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Abstract.
A new efficient multilevel upscaling procedure for single-phase saturated flow
in porous media is presented. While traditional approaches to this problem have
focused on the computation of an upscaled hydraulic conductivity, here the coarse-
scale model is created explicitly from the fine-scale model through the application
of operator-induced variational coarsening. This technique, which originated with
robust multigrid solvers, has been shown to accurately capture the influence of
fine-scale heterogeneous structure over the complete hierarchy of coarse-scale
models that it generates. Moreover, implicit in this hierarchy is the construction
of interpolation operators that provide a natural and complete multiscale basis for
the fine-scale problem. Thus, this new multilevel upscaling methodology is similar
to the Multiscale Finite Element Method (MSFEM) and, indeed, it attains similar
accuracy in computations of the fine-scale hydraulic head and coarse-scale normal
flux on a variety of problems; yet it is an order of magnitude faster on the examples
considered here.
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1. Introduction

Although the increasing power of modern computer hard-
ware enables effective simulation of many single-scale and
single-component systems, there exist fundamental mathe-
matical and algorithmic challenges in the effective simula-
tion of multi-scale and multi-component systems. In partic-
ular, a critical underlying problem in the numerical modeling
of flow in porous media is the need to resolve the multiscale
structure of the subsurface environment. For example, the
length scales observed in sedimentary laminae range from
the millimeter scale upward, while the simulation domain
may be on the order of several kilometers. As a result, fully
resolved simulations are computationally intractable, yet the
fine-scale variations of the model parameters (e.g., structure
and orientation of laminae) significantly affect the properties
of the solution at all scales.

Many methods have been proposed to address the compli-
cation of fine-scale variation in the material parameters of a
porous medium. Although an important aspect of this mul-

tifaceted problem is the uncertain specification of the true
fine-scale structure, which is often treated stochastically,
here we focus on the deterministic case in which a fine-scale
description of the medium is assumed a priori. If certain
structural information of the medium is known, then it may
be possible to derive a useful coarse-scale model using sim-
ple averages. In the case of mean uniform flow, for example,
the effective permeability of a medium is bounded between
the harmonic and arithmetic averages of the fine-scale per-
meability, as shown inCardwell and Parsons[1945], along
with conditions on the media and flows where these bounds
are achieved. The geometric average (Warren and Price
[1961]) and certain power averages (Desbarats[1992a]) pro-
vide reliable approximations of the effective permeability
if the fine-scale variation in the permeability field satis-
fies certain conditions. Similarly, in the case of nonuni-
form flow, Desbarats[1992b] demonstrates that a weighted
geometric average provides accurate effective transmissivi-
ties for low to moderate variances of the log-transmissivity
field. To expand the applicability of simple averages fur-
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ther,Ebrahimi and Sahimi[2002] developed wavelet trans-
formation techniques that guide spatially adaptive averaging
to generate a compressed representation of the conductivity
field. The thresholding parameters in this approach effec-
tively prevent averaging across strongly discontinuous in-
terfaces, and hence, its balance of accuracy and efficiency
depends strongly on the fine-scale structural properties of
porous medium. Ultimately, however, the underlying funda-
mental limitation of these approaches is that none of these
simple averages accurately capture the coarse-scale dynam-
ics of an arbitrary medium under arbitrary flow conditions.
In more complex problems, such as transient multiphase
flow, coarse-scale models cannot be completely decoupled
from the fine-scale dynamics.

The purpose of this paper is to introduce a new multi-
level upscaling algorithm, based on variational principles,
that accurately and efficiently captures the effects of a mul-
tiscale medium. The fine-scale permeability is not explicitly
averaged, neither through a simple average chosen a priori,
nor through the solution of local problems as inDurlofsky
[1991]. In fact, no solution of any fine-scale problems is
required by the method. Instead, variational multigrid prin-
ciples (cf. Bank et al.[1985]) are used to construct a self-
consistent hierarchy of coarse-scale models directly from the
given fine-scale model. Moreover, the solution of a coarse-
scale model yields information at more than just that scale,
as important finer-scale information is preserved through the
hierarchy.

