency lists for each row i in A are sorted in decreasing order by |aij | (step 4(a)).
This is done for convenience in updating ki; instead of needing to search over all
entries in Adj(i) for the next smallest entry that is eligible to dominate row i when
the previous ki is removed from Ucol, the sorted adjacency lists allow us to simply
scan the list from the entry for the old ki onward, until we find the next column in
Adj(i) ∩ Ucol. In this manner, the adjacency list for row i is scanned from start to
finish at most once over all of the updates to ki before row i is removed from Urow.

The extra operations needed to update ki, li, and ri first arise in step 3(e) of
Algorithm 3 (step 4(f) of Algorithm 4). Now, instead of just removing row i and
column ki to their respective F sets, the unsorted rows, m, in AdjT (ki) are also
examined. If column ki dominated row m, then a new dominating column for row
m is found from those still in Ucol. If no such column exists, then row m is easily
discarded to Crow, as there is no pivot that can pair with it to give a diagonally
dominant row in Aff . The Aff row-norm for row m, rm, is incremented by the value
in the added column, and if row m is no longer sufficiently dominant relative to its F
columns, it is also moved into Crow.

The initial computation of the column measures wj for j ∈ Ucol is now broken
into a separate loop (step 5), and these measures are then updated in the main
loop whenever a row is sorted. To manage these measures efficiently and enable easy
approximation of the column with maximal measure, a bucket-sort style data structure
is used. Within the first loop (step 4 of Algorithm 4), an upper bound on the measures
is calculated as the maximum length of an adjacency list in Urow. The interval from
0 to this upper bound is then divided equally into a fixed number of buckets, where
each bucket corresponds to a doubly linked list of elements representing columns from
Ucol whose measures lie in the appropriate subinterval. A separate list of pointers is
maintained, indexed by column, pointing to the list element corresponding to each
column. In this way, columns are easily removed from the data structure when they
are moved into Ccol or Fcol, by accessing the element through the column-indexed
pointer list and updating the bucket from which it came using the doubly linked list
properties. Columns are also easily moved when their measure is updated by removing
the corresponding element from its previous list and adding it to the head of its new
list. An approximately maximal column is also easily found as the first item in the
nonempty bucket with largest index.

The most significant changes to the algorithm occur in the main loop, step 4
(step 6 and, in particular, step 6(b) of Algorithm 4). Now, when column j� is removed,
we first check if it dominated any row i ∈ Urow∩AdjT (j�). If so, we update ki as before
and check if the new ki is large enough to continue considering row i as a potential
F row. If not, row i is moved into Crow. If, however, the intersection of Adj(i) and
Ucol is nonempty, removing row i from Urow necessitates an update to the column
measures for each j ∈ Adj(i)∩Ucol. Even if row i is not to be removed, these column
weights change whenever the dominating column changes, and so, in step 6(b)ii.D of
Algorithm 4, the measures for updating any columns are adjusted. The final major
step, step 6(b)iii, makes row i and column ki a pivot in Aff if row i is sufficiently
dominated by column ki. Here, we again update the measure of any column in Ucol

that is affected by the removal of row i from Urow. Additionally, for any row that is
dominated by column ki, a new dominating column is found, the intersecting column
weights are adjusted, and the row is tested for suitability as a potential F row.
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4. Numerical results. We consider several sets of test problems for the pro-
posed partitioning scheme, building on problems tested in previous papers. For each
set of tests, we compare the performance of ARMS preconditioners based on the new
nonsymmetric partitioning scheme to other effective preconditioners, including ARMS
with other choices of partitioning schemes. All tests were run on a dual-processor
3.0GHz Intel Xeon workstation with 2GB of RAM.

In all of these examples, parameters are chosen (whenever possible) to allow easy
comparison with previous work [22, 28]. It is important to realize, however, that there
is some sensitivity in the performance to these choices of parameters. In general, we
find that the choice of θ has a strong influence over the complexity of the algorithm
but a milder influence on iteration counts. As complexity is generally lowest when
the fine-grid block is largest, but still retains some diagonal dominance, θ should be
taken close to 0.5, as it is in the results that follow. As in classical dual-threshold
ILUT factorizations [26], the best performance is seen when the maximum fill-per-
row parameter plays only a small role in keeping the factors sparse. Thus, we aim to
adjust the drop tolerance in such a way as to control both accuracy and sparsity of the
factors, while using the maximum fill parameter only to ensure against catastrophic
fill-in. Finally, our goal is to coarsen until the coarsest-grid problem is quite small;
thus, we demand high accuracy in its incomplete factorization for all test problems.
While these guidelines also apply to the symmetric partitioning algorithm [22], the
parameter choices for the two-stage partitioning algorithm are quite different. We
refer the reader to [28] for a discussion of these choices in that context.

4.1. Symmetric PDE based problems. To compare the nonsymmetric par-
titioning schemes with their symmetric counterpart (as described in section 2.3), we
first consider some test problems from [22]. These matrices, bilinear finite-element
discretizations of the second-order elliptic PDE −∇ ·K(x, y)∇p(x, y) on regular rect-
angular meshes of [0, 1]2, are sparse, symmetric, and positive-definite. Aside from
confirming that the nonsymmetric partitioning scheme preserves the desired proper-
ties of the symmetric and definite case, these tests allow another observation. The
classical approach to designing solvers for symmetric problems has been to take advan-
tage of symmetry as much as possible. The threshold based incomplete factorizations
considered here are, however, naturally nonsymmetric (as thresholding is performed
row-wise). Thus, comparing ARMS performance using the symmetric partitioning
approach (where symmetrized ILUT factorizations are necessary) and using the non-
symmetric partitioning approach (with full (nonsymmetric) ILUT factorizations) may
be done to compare the benefits of retaining symmetry versus taking full advantage
of a naturally nonsymmetric factorization.

We consider four choices for the diffusion coefficient, K(x, y). Constant K(x, y) =
1, the Poisson equation, is a standard test problem for sparse matrix solvers, partic-
ularly for multigrid and its algebraic variants. A smoothly varying, but nonconstant,
isotropic coefficient, K(x, y) = 10−8 +10(x2 +y2), is also considered. A more difficult
problem, where K(x, y) = 10−8 on 20% of the elements of the grid, chosen randomly,
and K(x, y) = 1 on the remainder, results in degradation of performance of standard
geometric multigrid approaches, but is typically solved efficiently by AMG and multi-
level approaches. Finally, we consider the case of a constant, but anisotropic, diffusion
coefficient, K(x, y) = [ 1 0

0 0.01 ], which causes difficulty for many algebraic solvers and
preconditioners, including the two-level ARMS preconditioner considered in [22].

Results for the symmetric ARMS preconditioner based on the symmetric greedy
coarsening strategy of [22] are shown in Table 1 (Table 7 of [22]). For each choice of
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Table 1

Performance of ARMS with symmetric partitioning and symmetrized ILUT on test matrices
from discretizations of −∇ · K(x, y)∇p(x, y) for the given K(x, y) and uniform grids on [0, 1]2.
Results marked with a * indicate that the residual reduction criterion was a relative factor of 104

instead of 106.