This multilevel approach yields more information than
equivalent or effective permeabilities defined over coarse-
scale blocks, regardless of whether the coarse-scale perme-
abilities are calculated using simple averages, as above, or
with more sophisticated techniques such as the upscaling of
Durlofsky[1991] andHe et al.[2002] that relies on the solu-
tion of local fine-scale problems. These techniques, referred
to as Laplacian methods in the review byWen and Ǵomez-
Hernández[1996], are more accurate, in general, than sim-
ple averages. However, the linear scaling of multigrid iter-
ative solvers for elliptic problems (Braess and Hackbusch
[1983]) implies that solving the necessary local fine-scale
problems is asymptotically no less expensive than solving
the global fine-scale problem, unless there is some periodic
behavior in the fine-scale permeability that can be exploited.
Moreover, such an approach yields only a coarse-scale repre-
sentation of the flow properties, potentially missing impor-
tant dynamics necessary to accurately simulate multiphase
flows. Comparisons with the Laplacian upscaling ofDurlof-
sky [1991] have shown that the multilevel upscaling pro-
posed here is significantly more accurate, as well as com-
putationally more efficient (MacLachlan[2004]).

In this paper, we present a comparison with the multiscale

finite element method (MSFEM), which was demonstrated
in Hou and Wu[1997] and analyzed byHou et al.[1999].
This method is similar in both approach and accuracy to the
multilevel upscaling ideology considered here. In addition,
its application to the simulation of flows in heterogeneous
porous media is being actively pursued by the community
(Ye et al.[2004]). In the MSFEM, multiscale dynamics are
captured through the computation of local, low-energy ba-
sis functions used to reduce the problem to a chosen coarse
scale. The explicit construction of these basis functions ac-
curately represents fine-scale dynamics of the flow; however,
this comes at the cost of solution of a set of local fine-scale
problems, resulting in an overall cost similar to that of solv-
ing the global fine-scale model.

The multilevel upscaling algorithm developed here at-
tains accuracy comparable to the MSFEM approach, but at
a significantly lower cost. Both approaches are variational,
representing the low-energy components of the model on
coarse scales, preserving the minimization properties of the
fine-scale finite element discretization. The recursive ap-
proach of a multigrid framework, however, allows explicit
coarsening of the fine-scale problem without performing any
local solves. Instead, physical heuristics are used to identify
local characteristics of low-energy error and represent such
components on coarser scales.

This paper proceeds as follows. Section2 introduces the
continuum-scale mathematical model of saturated, single-
phase flow through porous media and the finite-element dis-
cretization that we consider here. In Section2.1, we discuss
the details of variational multigrid, followed by a descrip-
tion of the multilevel upscaling algorithm in Section2.2. A
periodic model problem is discussed in Section3, where the
intuition gained from a simple medium is used to clarify the
approach. More complex media are considered in Section4.
Conclusions are presented in Section5.

2. Background and Method

We consider two-dimensional single-phase saturated flow
through a porous medium whose hydraulic conductivity,
K(x), is specified on a fine-scale over the domain of interest,
Ω. This flow may be modeled at the continuum scale using
Darcy’s law and conservation of mass,

q(x) = −K(x)∇h(x), (1)

∇ · q(x) = Q(x), (2)

for all x ∈ Ω. Here,h(x) is the hydraulic head,q(x) is
the Darcy flux, andQ(x) represents any external sources or
sinks of fluid. The conductivity,K(x), is a positive scalar
or a positive definite tensor that is assumed to be piecewise
smooth with jump discontinuities at interfaces. We consider
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problems with a combination of no-flow boundary condi-
tions (homogeneous Neumann),

q(x) · n = 0 , ∀x ∈ ΓN , (3)

and prescribed hydraulic head (Dirichlet),

h(x) = hD(x) , ∀x ∈ ΓD , (4)

wherehD(x) is a smooth function along the boundary.
In the following discussion, we work with this model in

its second order form,

−∇ · [K(x)∇h] = Q(x), (5)

from which a fine-scale discrete model may be obtained with
bilinear finite elements on a uniform rectangular mesh that
resolves the variation inK(x). Specifically, in the standard
Galerkin finite-element formulation, we write

h(x) =
N∑

i=1

hiφi(x), (6)

where{φi(x)} are the nodal basis functions associated with
the rectangular mesh ofN nodes. Substitution of (6) into the
weak form of (5) results in a discrete problem that may be
expressed as a sparse linear system of equations,

Ah = Q, (7)

whereh = (h1, . . . , hN )T andQ = (Q1, . . . , QN )T . The
elements of the large, sparseN ×N matrix,A, are given by

aji =
∫

Ω

(K(x)∇φi(x)) · ∇φj(x)dΩ. (8)

Note that sinceK(x) is everywhere symmetric and positive-
definite, so isA.