Coefficient Grid α Lev. cB tsetup tsolve Iter.

K(x, y) = 1

1282 0.01 2 2.59 0.3 0.3 28
2562 0.01 2 2.65 1.5 2.5 44
5122 0.01 2 2.68 12.7 24.5 82
10242 0.1 2 1.03 159.1 34.2* 46*

K(x, y) = 10−8 + 10(x2 + y2)

1282 0.01 2 2.60 0.3 0.4 31
2562 0.01 2 2.65 1.5 3.4 56
5122 0.01 2 2.68 12.7 31.7 97
10242 0.1 2 1.03 159.6 40.6* 52*

random K(x, y)

1282 0.01 3 1.40 0.2 0.4 32
2562 0.01 3 1.41 0.7 2.5 45
5122 0.01 3 1.42 3.1 25.1 83
10242 0.01 3 1.42 13.5 12.4* 17*

anisotropic K(x, y)

1282 0.01 5 1.61 0.2 0.3 26
2562 0.01 5 1.62 0.8 2.3 42
5122 0.01 5 1.63 3.3 17.3 65
10242 0.01 5 1.63 14.9 6.9* 10*

the coefficients, K(x, y), we consider several levels of uniform mesh refinement. For
these results, θ is chosen to be 0.55, a symmetrized ILUT algorithm is used where
the L factors on all grids but the coarsest are computed with drop tolerance α, as
reported in Table 1, and a maximum of twice the average number of nonzeros-per-row
of Aff are allowed in each row of its L factor. Coarsening is continued until either
the coarsest-grid operator is θ-dominated by its diagonal or has fewer than 10 degrees
of freedom. The coarsest-grid operator is then factored using ILUTP, with a drop
tolerance of 10−5 and a maximum of twenty times the average number of nonzeros
per row of this coarsest Schur complement allowed per row of its L factor. For these
examples, a more efficient solver results from not rescaling the Aff matrices prior to
computing their ILUT factors, as discussed in [28]. In Table 1, we report the number
of levels used by the symmetric ARMS preconditioner, the complexity, cB , of the
preconditioner (defined as the total number of nonzeros stored on all levels of the
ARMS preconditioner divided by the number of nonzeros in the original fine-scale
operator, A), the setup and solve times, and the number of iterations for precondi-
tioned GMRES to reduce the residual by a relative factor of 106 (or, for the problems
marked by a *, 104).

Table 2 shows results for the new nonsymmetric partitioning based ARMS pre-
conditioners on these problems. For the first three problems, the same parameters are
used for the nonsymmetric partitioning as are used for the symmetric partitioning.
For the anisotropic K(x, y), using the same parameters as the symmetric partitioning
resulted in very slow convergence of ARMS with nonsymmetric partitioning. This is
likely related to the fact that the average size of the nonzero offdiagonal entries for
the discrete anisotropic operator is much closer to the size of its diagonal than for
the isotropic problems, and only a very particular choice of coarse degrees of freedom
leads to the semicoarsened grids that are known to be most effective for this problem.
So, in Table 2, we use θ = 0.5 instead of θ = 0.55 for the anisotropic problem, which
results in much better performance. Table 2 also includes two extra data points, de-
tailing the performance of the preconditioners for the two cases from Table 1 where
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Table 2

Performance of ARMS-preconditioned GMRES based on the nonsymmetric partitioning strategy
of section 3.2 on test matrices from discretizations of −∇ · K(x, y)∇p(x, y) for given K(x, y) and
uniform grids on [0, 1]2. Results marked with a * indicate that the residual reduction criterion was
a relative factor of 104 instead of 106.

Coefficient Grid α Lev. cB tsetup tsolve Iter.

K(x, y) = 1

1282 0.01 3 2.08 0.3 0.3 24
2562 0.01 3 2.17 1.2 2.4 38
5122 0.01 3 2.22 5.3 20.3 67
10242 0.01 3 2.24 25.2 11.9* 14*
10242 0.1 2 2.31 264.9 22.0* 28*

K(x, y) = 10−8 + 10(x2 + y2)

1282 0.01 3 1.96 0.3 0.4 28
2562 0.01 3 1.96 1.1 3.5 50
5122 0.01 3 2.12 5.0 27.9 83
10242 0.01 3 1.99 26.1 15.8* 18*
10242 0.1 2 1.76 81.8 25.5* 32*

random K(x, y)

1282 0.01 3 1.72 0.3 0.4 28
2562 0.01 4 1.52 1.2 2.8 41
5122 0.01 4 1.52 5.3 26.1 72
10242 0.01 4 1.53 24.1 15.7* 14*

anisotropic K(x, y)

1282 0.01 7 2.19 0.5 0.4 28
2562 0.01 6 2.24 2.0 3.6 47
5122 0.01 7 2.23 8.2 28.2 76
10242 0.01 6 2.28 34.6 11.3* 11*

memory limitations required the choice of α = 0.1. For these problems, we include
results for both α = 0.01 and α = 0.1.

For the first two problems (with smooth isotropic coefficients), using ARMS based
on nonsymmetric partitioning is slightly more efficient than the symmetric partition-
ing scheme. This can be seen, in particular, on the larger meshes, where the solve
times for the 512× 512 grid examples are slightly better than those of the symmetric
approach, but the setup times scale much better. As a result, the overall performance
of the nonsymmetric partitioning based approach with α = 0.01 is significantly bet-
ter than the performance of either partitioning scheme with α = 0.1. For these two
problems with α = 0.01, the preconditioner complexity is better across all grids us-
ing the nonsymmetric partitioning scheme. For the second two problems, however,
the performance of ARMS using the symmetric partitioning scheme is slightly better
than that of ARMS using the nonsymmetric partitioning approach. In particular, the
lower operator complexities for these two problems lead to notably faster solve times
even though the iteration counts are comparable (in fact, the nonsymmetric parti-
tioning algorithm results in fewer iterations for all grid sizes for the randomly selected
coefficient problem). In any case, the slight difference between these results indi-
cates that there is little benefit in abandoning the inherent advantages of a symmetric
preconditioner.

An additional comparison is made with the two-stage nonsymmetric permutation
algorithm of [28], as described in section 3.1. For this method, the parameters are
chosen as in [28, section 6.1]; namely, a dominance threshold of 0.1 (now relative to
the maximum dominance ratio), and drop tolerances of 0.001 in the computation of
the ILUT factors, L and U , of Aff , 0.01 in the computation of L−1Afc and AcfU

−1,
0.001 in the Schur complement computation, and 0.01 on the coarsest level are used.
Fill-in is restricted to ten times the average number of nonzeros per row of Aff in
all thresholded computations on the fine scales, and five times the average number of
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Table 3

Performance of ARMS-preconditioned GMRES based on the two-stage nonsymmetric partition-
ing approach of [28] on test matrices from discretizations of −∇·K(x, y)∇p(x, y) for given K(x, y)
and uniform grids on [0, 1]2. Results marked with a * indicate that the residual reduction criterion
was a relative factor of 104 instead of 106.