2.1. Variational Multigrid Coarsening

A fully resolved mesoscale simulation of flow through
strongly heterogeneous media is likely to remain intractable
for some time. Thus, an approach is needed to accurately
and efficiently capture the influence of fine-scale structure
over a hierarchy of coarse-scale models. Many key ingre-
dients of this hierarchy are found in existing multilevel it-
erative algorithms, such as multigrid. Specifically, these
methods achieve their efficiency through the recursive use
of successively coarser discrete problems (i.e., a hierarchy
of coarse-scale discrete models), in conjunction with a com-
plementary smoothing iteration. In fact, these methods have
been shown to scale optimally withN (i.e., solution cost
grows only linearly withN ) for a broad class of problems,

suggesting that scale interaction is well characterized by this
approach. Of particular interest here is a class of robust
black boxmethods that use the fine-scale discrete model to
construct, through a variational principle, the successively
coarser coarse-scale operators. In this paper, we use the fun-
damental components of theblack box multigrid(BoxMG)
algorithm (Dendy [1982]) in our multilevel upscaling ap-
proach.

An excellent introduction to multigrid methods is given
by Briggs et al.[2000]. Here, it is sufficient to highlight the
key steps in the multigrid solution of Equation (7), which are
shown schematically in Figure1 and described as follows:

• the residual on a particular grid is smoothed (so that it
can be well approximated on a coarser grid)

• the residual is thenrestrictedto the coarser grid

• repeat recursively until the coarsest grid is reached

• solve for the error on the coarsest grid

• interpolatea correction to the next finer grid and add
to current approximation

• compute and then smooth the new residual

• repeat to undo the recursive coarsening

We note that the residual of Equation (7), for thejth approx-
imation of the hydraulic head,hj , is simplyrj = Q−Ahj .
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Figure 1. Schematic of a V-cycle multigrid iteration. On
each level, the residual is reduced by a smoothing iteration,
then transferred recursively to the next coarser scale. The
correction from the coarsest scale is computed directly. Af-
ter the recursive call, the correction is interpolated and added
to the current approximation on that scale, the new residual
is then computed and smoothed.

From this description, it is apparent that the efficiency of a
multigrid algorithm is tightly coupled to the performance of
the smoother (although this component is beyond the scope
of this discussion). Smoothing on coarse levels requires a
representation of the fine-scale operator on these levels; we
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utilize these operators in the upscaling algorithm that follows
and, thus, focus here on their specification.

Consider a nested sequence of uniform rectangular meshes
labeledk = 1, . . . , kf , wherek = 1 denotes the coarsest
grid andk = kf denotes the finest grid. A critical aspect of
creating a multigrid algorithm is the hiearchy of coarse-grid
operators, denotedAk. In addition, we need to define the
intergrid transfer operators: the interpolation operator, de-
notedP k

k−1, interpolates functions from grid(k − 1) to grid
k; the restriction operator, denotedRk−1

k , restricts a function
from gridk − 1 to gridk. Variational coarsening offers one
means of definingAk−1 in terms ofAk,Rk−1

k , andP k
k−1. In

particular, restating the discrete linear system as an equiv-
alent minimization problem, and then restricting this mini-
mization to the range of interpolation yields (cf.Nicolaides
[1979], Brandt [1984]),

Ak−1 =
(
P k

k−1

)∗
AkP

k
k−1 , (9)

and, thus, we take the restriction to be the adjoint of interpo-
lation,Rk−1

k =
(
P k

k−1

)∗
.

Finally, to complete the specification of a variational
coarsening algorithm, we must define the interpolation oper-
ator. In fact, the choice of the interpolation operator is crit-
ical to the robustness and efficiency of the resulting multi-
grid algorithm. For example, a naive choice such as bilin-
ear interpolation erroneously assumes that the gradient of
the hydraulic head is continuous and generates a coarse-
scale model in which the upscaled hydraulic conductivity
is simply an arithmetic average of the fine-scale conduc-
tivity. Thus, it is not surprising that bilinear interpola-
tion leads to a fragile multigrid algorithm that is not suit-
able for strongly heterogeneous media. Instead, a signif-
icantly better approach is to use entries in the fine-scale
discrete operator to define an interpolation that preserves
certain fundamental properties of the solution. This tech-
nique was dubbed operator-induced interpolation byDendy
[1982]. The BoxMG interpolation scheme considered here
was shown byMoulton et al.[1998] to approximately en-
force the continuity of the normal component of the Darcy
flux across interfaces.