Coefficient Grid Lev. cB tsetup tsolve Iter.

K(x, y) = 1

1282 6 3.26 0.7 0.4 25
2562 7 3.37 9.5 3.8 46
5122 7 3.44 155.7 29.9 76
10242 7 3.48 2546.7 16.3* 14*

K(x, y) = 10−8 + 10(x2 + y2)

1282 5 2.85 0.5 0.4 25
2562 6 2.92 5.6 3.6 44
5122 6 2.94 80.2 31.9 76
10242 7 2.95 1279.1 28.4* 20*

random K(x, y)

1282 7 2.44 0.4 0.4 26
2562 7 2.48 4.2 3.3 42
5122 7 2.50 55.9 28.5 69
10242 7 2.51 886.7 22.5* 15*

anisotropic K(x, y)

1282 8 2.84 0.8 0.4 24
2562 8 2.82 10.4 3.2 41
5122 8 2.82 172.6 24.5 66
10242 8 2.80 2836.2 8.6* 8*

nonzeros per row of the Schur complement on the coarsest scale. Results for the same
four model problems and grid sizes are shown in Table 3.

The performance of the two-stage algorithm, shown in Table 3, is interesting
because of its contrast to the other results. For each problem, the two-stage algorithm
creates hierarchies with more levels, yet results in preconditioner complexities that
are, in all cases, bigger than those of either of the other two methods. The setup times
clearly do not scale linearly with the increases in problem sizes, yet the iteration counts
are similar (and, in some cases, better) than those of the other approaches. Because
the LU solves require more operations, however, iteration times with this approach
are generally larger than those of the others.

4.1.1. Performance profiles. Comparing the raw results, such as those shown
in Tables 1, 2, and 3, gives a good picture of the performance of these preconditioners
on individual problems; however, a better sense of the overall performance may be
obtained by considering performance profiles, as in [14], instead of tables to present
the results in a more compact manner.

Given a measurable solver performance characteristic, such as total time to so-
lution, number of iterations, or preconditioner complexity, performance profiles are a
useful tool for comparing different solvers in terms of their measured characteristics
for a given set of problems. Let S be the set of solvers and P be the set of problems.
For a solver, i ∈ S, and a problem, j ∈ P , take sij to be the performance characteris-
tic measured for solver i on problem j (e.g., the total time taken by solver i to reduce
the residual of problem j by a relative factor of 106). For a particular problem, j, the
best observed performance, in terms of this chosen characteristic, is

ŝj = min
i∈S

{sij}.

For each solver, i, we can then define

pi(α) =
|{j : sij ≤ αŝj}|

|P |
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Fig. 1. Performance profiles for total time to solution (left) and preconditioner complexity
(right) for the ARMS preconditioners based on the three partitioning algorithms on the symmetric
PDE based problems. Solution is taken to mean a reduction of the residual by a relative factor
of 106 on all grids but 1024 × 1024, where a reduction by a relative factor of 104 is used.

as the fraction of the problems in P for which the measured characteristic of solver
i is within a relative factor of α of the optimal. If, for any reason, solver i fails on
problem j, we take sij = ∞ (and, further, if sij = ∞ for all i, we take ŝj = 0, as no
solver can be said to be “optimal”). Thus, pi(1) is the fraction of problems for which
solver i is the best, and limα→∞ pi(α) is the fraction of problems for which solver i
succeeded. A very good solver (relative to the chosen characteristic) is then one for
which pi(α) is largest (closest to one) for small values of α.

Performance profiles for the preconditioners based on the three partitioning al-
gorithms, whose results are given in Tables 1, 2, and 3, are shown in Figure 1. At
left is the profile for total time to solution, including setup time plus time required
to reduce the residual by a relative factor of 106 (104 for 1024× 1024 grid problems).
While ARMS based on symmetric partitioning is the fastest overall in 10 of 16 cases,
the new single-stage nonsymmetric partitioning algorithm is seen to be competitive,
solving 8 of 16 problems in the fastest time (2 ties in overall time occur). The precon-
ditioner based on the nonsymmetric partitioning solves all problems within a factor
of just over 2 of the individual optimal times. The slow setup times of the two-stage
nonsymmetric partitioning approach are reflected in the slow growth of its profile.
On the right of Figure 1 is the profile for the preconditioner complexities, cB . While
the best overall complexities are seen for the symmetric partitioning approach, the
single-stage nonsymmetric partitioning algorithm offers the best complexity for six
problems and is seen to be quite competitive with the symmetric approach. The two-
stage nonsymmetric partitioning algorithm is seen to yield complexities that are, in
all cases, at least 40% larger than the best complexity.

4.2. General sparse symmetric systems. The second set of test problems
considered in [22] was drawn from the collection of general, sparse, symmetric, and
positive-definite matrices considered in [18, 19]. This set of matrices is the subset
of the positive definite problems considered in [18] for which full data is available
(discounting problems for which only a nonzero pattern is available) with fewer than
3 million nonzero entries (plus the problem, OILPAN, which has 3.5 million nonzeros,
but for which a low preconditioner complexity made convergence possible). Here, we
consider the same test set; matrix names, dimensions, and numbers of nonzero entries
are listed in Table 4.
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Table 4

Names, dimensions, and numbers of nonzero entries for the general sparse symmetric matrix
test set selected from the RAL collection [18, 19].

Name n nnz
bodyy4 17546 121938
bodyy5 18589 129281
bodyy6 19366 134748
bcsstk18 11948 149090
t2dah a 11445 176117
bcsstk25 15439 252241
OBSTACLE 40000 277600
JNLBRNG1 40000 279200
MINSURFO 40806 285230
bcsstk17 10974 428650
CVXBQP1 50000 449968

Name n nnz
t3dl a 20360 509866
finan512 74752 596992
GRIDGENA 48962 610008
gyro k 17361 1021159
bcsstk36 23052 1143140
msc23052 23052 1154814
msc10848 10848 1229778
cfd1 70656 1828364
vanbody 47072 2336898
nasasrb 54870 2677324
OILPAN 73752 3597188

Solver parameters are chosen consistently with previous work. For the symmetric
permutation scheme, θ = 0.55, drop tolerances are 0.01 with the number of nonzeros
per row of the symmetrized ILUT factor limited to five times the average number
of nonzeros per row in Aff on all but the coarsest scale, where the drop tolerance is
0.0001 and twenty times the average number of nonzeros per row of the coarsest Schur
complement are allowed in each row of its symmetrized ILUT factor. A maximum
of 10 levels (plus the coarsest) are allowed, and the Aff blocks are not rescaled be-
fore the ILUT. For the single-stage nonsymmetric partitioning approach, θ is chosen
as 0.51, and a maximum of 50 levels are allowed; this partitioning scheme tends to
choose smaller coarse grids than the symmetric partitioning, and so these parameters
are chosen to allow a better comparison. Otherwise, parameters for the single-stage
nonsymmetric partitioning approach are the same as for the symmetric partitioning
scheme. For the two-stage nonsymmetric partitioning scheme, parameters are chosen
to be the same as in the previous section and in [28, section 6.1]. A maximum of
100 levels are allowed, with a dominance threshold of 0.1 (relative to the most domi-
nant row). Diagonal rescaling before the ILUT of Aff is used, and drop tolerances of
0.01 and 0.001 with maximum fill factors of 10 are used on fine scales. On the coarsest
scale, the drop tolerance is 0.01, with five times the average number of nonzeros per
row of the coarsest Schur complement matrix allowed in each row of its symmetrized
ILUT factor.

Performance profiles for total time to solution (at left) and complexity (at right)
for the preconditioners resulting from using the symmetric and one- and two-stage
nonsymmetric partitioning algorithms are shown in Figure 2. For these profiles, a
problem is deemed to have been solved if the �2 norm of the residual is reduced by
a relative factor of 106 within 1000 iterations. For problems that failed to meet this
criteria, the solution time is taken to be infinite. Notice that each method is fastest
for several problems and that, in general, the symmetric partitioning based approach
is most successful. In particular, while the one-stage nonsymmetric partitioning ap-
proach is close to the fastest for about 20% of the total problems (noting that none
of the solvers is successful on 4 of the problems), the symmetric and two-stage non-
symmetric partitioning schemes showed about equal overall performance. In terms of
complexity (as seen on the right of Figure 2), there is little differentiation between the
methods. The symmetric partitioning is generally the best, followed by the one-stage
algorithm, but the difference is small.

Performance of classical AMG [8, 25] for these problems was considered in [22].
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Fig. 2. Performance profiles for total time to solution (left) and complexity (right) for the
preconditioners resulting from using the three partitioning algorithms on the general spare symmetric
problems. Solution is taken to mean a reduction of the residual by a relative factor of 106, within
1000 iterations.

There, it was shown that a naive application of AMG performs quite poorly for
this general selection of problems (only 4 of 22 problems converged in fewer than
150 iterations). This behavior emphasizes the benefits of the ARMS approach over
AMG; while AMG is typically faster when it works well (including for problems such
as those considered in section 4.1), ARMS is more robust as a black-box solver. For
this reason, we do not include a detailed comparison of our approach with AMG for
general sparse matrices.

4.3. Convection-diffusion problems. As a first set of nonsymmetric test
problems, we consider simple finite difference discretizations of the convection-dif-
fusion operator in two dimensions,

−Δu + aux = f,

for a variable wind-speed a. Using the standard second-order five-point stencil for the
Laplacian term, performance should be close to that seen in section 4.1 for small values
of a, no matter how the lower-order derivative has been discretized. For large values
of a, however, it is important to discretize the ux term using an upwind differencing
(as opposed to a central-difference approximation) both for accuracy of the solution
and to maintain nice (i.e., M-matrix) properties of the linear system.

Table 5 shows the results for both the single-stage partitioning algorithm pre-
sented here and the two-stage partitioning algorithm of [28] applied to upwind finite
difference discretizations of this problem for values of a ranging from 1.0 to 104 on
grids of 129 × 129, 257 × 257, and 513 × 513 degrees of freedom. For the single-stage
partitioning algorithm, we see low computational complexities for all winds, on all
grids. There is some growth in iteration count as grid sizes increase, but performance
appears to improve as a increases. Setup times for the two-stage partitioning are much
higher—sufficiently so that even though the solve times are, in general, shorter, the
overall time to solution is longer for every problem than using the new partitioning
algorithm. Furthermore, for all but 3 problems, the preconditioner complexities, cB ,
for the two-stage partitioning algorithm are more than twice those for the single-stage
partitioning.

Similar results are seen for the unstable discretization, as shown in Table 6. Once
again, setup times and preconditioner complexities for the two-stage approach are
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Table 5

Complexities, timings, and iteration counts for single-stage and two-stage ARMS partitioning
approaches for the convection-diffusion problem discretized with upwind differences.

One-stage NS Two-stage NS
a grid cB tsetup tsolve # iters. cB tsetup tsolve # iters.

1292 2.14 0.2 0.3 33 4.42 0.6 0.3 21
1.0 2572 2.21 0.7 3.0 60 4.60 8.3 2.0 34

5132 2.23 3.4 33.9 111 4.68 138.8 16.4 57

1292 2.16 0.2 0.3 33 4.42 0.6 0.2 20
10.0 2572 2.20 0.7 3.3 64 4.60 8.2 2.0 34

5132 2.22 3.4 36.9 117 4.84 138.7 18.5 62

1292 2.24 0.2 0.2 19 2.77 0.6 0.2 17
102 2572 2.28 0.7 1.8 40 4.80 8.3 1.5 26

5132 2.26 3.5 23.6 87 4.78 138.3 15.7 55

1292 1.95 0.2 0.1 7 5.68 0.6 0.1 10
103 2572 2.15 0.8 0.7 18 2.73 8.6 0.7 14

5132 2.02 2.8 4.1 23 6.11 141.9 8.5 29

1292 1.52 0.2 0.1 5 4.18 0.6 0.1 8
104 2572 1.57 0.8 0.3 9 4.83 8.5 0.4 8

5132 1.69 2.5 2.9 17 2.73 144.0 3.2 16

Table 6

Complexities, timings, and iteration counts for single-stage and two-stage ARMS partitioning
approaches for the convection-diffusion problem discretized with central differences.

One-stage NS Two-stage NS
a grid cB tsetup tsolve # iters. cB tsetup tsolve # iters.

1292 2.15 0.2 0.3 33 4.22 0.6 0.3 21
1.0 2572 2.21 0.7 3.0 60 4.49 8.3 2.0 34

5132 2.22 3.4 34.0 111 4.62 138.2 16.3 57

1292 2.15 0.2 0.3 33 4.21 0.6 0.3 21
10.0 2572 2.21 0.7 3.3 64 4.61 8.3 2.2 36

5132 2.22 3.4 36.9 117 4.79 138.7 18.9 63

1292 2.06 0.1 0.2 20 4.67 0.6 0.2 16
102 2572 2.32 0.7 1.8 40 4.80 8.3 2.2 35

5132 2.24 3.5 24.0 88 4.84 138.6 15.6 54

1292 2.03 0.3 0.2 23 4.48 0.7 0.1 8
103 2572 2.08 1.0 1.5 32 3.63 8.5 0.6 12

5132 1.79 2.4 12.1 54 6.53 141.6 7.4 25

1292 2.08 0.2 0.1 7 2.65 0.6 0.1 7
104 2572 2.19 0.9 0.6 17 3.57 8.7 0.5 10

5132 2.12 3.8 5.7 31 4.86 144.0 6.8 24

much worse than those for the new, single-stage partitioning algorithm of section 3.2.
Interestingly, neither solver seems overly affected by the poor-quality discretization,
which leads to non-M-matrices for ah > 2.0.