2.2. The Multilevel Upscaling (MLUPS) algorithm

Given a fine-scale model,Akf
, the variational coarsen-

ing presented in Section 2.1 generates a complete hierarchy
of interpolation operators,P k

k−1, and coarse-scale models,
Ak. Using this variational coarsening procedure, the coef-
ficients of interpolation and the coarse-scale models depend
only on the given fine-scale model,Akf

. When the coarsen-
ing is consistent with physical or mathematical properties of
the model, these useful properties are typically preserved in

the coarse-scale models of the hierarchy. For example, vari-
ational coarsening preserves the symmetry and definiteness
of the fine-scale operator,Akf

, and, at each level, the result-
ing correction minimizes the error in the range of the inter-
polation (cf. Nicolaides[1979], Brandt [1984]). More im-
portantly for upscaling applications, variational coarsening
implicitly generates multiscale basis functions (Grauschopf
et al. [1997]). To clarify this property, denote, on each scale
k, the set of basis functions{ψk

j }, which we define recur-
sively from the finest scale. On the scale of discretization,
grid kf , the basis functions are simply the bilinear basis

functions used in Equation (6), ψkf

j = φj , for all fine-scale
nodesj. Given an operator,Ak, on levelk, generated by
basis functionsψk

j ,

(Ak)ij =
∫

Ω

〈
K(x)∇ψk

j ,∇ψk
i

〉
dΩ, (10)

denote the elements of the interpolation as
(
P k

k−1

)
ij

= pk
ij ,

such that substitution in (9) gives(
Ak−1

)
ij

=
∑
l,m

pk
li p

k
mj

∫
Ω

〈K(x)∇ψk
m,∇ψk

l 〉dΩ (11)

=
∫

Ω

〈
K(x)∇

(∑
m

pk
mj ψ

k
m

)
,∇
(∑

l

pk
li ψ

k
l

)〉
dΩ.

Hence, if we define the new multiscale basis functions on
levelk − 1 as

ψk−1
j =

∑
m

pk
mj ψ

k
m , (12)

we may write the discrete coarse-grid operator in the form(
Ak−1

)
ij

=
∫

Ω

(
K(x)∇ψk−1

j ,∇ψk−1
i

)
dΩ . (13)

Therefore, interpolation provides not only mappings be-
tween grid function spaces but may also be viewed as part
of the discretization on coarse grids. It is in this way that
the variational definition of the coarse-grid operator may be
viewed as a discrete method for generating a hierarchy of
coarse-scale discrete models that accurately capture the in-
fluence of the fine-scale heterogeneous structure.

Our new multilevel upscaling (MLUPS) algorithm uses
the components of the black box multigrid algorithm (or
BoxMG, cf. Dendy[1982]) in the following way:

1. Create a conforming bilinear discretization of Eq. (5)
on the finest grid, imposing homogeneous Neumann
boundary conditions on the entire domain.

2. Construct the multilevel basis functions and the varia-
tional hierarchy of coarse-scale models:
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• use operator-induced interpolation from BoxMG
to define the interpolation operators,P k

k−1.

• use the variational coarsening given in Eq. (9) to
define the coarse-scale operators,Ak−1.

3. Select a coarse-scale,k = kc, on which to define the
coarse-scale approximation of Equation (7). Then,
restrict the given fine-scale boundary conditions and
source to levelkc, to define this coarse-scale model,
Akc

hkc
= Qkc

.

4. Use BoxMG to solve the discrete coarse-scale model
on levelkc.

5. Interpolate the coarse-scale solution from levelkc to
the finest level,kf , using the multiscale basis func-
tions defined by Eq. (12).

It is important to note that the fine-scale discretization ma-
trix in Step 1,Akf

, is created with full homogeneous Neu-
mann boundary conditions. These are the natural boundary
conditions for the weak form of this flow model, and they
generate a fine-scale discrete model that contains full fine-
scale conductivity information. In turn, this leads naturally
to a complete coarse-scale model that offers the flexibility
of imposing boundary conditions directly on that scale. In
fact, the actual boundary conditions for the flow of inter-
est are coarsened separately (although consistently with the
Neumann case) and applied on the chosen coarse scale.