Comparison with a single-level ILUT preconditioner shows the efficiency of the
ARMS approach. For the central-difference discretization, with a = 104, an ILUT
factorization with drop tolerance of 10−3 and a maximum fill-in factor of 20 leads to
preconditioner complexities of 14.85 on a 129 × 129 grid, 18.26 on a 257 × 257 grid,
and 18.99 on a 513 × 513 grid. While such a preconditioner may be effective on a
small grid (only 5 iterations are required to reduce the residual by a factor of 106

on the 129 × 129 grid), its effectiveness quickly diminishes. On the 257 × 257 grid,
182 iterations are necessary for the same reduction, while a reduction in residual of
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Table 7

Complexities, timings, and iteration counts for AMG applied to the convection-diffusion prob-
lem discretized with upwind and central differences. The notation DIV denotes cases where the
solver diverges.

Upwind Central
a grid cB tsetup tsolve # iters. cB tsetup tsolve # iters.

1292 2.30 0.1 0.03 4 2.31 0.1 0.03 4
1.0 2572 2.31 0.3 0.1 4 2.31 0.3 0.1 4

5132 2.32 1.4 0.6 4 2.32 1.4 0.6 4

1292 2.28 0.1 0.03 4 2.43 0.1 0.03 4
10.0 2572 2.31 0.3 0.1 4 2.30 0.3 0.1 4

5132 2.36 1.5 0.6 4 2.36 1.4 0.6 4

1292 2.84 0.1 0.04 5 2.76 0.1 0.04 5
102 2572 2.65 0.3 0.1 4 2.60 0.3 0.2 4

5132 2.54 1.4 0.6 4 2.59 1.4 0.6 4

1292 2.39 0.04 0.1 9 2.69 0.1 DIV DIV
103 2572 3.07 0.3 0.3 9 2.86 0.3 0.4 10

5132 2.85 1.3 1.0 7 4.83 2.0 1.5 7

1292 1.99 0.04 0.04 6 3.68 0.1 DIV DIV
104 2572 2.08 0.2 0.2 7 3.80 0.3 DIV DIV

5132 2.27 0.7 1.1 8 3.89 1.4 DIV DIV

only 0.64% was reached in 500 iterations on the 513 × 513 mesh.
Because of the PDE nature of these systems, a comparison with the AMG algo-

rithm is also appropriate. Results for AMG applied to both the upwind and central-
difference discretizations are given in Table 7. Comparing this performance with that
in Tables 5 and 6, we see that this performance is consistent with common perception.
When AMG works, its performance far exceeds that of ARMS. For these problems,
the discrete operators remain M-matrices for all a in the upwind discretization, and so
AMG generally outperforms ARMS with either partitioning. For the central-difference
discretization, however, AMG performance suffers significantly when ah is large, lead-
ing to divergence in the worst cases, whereas ARMS performance was insensitive to
this change.

4.4. General sparse nonsymmetric systems. Another interesting nonsym-
metric test set is from [28, section 6.1]. This collection of 58 matrices is taken from the
Harwell–Boeing collection; those selected are all square matrices from the RUA (real,
unsymmetric, assembled) collection that have a dimension of 500 or higher. Matrix
names, dimensions, and numbers of nonzero entries are listed in Table 8.

As a comparison for these problems, we consider the performance of a single-
level ILUTP preconditioner within GMRES, in addition to the two nonsymmetric
partitioning based ARMS preconditioners. For the ILUTP solver, a drop tolerance of
0.0001 is used, with the number of nonzeros per row of L and UT limited to twenty
times the average number of nonzeros per row of A. For the ARMS codes, we use the
same parameters as in the previous section, with the exception that Aff is now always
diagonally rescaled before it is factored by ILUT. An attempt was made to compare
the performance of AMG with that of ARMS for these problems; however, applying
a standard AMG algorithm to these matrices did not lead to a single instance of a
converging solver.

Figure 3 shows the performance profiles for total time to solution (at left) and
complexity (at right) for the problems of Table 8 using these three preconditioning
strategies. It should be noted that for many of the smaller problems in this set, all
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Table 8

Names, dimensions, and numbers of nonzero entries for the nonsymmetric Harwell–Boeing test
set.

Name n nnz
BP1000 822 4661
BP1200 822 4726
BP1400 822 4790
BP1600 822 4841
BP200 822 3802
BP400 822 4028
BP600 822 4172
BP800 822 4534
FS5411 541 4285
FS5412 541 4285
FS5413 541 4285
FS5414 541 4285
FS6801 680 2646
FS6802 680 2646
FS6803 680 2646
FS7601 760 5976
FS7602 760 5976
FS7603 760 5976
GEMAT11 4929 33185
GEMAT12 4929 33111
GRE1107 1107 5664
GRE512 512 2192
JPWH991 991 6027
LNS3937 3937 25407
LNS511 511 2796
LNSP3937 3937 25407
LNSP511 511 2796
MAHINDAS 1258 7682
MCFE 765 24382

Name n nnz
NNC1374 1374 8606
NNC666 666 4044
ORANI678 2529 90158
ORSIRR1 1030 6858
ORSIRR2 886 5970
ORSREG1 2205 14133
PDE9511 961 4681
PORES2 1224 9613
PORES3 532 3474
PSMIGR1 3140 543162
PSMIGR2 3140 540022
PSMIGR3 3140 543162
SAYLR3 1000 3750
SAYLR4 3564 22316
SHERMAN1 1000 3750
SHERMAN2 1080 23094
SHERMAN3 5005 20033
SHERMAN4 1104 3786
SHERMAN5 3312 20793
SHL0 663 1687
SHL200 663 1726
SHL400 663 1712
STEAM2 600 13760
WATT1 1856 11360
WATT2 1856 11550
WEST0655 655 2854
WEST0989 989 3537
WEST1505 1505 5445
WEST2021 2021 7353

Fig. 3. Performance profiles for total time to solution (left) and complexity (right) for the three
nonsymmetric preconditioning strategies on the Harwell–Boeing test problems. Solution is taken to
mean a reduction of the residual by a relative factor of 106, within 1000 iterations.

three preconditioners require very little time, so that a relative difference of 50% may
reflect only 0.01 seconds of CPU time.

For all three approaches, we see similar profiles for total time to solution. For
the parameters chosen, ILUTP tends to require more significant setup time, while
the ARMS approaches are more balanced between their setup and solve times. A
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Table 9

Names, dimensions, and numbers of nonzero entries for the circuit and semiconductor de-
vice simulation matrices. In the left column are the Bomhof, Hamm, Schenk IBMSDS, and Wang
collections. At right are the matrices from the Schenk ISEI set.