3. Periodic Media

We first apply the MLUPS algorithm (Section2.2) to a
model problem with a two-scale periodic variation in the hy-
draulic conductivity. Specifically, we consider a structured
pattern of square inclusions of a high conductivity medium
in a homogeneous background, as depicted on the left of
Figure2. The conductivity is constructed by a four by four
tiling of the unit cell shown on the right of Figure2, where
theK(x) = 1000 inside the dark region andK(x) = 1 in
the background medium. This regular pattern provides an
ideal setting to develop intuition into the MLUPS approach
as the resulting multiscale basis functions clearly display the
influence of this structure on the flow. Results for randomly
generated anisotropic heterogeneous media are presented in
the following section.

One approach to visualizing the MLUPS multiscale basis
functions is to associate each basis function with a coarse-
grid node on each level of the multigrid hierarchy. In this
case, as we traverse the hierarchy to coarser scales, the sup-
port of a basis function grows and, hence, its shape captures
an increasing region of fine-scale structure. In our current
work with BoxMG, we use standard coarsening, which takes

1

0
5/16

5/16

11/16

1

111/160

0

1

0

Figure 2. Periodic conductivity field. The field on the left is
created by a4×4 tiling of the unit cell at the right.K = 1000
in the dark region, andK = 1 in the light region.

half of the points in each coordinate direction at each level.
Thus, the number of points is reduced by a factor of four on
each level and, moreover, the support of the multiscale basis
function grows in area by a factor of four with each level.

However, this approach is not particularly informative for
this model problem because it takes too many levels for the
support of the coarse-scale basis functions to cover interest-
ing features of the conductivity field. Instead, we examine
how the information in the multigrid interpolation operators
compounds from the coarsest scales up to the finest. Figure3
shows this development on the coarse scales, where we see
the evolution of the basis function centered at( 1

2 ,
1
2 ) from

the bilinear basis function normally used on any scale to the
effective MLUPS basis function for these scales in Figure
4. The support of the basis function does not grow relative
to the problem domain; rather, as information is added from
each interpolation operator, a better description of the be-
havior of the basis function over its fixed support is obtained.
Once this information is incorporated on a scale where vari-
ations inK(x) are well represented, the basis function on
that scale also represents the desired fine-scale behavior.

The MLUPS basis function exhibits many features appro-
priate for this flow. In the regions whereK(x) is large, we
expect small gradients of head relative to those in the back-
ground medium (sinceK∇h ·n is constant across interfaces
and we have a divergence free Darcy flux, locally as well
as globally) ; the basis function reflects this with plateaus in
its surface. Outside these regions, we do not know, a pri-
ori, what to expect of the hydraulic head for a general flow
situation, and so bilinear tendencies are retained to best fit
general heads on the coarse scale.

To demonstrate the accuracy of the MLUPS basis func-
tions, we consider Equation (5), subject to no-flow boundary
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conditions on the top and bottom edges, with headsh = 1
alongx = 0 andh = 0 alongx = 1. We then compute errors
in both the hydraulic head and the average normal flux rela-
tive to the fine-scaletrue solution obtained on a256 × 256
mesh with standard bilinear finite elements. Specifically, the
errors in the head are measured in the discrete vector norms

Figure 3. Coarse-scale basis functions for the periodic prob-
lem centered at( 1

2 ,
1
2 ) and viewed on the coarse4× 4 mesh.

The level indexk = kc = 2 in the upper left, and increases
by column and then row. The support of the basis function
does not change, but fine-scale information is added to the
bilinear basis function on levelkc through the recursive ap-
plication of the multilevel basis definition in Equation (12).

Figure 4. Fine-scale basis function,k = kf = 6 for the pe-
riodic problem centered at( 1

2 ,
1
2 ) with support on the coarse

4× 4 mesh obtained from the recursive application of Equa-
tion (12). Here the influence of the periodic structure on the
flow is clearly captured in the multilevel basis function.

approximatingL2(Ω),

‖e(h)‖2 =

(
1
N

N∑
i=1

e(h)2i

) 1
2

, (14)

whereN is the number of nodes on the fine mesh, and ap-
proximatingL∞(Ω),

‖e(h)‖∞ = max
i

|e(h)i| . (15)

Similarly, to quantify the accuracy of the computed Darcy
flux we consider the average flux through the domain,

qx =
∫ 1

0

(q · x̂)dy =
∫ 1

0

[
−K(x, y)∇h(x, y) · ( 1

0 )
]
dy,

(16)
and define the corresponding discrete vector norms approx-

imatingL2([0, 1]),

‖e(qx)‖2 =

(
1
Nx

Nx∑
i=1

e(qx)2i

) 1
2

, (17)

whereNx is the number of nodes in the x-direction on the
fine mesh, and approximatingL∞([0, 1]),

‖e(qx)‖∞ = max
i

|e(qx)i|. (18)

These results are summarized in Table1, where the compu-
tational fine-scale ranges from64× 64 elements (a standard
bilinear discretization) to8× 8 MLUPS elements. Note that
as the number of degrees of freedom on the computational
scale decreases, we see increasingL2 errors in both head and
average flux. TheL∞ error in pressure, however, remains
relatively constant. This max-norm error is attained along
lines of constanty, midway between the high-conductivity
inclusions, where the MLUPS method tends to undershoot
the exact solution producing a small cusp in they-direction
instead of the smooth but rapidly varying profile of the fine-
scale conductivity.