Name n nnz
circuit 1 2624 35823
circuit 2 4510 21199
circuit 3 12127 48137
circuit 4 80209 307604
add20 2395 17319
add32 4960 23884
bcircuit 68902 375558
hcircuit 105676 513072
memplus 17758 126150
scircuit 170998 958936
2D 27628 bjtcai 27628 442898
2D 54019 highK 54019 996414
3D 28984 Tetra 28984 599170
3D 51448 3D 51448 1056610
ibm matrix 2 51448 1056610
matrix 9 103430 2121550
matrix-new 3 125329 2678750
swang1 3169 20841
swang2 3169 20841
wang1 2903 19093
wang2 2903 19093
wang3 26064 177168
wang4 26068 177196

Name n nnz
barrier2-1 113076 3805068
barrier2-2 113076 3805068
barrier2-3 113076 3805068
barrier2-4 113076 3805068
barrier2-9 115625 3897557
barrier2-10 115625 3897557
barrier2-11 115625 3897557
barrier2-12 115625 3897557
igbt3 10938 234006
nmos3 18588 386594
ohne2 181343 11063545
para-4 153226 5326228
para-5 155924 5416358
para-6 155924 5416358
para-7 155924 5416358
para-8 155924 5416358
para-9 155924 5416358
para-10 155924 5416358

significant difference, however, is seen in terms of the preconditioner complexities for
these problems, on the right of Figure 3. Here, we see that the single-stage partitioning
algorithm results in the least fill for nearly 70% of the problems considered. The
longer setup times of ILUTP are reflected in its slowly increasing profile in this figure;
it required more than twice the minimum memory on more than half of the problems
in this set.

4.5. Circuit and semiconductor simulation matrices. As a final test set, we
consider matrices arising in semiconductor and circuit simulation, obtained from the
University of Florida Sparse Matrix collection [13]. The matrices are taken from five
sets within this collection: Bomhof [6], Hamm, Schenk IBMSDS [33], Schenk ISEA
[33], and Wang [23]. The dimensions and numbers of nonzero entries for these prob-
lems are listed in Table 9; the matrices range in dimension from 2395 to 181343, and
in number of nonzero entries from 17 thousand to 11 million.

For these matrices, as in the previous section, we compare the preconditioners
produced by the ARMS methodology using both the new single-stage nonsymmetric
partitioning approach and the two-stage nonsymmetric partitioning approach of [28],
along with an ILUTP approach. For the single-stage partitioning, θ = 0.5 is chosen,
along with a drop tolerance of 0.01 and maximum fill per row in the ILUT factors of
five times the average number of nonzeros per row of Aff on all but the coarsest level,
where a drop tolerance of 0.0001 and a fill factor of ten are used. For the two-stage
partitioning approach, we use the parameters from [28, section 6.5], with a relative
diagonal-dominance threshold of 0.1, a drop tolerance of 0.01, and an allowable fill
factor of three on all but the coarsest grid, where a drop tolerance of 10−5 and fill
factor of twenty is used. For both preconditioners, we allow rescaling of Aff on all
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Fig. 4. Performance profiles for total time to solution (left) and complexity (right) for the
three nonsymmetric preconditioning strategies with the circuit and semiconductor device simulation
matrices. Solution is taken to mean a reduction of the residual by a relative factor of 106, within
1000 iterations.

grids before the ILUT factors are computed. For the ILUTP preconditioner, a drop
tolerance of 0.0001 and a maximum fill factor of twenty are used.

The performance profiles for these problems, shown in Figure 4, indicate a much
bigger gap between the ARMS approaches and the ILUTP preconditioner than is seen
for the smaller problems of section 4.4. In terms of total time, the performance profiles
for the two ARMS based approaches are quite similar, with the single-stage approach
being fastest for roughly 40% of the test problems, while the two-stage partitioning
yields the fastest solver for approximately 55% of the test problems. The ILUTP
preconditioner is notably slower in terms of total time to solution, primarily because
of its increased setup costs.

Looking at these results in more detail than is shown in the performance profiles,
we see that the difference between the two ARMS based approaches is significant for
some of the problems in this test set. On the matrix circuit 3, from the Bomhof set,
the preconditioner based on the single-stage approach failed to converge within 1000
iterations, while the two-stage preconditioner converged, but slowly, in 723 iterations.
For the matrix circuit 4, both approaches converged in 9 iterations (in about 0.3 sec-
onds), but the single-stage approach needed only 0.5 seconds for setup, compared to
1.2 seconds for the two-stage approach. For the matrix 3D 28984 Tetra, from the
Schenk IBMSDS set, the two-stage preconditioner did not converge within 1000 it-
erations, yet the single-stage preconditioner converged in only 1 iteration, requiring
0.5 seconds to set up a successful preconditioner, compared to 0.4 seconds for the un-
successful approach. On the matrix scircuit, from the Hamm set, the new partitioning
approach yielded a preconditioner that converged in 32 iterations (and 3.8 seconds)
compared to 60 iterations (and 9.3 seconds) for the two-stage approach, yet required
only slightly more setup time, 1.4 seconds versus 1.2 seconds. For the wang3 and
wang4 matrices, the single-stage partitioning approach yielded preconditioners that
are faster both in setup and iteration, yielding a total speedup of over 25%. For
many of the problems, however, the differences are less significant, with the single-
stage preconditioner being approximately 10% faster on the barrier2 problems, and
the two-stage preconditioner approximately 10% faster on the para problems, both
from the Schenk ISEI set.

Some of the speedup seen in iteration times for the single-stage partitioning pre-
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conditioners is due to improved preconditioner complexities, as seen on the right of
Figure 4. For both ARMS based approaches, the preconditioner complexities are
quite good, below one for many problems, but the new partitioning scheme leads to
overall lower complexities. Once again, the memory requirements of the ILUTP pre-
conditioners are much higher; for this test set, ILUTP required over three times the
amount of memory of the optimal solver on over two-thirds of the problems. These in-
creased memory requirements do not result in large iteration times, as the constructed
preconditioners require only a few iterations to sufficiently reduce the residual, but
are reflected in the large gap in setup times (and, thus, total solution times) between
the ILUTP and ARMS approaches shown on the left of Figure 4. While overall time
to solution is an important measure of these preconditioners, the increased memory
requirements of the ILUTP approach should not be ignored, especially for large ma-
trices such as these, where the feasibility of storing such large preconditioners must
be considered.

5. Ordering the Aff block. While much effort has been focused on the par-
titioning of rows and columns within the ARMS algorithm, little consideration has
been given to the ordering of the rows within the partitions. While ordering of the
coarse-scale block has little practical effect, reordering of the Aff block could result
in a significant change in the sparsity of the resulting ILUT factors, as is the case
in sparse direct methods (see, for example, [17]). Here, we extend the initial study
of [29], where it was seen that the use of standard reordering techniques from sparse
direct solvers may also result in improvements to the overall efficiency of the ARMS
algorithm.

The efficiency of the ARMS process rests on the accurate approximation of the
action of the inverse of Aff by its ILUT factors. While diagonal dominance of Aff is
an important consideration in being able to find sparse, accurate ILUT factors, it is
not the only requirement. Indeed, even if the graph of Aff allows exact LU factors to
be defined with no fill beyond its nonzeros, this can occur only if Aff is appropriately
ordered. As in sparse direct methods, then, the sparsity of the ILUT factors depends
somewhat on the ordering of the Aff block, and reordering this block may be an
effective remedy if the ARMS algorithm performs well but has a high complexity.

In this section, experiments with several standard techniques for reordering the
Aff block within ARMS are given. As a baseline for comparison, we consider the
order in which the F rows are selected by whatever selection procedure is used, as is
used in the results of section 4. There are two possible ways to evaluate the success
of these reorderings. If the same ILUT tolerances are used for both the ordered
and unordered systems, we can compare the combination of the ARMS fill factor
(or preconditioner complexity, defined as the total number of nonzeros stored in the
ARMS preconditioner on all levels divided by the number of nonzero entries in A) and
iteration counts for the resulting solvers. Of particular interest, of course, is the total
time to solution, which is, in effect, the product of these two values when computer
architecture considerations are neglected. Alternately, the tolerances used to form the
ILUT factors could be adjusted so that the ARMS preconditioner complexity using
reordering (approximately) matches that of the preconditioner without reordering.
In this situation, the relative performance of the two preconditioners can easily be
compared based solely on iteration counts, as each iteration has roughly the same
cost for both preconditioners. Because of the number of problems and variety of
approaches considered, only the first sort of comparison is used here.

Several common reordering techniques are considered. From the METIS tool-
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Fig. 5. Performance profiles for total time to solution of the symmetric PDE based prob-
lems, using various reordering techniques with the single-stage nonsymmetric partitioning algo-
rithm. Solution is taken to mean a reduction of the residual by a relative factor of 106 on all
grids but 1024 × 1024, where a reduction by a relative factor of 104 is used. At right are profiles
for α ∈ [1.3, 3.5]; the detail at left shows α ∈ [1.0, 1.5]; each reordering algorithm is denoted by the
same line color and marker in both figures.

kit [20], we consider the Nodal Nested Dissection and Multiple Minimum Degree
orderings. From the SPARSPAK package [17], we consider both Nested and One-
way Dissections, along with Reverse Cuthill–McKee and Quotient Minimum Degree
reorderings. Finally, we consider the Approximate Minimum Fill technique of [1].

Adding these reorderings to the ARMS setup procedure requires very little change
to the overall ARMS algorithm. The partitioning stage in ARMS already defines
reorderings of the rows and columns of A (for any partitioning, and not just that
described in Algorithm 3) and, implicitly, defines the fine-scale block, Aff . The
adjacency graph of Aff is then extracted from that of A, symmetrized (nodes i and
j are deemed to be adjacent if either i ∈ Adj(j) or j ∈ Adj(i)), and passed to the
reordering algorithm. The ordering computed here is then compounded with that
from ARMS over the fine-grid rows and columns, after which the ARMS setup and
iterations proceed as usual. In particular, no changes are needed to the partitioning
algorithm itself other than the call to compute the reordering, and no changes are
needed within the solve phase. The effects of reordering the Aff block on a given
level, however, compound on coarser scales; reordering the Aff block affects both
the sparsity and entries in the ILUT factors, which are then used to compute the
approximate Schur complement on the coarse scale.

Performance profiles for the total time to solution (setup plus solve times) for
the symmetric PDE based problems including reordering are shown in Figure 5. The
plot at right shows the performance profile for 1.3 ≤ α ≤ 3.5, by which point all
methods have p(α) = 1. In general, the total times to solution using reordering are
slightly larger than those without reordering, but almost all of the methods have
total time within a factor of 1.5 of the fastest, as seen in the detail at left. Notice
that while using the standard ARMS ordering is fastest for many problems, using
the METIS Multiple Minimum Degree, Sparspak One-way Dissection, and Reverse
Cuthill–McKee reorderings are each the fastest for some problems.

Results for iteration time and complexity are shown in Figure 6. For iteration
time (at left), the performance curves are quite similar for all of the different methods.
Using the standard ARMS ordering is fastest for only half of the problems, while the
METIS Multiple Minimum Degree reordering results in the fastest solver for five
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Fig. 6. Performance profiles for solution time excluding setup (at left) and complexity (at
right) for the symmetric PDE based problems, using various reordering techniques with the single-
stage nonsymmetric partitioning algorithm. Solution is taken to mean a reduction of the residual by
a relative factor of 106 on all grids but 1024 × 1024, where a reduction by a relative factor of 104

is used. Each reordering algorithm is denoted by the same line color and marker as in Figure 5.

problems. Considering total time and iteration time separately distinguishes between
solvers that have a slow overall time (as shown in Figure 5) because of the costs
of the reordering stage and those that are slow because of some deficiency in the
resulting preconditioner. In particular, note that the METIS ND reordering is one
of the slowest in terms of total time to solution yet is among the fastest in iteration
time. The added setup costs for this reordering obscure the actual performance gains
in the solve phase.

On the right in Figure 6 are the performance profiles for preconditioner com-
plexity, a measure of the memory requirements of the preconditioner itself. Overall,
the effect of reordering is seen to be small (all preconditioner complexities are within
40% of the minima), but not trivially so. In the detail, we see that the Sparspak Re-
verse Cuthill–McKee and One-way Dissection algorithms are most effective in reducing
the fill, but that all reorderings showed some benefit, in terms of lower complexity,
over the original ordering by the ARMS process.

For the circuit and semiconductor problems, the single-stage partitioning scheme
already results in low ARMS preconditioner complexities (below one for all but 10 of
these problems and below one-half for 17 of them); very slight performance improve-
ments can be expected from any of the reorderings considered. The SPARSPAK
One-Way Dissection and Reverse Cuthill–McKee reorderings are most effective in
terms of reducing total time to solution, and performance profiles for these two re-
orderings are shown in Figure 7. These results again highlight the importance of a
fast reordering algorithm; nearly all preconditioner complexities are within 10% of
the optimal approach for each problem, resulting in only a small possible savings in
iteration time. The most effective approaches are those with low overhead in terms
of setup costs.

The results in Figures 5, 6, and 7 suggest that there is little practical benefit in
compounding the reordering produced by the ARMS partitioning algorithm with one
of these techniques. Similar results are seen in [15], where reorderings for a single-level
ILU preconditioner for the discrete Poisson problem were considered. Reordering in
a multilevel procedure, such as ARMS, potentially has more significant consequences
than in a single-level ILU or ILUT preconditioner, as the reordering and factors com-
puted at one level affect choices made at coarser levels; however, no significant benefit
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Fig. 7. Performance profiles for total time to solution (left) and complexity (right) for the
ILUTP-preconditioned GMRES and preconditioners using the nonsymmetric partitioning schemes
for ARMS, possibly with reordering, on the circuit and semiconductor device simulation problems.
Solution is taken to mean a reduction of the residual by a relative factor of 106, within 1000
iterations.

(direct or indirect) was observed in our tests. In [5], it is observed that the benefit of
reordering in incomplete factorizations depends on how far the matrix is from being
symmetric and diagonally dominant. With our partitioning, the matrix Aff , whose
ILUT factors are computed, is always diagonally dominant, and thus our findings are
consistent with those of [5].