Table 1. Errors in computed head and average normal flux
for model problem with periodic conductivity.

Grid ‖e(h)‖2 ‖e(h)‖∞ ‖e(qx)‖2

642 4.29 × 10−4 4.54 × 10−3 7.45 × 10−3

322 5.52 × 10−4 3.92 × 10−3 2.29 × 10−2

162 1.04 × 10−3 4.02 × 10−3 7.16 × 10−2

82 1.54 × 10−3 6.62 × 10−3 3.67 × 10−2

To better understand this performance, recall that we dis-
cretized Equation (5) with finite elements, and, specifically,
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Figure 5. Conductivity field for30◦ axis of anisotropy (left) and45◦ (right). Fields were generated using the GSLIB
software package, for a log-normal distribution with variance 4 with correlation lengths of 0.8 along the axis of anisotropy
and 0.04 orthogonal to this axis. Conductivities range from approximately10−3 (white) to103 (black).

Figure 6. MLUPS basis function for the node( 1
2 ,

1
2 ) on an8 × 8 grid for 30◦ axis of anisotropy (left) and45◦ (right). Note

that the axes of anisotropy are clearly reflected in the ridges displayed by both basis functions, and that they reflect expected
features of the flow, changing quickly whenK is small, and slowly whenK is large.

that the solution of the computational fine-scale equations is
the same as that of the minimization problem,

h = argmin
h̃∈V

∫∫ (
1
2
(K∇h̃) · ∇h̃−Qh̃

)
dx.

The MLUPS method may be viewed as picking a subset of
the space,V, over which to perform the minimization. The
natural weighting in the minimization functional, however,
emphasizes errors in the regions whereK(x) is large and/or
the gradient of the hydraulic head is large. In a sense, this
forces MLUPS to choose basis functions that allow small
errors in the head in the background medium so that it can
match the head more accurately in the high conductivity re-
gions. Such an approach is consistent with the fine-scale
finite element discretization and the variational framework

of the Galerkin Finite Element Method and is, thus, viewed
as a feature of the method.

4. Anisotropic Heterogeneous Media

While the example in Section3 is useful as an introduc-
tion to the MLUPS methodology, it does not represent typ-
ical conductivity fields for which coarse-scale models are
needed. A more realistic representation may be obtained
with a random field generator. Thus, in this section, we fo-
cus on realizations of heterogeneous layered media, and ex-
amine the effect of such layering on the performance of the
MLUPS method. Specifically, we consider a series of prob-
lems in which the hydraulic conductivity,K(x), is gener-
ated using the GSLIB software package (Deutsch and Jour-
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Figure 7. Cross-sections of the hydraulic head for fixedx = 255
512 (left) andy = 255

512 (right), generated by MLUPS and
MSFEM upscaled to an8×8 grid for the30◦ axis of anisotropy, as in Figure5. For comparison, the fine-scale hydraulic head
was calculated on a2048 × 2048 grid.

nel [1998]). The computational fine scale is selected as a
256 × 256 element grid and, on each element, the hydraulic
conductivity is taken to be a constant. A principle axis of
statistical anisotropy is selected between 0 and 90 degrees,
relative to the positivex-axis, and a conductivity field is gen-
erated such thatlog10(K(x)) is normally distributed with
mean zero and variance 4, with correlation lengths of 0.8
along the principle axis and 0.04 in the direction orthogonal
to this axis.