6. Conclusions. We present a new greedy algorithm for partitioning matrices
within a multilevel preconditioner such as ARMS. This algorithm combines the at-
tractive features of two previous works, in that it is based on a direct greedy approach
to finding the largest diagonally dominant Aff block (as in [22]) but allows for non-
symmetric permutations, as these are known to be appropriate for problems with
significant nonsymmetry in the operator [28]. We also demonstrate that further re-
ordering of the fine-scale block of the partitioned system, in order to achieve a better
approximation of this block by its ILUT factors while emphasizing sparsity, leads
to little practical benefit because of the guarantee that our technique offers on the
structure of this block.

The new partitioning approach generalizes the symmetric approach introduced
previously but does not rely on relative diagonal dominance measures as a previous
nonsymmetric partitioning approach does. The setup algorithm is somewhat more
complicated than that of the two-stage approach, often resulting in longer times for
the preconditioner construction, but generally giving preconditioners with lower com-
plexities. In many cases, the improved performance of the preconditioner compensates
for the added expense in forming it, but this is not always so. For problems where
memory considerations are more important than total time, the new technique offers
better complexity than previous approaches, without a significant impact on solver
performance.

Appendix: Detailed implementation of Algorithm 3. The following is
a detailed description of the implementation of the single-stage greedy coarsening
algorithm sketched in Algorithm 3. These details are discussed in section 3.3.

Algorithm 4 (detailed single-stage greedy nonsymmetric partitioning algo-
rithm).

1. Initialize Urow = Ucol = {1, 2, . . . , n}
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2. Initialize Crow = Ccol = ∅ and Frow = Fcol = ∅
3. Compute AT

4. For all i ∈ Urow,
(a) Sort Adj(i) by decreasing |aij |
(b) Compute ki = argmaxk∈Ucol

|aik|
(c) Compute li =

∑
j∈Fcol∪Ucol

|aij |
(d) Compute ri =

∑
j∈Fcol

|aij |
(e) If aiki

= 0, then Crow = Crow ∪ {i}, Urow = Urow \ {i}.
(f) If

|aiki
|

li
≥ θ, then make (i, ki) a diagonal element of Aff :

i. Make i an F -row: Frow = Frow ∪ {i}, Urow = Urow \ {i}
ii. Make ki an F -column: Fcol = Fcol ∪ {ki}, Ucol = Ucol \ {ki}
iii. For m ∈ Urow ∩ AdjT (ki),

• If km has already been defined and km = ki,
– Compute new km = argmaxk∈Ucol

|amk|
– If amkm = 0, then Crow = Crow ∪ {m}, Urow = Urow \ {m}

• Update rm = rm + |amki |
• If

|amkm |
rm

< θ, then Crow = Crow ∪ {m}, Urow = Urow \ {m}
(g) If

|aiki
|

ri
< θ, then Crow = Crow ∪ {i}, Urow = Urow \ {i}

5. For j ∈ Ucol, compute wj =
∑

i∈Urow

|aij |
|aiki

|
6. While Ucol �= ∅ and Urow �= ∅,

(a) Let j� ≈ argmaxj∈Ucol
{wj} and remove j� from Ucol: Ccol = Ccol∪{j�},

Ucol = Ucol \ {j�}
(b) For i ∈ Urow ∩ AdjT (j�),

i. Update li = li − |aij� |
ii. If ki = j�,

A. Compute new ki = argmaxk∈Ucol
|aik|

B. If aiki
= 0, then make i a C-row: Crow = Crow ∪ {i}, Urow =

Urow \ {i}
C. If aiki

�= 0 and
|aiki

|
ri

< θ, then,
• For each j ∈ Ucol ∩Adj(i), update column weight, wj = wj −

|aij |
|a

ikold
i

|

• Make i a C-row: Crow = Crow ∪ {i}, Urow = Urow \ {i}
D. If aiki �= 0 and

|aiki
|

ri
≥ θ, then, for j ∈ Ucol ∩ Adj(i), update

column weight,

wj = wj −
|aij |

|aikold
i

| +
|aij |

|aiknew
i

|

iii. If i ∈ Urow and
|aiki

|
li

≥ θ, then make (i, ki) a diagonal element of
Aff :
A. Make i an F -row: Frow = Frow ∪ {i}, Urow = Urow \ {i}
B. Make ki an F -column: Fcol = Fcol ∪ {ki}, Ucol = Ucol \ {ki}
C. For j ∈ Ucol ∩ Adj(i), update column weight, wj = wj − |aij |

|aiki
|

D. For m ∈ Urow ∩ AdjT (ki)
• If km has already been defined and km = ki,

– Compute new km = argmaxk∈Ucol
|amk|

– If amkm = 0, then make i a C-row: Crow = Crow ∪ {m},
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Urow = Urow \ {m}
– If amkm �= 0, then for each j ∈ Ucol∩Adj(m), update column

weight,

wj = wj −
|aij |

|aikold
i

| +
|aij |

|aiknew
i

|

• Update rm = rm + |amki |
• If m ∈ Urow and

|amkm |
rm

< θ,
– Make m a C-row, Crow = Crow ∪ {m}, Urow = Urow \ {m}.
– For j ∈ Ucol ∩ Adj(m), update column weight, wj = wj −

|amj |
|amkm |

7. Crow = Crow ∪ Urow

8. Ccol = Ccol ∪ Ucol

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] O. Axelsson and P. S. Vassilevski, Algebraic multilevel preconditioning methods, I, Numer.
Math., 56 (1989), pp. 157–177.

[3] O. Axelsson and P. S. Vassilevski, Algebraic multilevel preconditioning methods, II, SIAM
J. Numer. Anal., 27 (1990), pp. 1569–1590.

[4] R. E. Bank and C. Wagner, Multilevel ILU decomposition, Numer. Math., 82 (1999), pp.
543–576.

[5] M. Benzi, D. B. Szyld, and A. van Duin, Orderings for incomplete factorization precondi-
tioning of nonsymmetric problems, SIAM J. Sci. Comput., 20 (1999), pp. 1652–1670.

[6] W. Bomhof and H. van der Vorst, A parallel linear system solver for circuit simulation
problems, Numer. Linear Algebra Appl., 7 (2000), pp. 649–665.

[7] E. F. F. Botta and F. W. Wubs, Matrix renumbering ILU: An effective algebraic multilevel
ILU preconditioner for sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 1007–
1026.

[8] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix
equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge University Press,
Cambridge, UK, 1984.

[9] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
Adaptive smoothed aggregation (αSA), SIAM J. Sci. Comput., 25 (2004), pp. 1896–1920.

[10] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
Adaptive algebraic multigrid, SIAM J. Sci. Comput., 27 (2006), pp. 1261–1286.

[11] R. Bridson and W.-P. Tang, A structural diagnosis of some IC orderings, SIAM J. Sci.
Comput., 22 (2000), pp. 1527–1532.

[12] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM,
Philadelphia, 2000.

[13] T. Davis, University of Florida sparse matrix collection, http://www.cise.ufl.edu/research/
sparse/matrices. NA Digest, vol. 92, no. 42, October 16, 1994; NA Digest, vol. 96, no. 28,
July 23, 1996; and NA Digest, vol. 97, no. 23, June 7, 1997.
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