Samples of these conductivity fields are shown in Fig-
ure 5, for the angles to the principle axis of30◦ on the left
and45◦ on the right. The gray scale in these figures rep-
resents a range in conductivity from approximately10−3

(white) to 103 (black). Notice the strong layering that re-
sults from the significant difference in the correlation lengths
along and orthogonal to the chosen axis. The MLUPS basis
functions for the node at( 1

2 ,
1
2 ) after upscaling by a factor

of 32 in each direction are shown in Figure6 for 30◦, on the
left, and45◦, on the right. These basis functions strongly
reflect the fine-scale features of the conductivity. Most no-
ticeable is the rotation in the features to match the angles
of the layering in the conductivity, visible along the lower-
right edges of the basis functions. Notice also how these ba-
sis functions strongly represent the expected behavior of the
head for general flow conditions, with relatively small gra-
dients in regions of large conductivity and relatively large
changes in regions where the conductivity values are small.

Because of the similarity in approach of the two methods,
we compare the results generated by the MLUPS method
with the MSFEM ofHou and Wu[1997], and Hou et al.
[1999]. The MSFEM method considers a given fine compu-
tational scale and explicitly creates basis functions that vary
on that scale to use in the coarse-scale discretization. These

functions are constructed by solving local fine-scale prob-
lems with boundary conditions especially chosen to form
coarse-scale nodal basis functions. In this study, we used the
oscillatory boundary conditions discussed in [Hou and Wu,
1997, Section 2.2], as our tests with the alternative (and more
expensive) technique of oversampling did not yield any gain
in accuracy for these problems. The long correlation lengths
considered here suggest a strategy of oversampling to the
global scale; while this may be effective for multiphase or
time-dependent problems, for the single-phase, steady-state
problems considered here, the added cost cannot be appro-
priately amortized.

To compare the accuracy and efficiency of MLUPS and
MSFEM we consider mean uniform flow through this se-
quence of highly heterogeneous conductivity fields. Specif-
ically, no-flow boundary conditions are applied on the top
(y = 1) and bottom (y = 0), while the hydraulic head
is prescribed on the left and right edges, withh(0, y) = 1
andh(1, y) = 0. In all cases, the computational fine-scale
discretization used the standard bilinear Galerkin Finite El-
ement discretization (BLFEM) outlined in Section2. For
both MLUPS and MSFEM we used a computational fine-
scale mesh of256× 256 and coarsened (upscaled) by a fac-
tor of 32 to an8 × 8 mesh. An over-resolved calculation
on a2048× 2048 element mesh is used to represent the true
solution of this problem, and the BLFEM, MLUPS, and MS-
FEM solutions are defined at the nodes of this mesh through
their basis function representations.

First, we highlight important qualitative differences ob-
served in the MLUPS and MSFEM computations of fine-
scale hydraulic head in the neighborhood of coarse-scale el-
ement edges. Consider the cross-sections of the hydraulic
head that are shown in Figure7, for the case of the30◦ axis
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Figure 8. L2([0, 1]2) (left) andL∞ errors in the hydraulic head for different angles of the principle axis. Note that the
magnitudes of these errors are comparable for both MLUPS and MSFEM and are both significantly larger than that of the
BLFEM solution to the256 × 256 mesh problem.
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Figure 9. L2([0, 1]) error (left) andL∞ error (right) in the average normal flux for different angles of the principle axis.

of anisotropy field (as in Figure5). While both upscaled so-
lutions deviate from the fine scale, the MLUPS solution ap-
pears to better match the desired behavior. In particular, the
MSFEM solution exhibits unnatural abrupt deviations from
the fine-scale solution induced by the imposed internal boun-
dary conditions (seen, for example, in the left of Figure7,
aroundx = 3

4 andx = 7
8 ), while the MLUPS solution has

much less dramatic deviations and better matches a num-
ber of the features of the fine-scale solution. We note that
the BLFEM solution on a256 × 256 mesh is too close to
the2048× 2048 mesh solution to differentiate on the scales
considered in Figure7; although there are small differences
between the two, as indicated by the global error norms pre-
sented in Figure8.

Next, as in Section3, we consider measures of error in
both the head and average normal flux for uniform mean
flow from left to right across the domain. Errors in both
the hydraulic head and the average flux are calculated rel-

ative to the fine-scale solution, measured using the discrete
vector norms defined in Equations (14) through (18). Plots
of the errors in hydraulic head for the BLFEM, MLUPS, and
MSFEM computations on 5 degree steps of the orientation
of the conductivity layers are shown in Figure8, with the
L2(Ω) given by Equation (14) on the left, and theL∞(Ω)
given by Equation (15) on the right. The errors for the bi-
linear solution on the256 × 256 element grid (BLFEM) are
presented here as a baseline for the upscaling methods. In
some sense, these represent the best we can expect in the
upscaled results, illustrating the error in the solution of the
computational fine-scale model.

In these plots, we see that the MLUPS and MSFEM meth-
ods produce solutions with errors of similar magnitude for
these test problems. The MLUPS technique appears to be
slightly more accurate for small angles in the orientation
of the conductivity layers, although such a generalization
would not be possible without large ensemble averages that
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are beyond the scope of this study. For larger angles, the er-
rors of the two methods are comparable, with moderate os-
cillation in the magnitude of the errors for both techniques.

Plots of the errors in average normal flux, integrated
along lines of constantx, are shown in Figure9. The
L2([0, 1]) norm of average normal flux is computed accord-
ing to Equation (17) and is shown on the left, while the
L∞([0, 1]) is given by Equation (18) and is shown on the
right. Once again, we note that the overall similarity in ac-
curacy between the two methods in these error measures, al-
though we see relatively large excursions in computed fluxes
for the MSFEM solution for small angles. In general, sig-
nificant fluctuation withx in the computed average fluxes
was seen with the MSFEM procedure, whereas the MLUPS
computations were more consistent. This can be seen in the
closer relationship between theL2 andL∞ norms of the flux
for the MLUPS method.

Given the similar accuracy of these two methods, the
MLUPS methodology is much more attractive due to its
lower computational cost. Specifically, the MSFEM com-
putation requires three fine-scale solves per coarse-scale el-
ement to create a full set of basis functions (Hou and Wu
[1997]). With the existence of optimal solvers such as multi-
grid for this class of problems, this setup phase has a cost that
is proportional to the cost of solving the computational fine-
scale system. In fact, using BoxMG (Dendy[1982]) to solve
the 256 × 256 element computational fine-scale problems,
solution time ranges from approximately 1 to 2.5 seconds
on a system with a 1.6 GHz Athlon processor. This variation
in solution time is due to the variations in the realizations of
the conductivity across different angles, resulting in a degra-
dation in the smoothing rate for some configurations and,
hence, a degradation in the convergence of BoxMG. The cor-
responding MSFEM calculations for upscaling to an8 × 8
coarse computational-scale mesh consistently required1.8
seconds of CPU time on the same machine. In contrast, the
MLUPS calculation consistently needed only0.12 seconds
of CPU time, a factor of 15 faster than the MSFEM computa-
tion. The dominant cost in each approach is the computation
of the basis functions and coarse-scale models. In MLUPS,
the cost of computing the interpolation operators (and thus,
the basis functions) is quite small, and the cost of computing
the coarse-scale operators is roughly the same as the cost of
two relaxation sweeps on the finer scale. Thus the setup cost
for MLUPS is approximately that of a single V(1,1) cycle. In
contrast, for the MSFEM basis functions, typically 5 multi-
grid V(1,1)-cycles were needed to compute each of the basis
functions over their non-zero support. As three basis func-
tions need to be computed over each element (the fourth is
given by the requirement of a conforming method) and each
basis function computation is 5 times more expensive than

the MLUPS computation (as 5 cycles are required with 2
relaxations on each level), we see that the observed factor
of 15 times speedup from MSFEM to MLUPS is consistent
with the differences in the algorithms. Because the compu-
tation of the individual basis functions for MSFEM and the
computational coarse grids were so small, the MSFEM and
MLUPS approaches did not see the same fluctuation in CPU
time as the fine-scale computations did.

5. Conclusions

We demonstrate the capability of the multilevel upscal-
ing methodology to efficiently generate a complete hierar-
chy of self-consistent coarse-scale models, as well as the
corresponding multiscale basis functions, thereby facilitat-
ing the computation of coarse- and fine-scale properties of
the solution. In this study, our multilevel upscaling algo-
rithm (MLUPS) achieves accuracy comparable to the pop-
ular Multiscale Finite Element Method (MSFEM) for com-
putations of both the fine-scale hydraulic head and the av-
erage normal flux in strongly heterogeneous media under
mean uniform flow. Moreover, the variational coarsening
employed in MLUPS provides an efficient means of both
computing and representing the multiscale basis functions
and, hence, delivers a significant computational savings over
MSFEM. In the future, we plan to leverage this natural hi-
erarchical setting to investigate adaptivity and error estima-
tion in both deterministic and stochastic upscaling for more
complex flow regimes, such as time-dependent, unsaturated,
multiphase, and reactive flows. In addition, we plan to use
the solid mathematical framework that this new multilevel
upscaling methodology provides to study the apparent scale
dependence of various hydrogeologic parameters (cf.Neu-
man and Federico[2003]).
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